forked from D-Net/openaire-graph-docs
1.1 KiB
1.1 KiB
sidebar_position |
---|
5 |
Classifiers
TODO
Property | Description |
---|---|
Short description | A document classification algorithm that employs analysis of free text stemming from the abstracts of the publications. The purpose of applying a document classification module is to assign a scientific text to one or more predefined content classes. |
Authority | ATHENA Research Center, Greece |
Licence | CC-BY/CC-0 |
Algorithmic details | The algorithm classifies publication's fulltexts using a Bayesian classifier and weighted terms according to an offline training phase. The training has been done using the following taxonomies: arXiv, MeSH (Medical Subject Headings), ACM, and DDC (Dewey Decimal Classification, or Dewey Decimal System). |
Parameters | Publication's identifier and fulltext |
Limitations | N/A |
Code repository | https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction |
Environment | Python, madIS (https://github.com/madgik/madis), APSW (https://github.com/rogerbinns/apsw) |