affRo/strings.py

90 lines
3.0 KiB
Python
Raw Normal View History

2024-10-16 12:42:51 +02:00
import json
from pyspark.sql.types import StringType, ArrayType, StructType, StructField, DoubleType
2024-10-16 12:42:51 +02:00
from affro_cluster import *
2024-12-05 12:54:10 +01:00
2024-10-16 12:42:51 +02:00
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, explode, first, collect_list, udf
2024-10-16 12:42:51 +02:00
import sys
spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
2024-10-18 10:48:18 +02:00
folder_path = sys.argv[1]
hdfs_output_path = sys.argv[2]
matchings_schema = ArrayType(
StructType([
StructField("Provenance", StringType(), nullable=True),
StructField("PID", StringType(), nullable=True),
StructField("Value", StringType(), nullable=True),
StructField("Confidence", DoubleType(), nullable=True),
StructField("Status", StringType(), nullable=True)
])
)
2024-10-18 10:48:18 +02:00
def oalex_affro_2(aff_string):
try:
matchings = affro(aff_string)
# Ensure matchings is a list, even if affro returns a single dict
if not isinstance(matchings, list):
matchings = [matchings]
# Create the result as a tuple that matches matchings_schema
result = []
for matching in matchings:
# Assuming 'matching' is a dictionary that contains 'Provenance', 'PID', 'Value', 'Confidence', 'Status'
result.append((
matching.get("Provenance", None),
matching.get("PID", None),
matching.get("Value", None),
float(matching.get("Confidence", None)),
matching.get("Status", None)
))
return result
except Exception as e:
print(f"Error processing affiliation string {aff_string}: {str(e)}")
return ()
#Version of affro application on a single raw_aff_string and returns just the Matchins set
def oalex_affro(aff_string):
try:
matchings = affro(aff_string)
if not isinstance(matchings, list):
matchings = [matchings]
return matchings
2024-10-16 12:42:51 +02:00
except Exception as e:
print(f"Error processing affiliation string {aff_string}: {str(e)}")
return []
oalex_affro_udf = udf(oalex_affro_2, matchings_schema)
exploded = spark.read.json(folder_path) \
2024-12-05 11:22:10 +01:00
.filter(col("doi").isNotNull()) \
.select(
col("doi").alias("DOI"),
col("rors").alias("OAlex"),
explode(col("raw_aff_string")).alias("affiliation") #this allows to split all the raw_aff_string and to parallelize better
)
affs = explode \
.select("affiliation") \
.distinct() \
.withColumn("Matchings", oalex_affro_udf(col("affiliation")))
affs.join(exploded, on="affiliation") \
.select(col("DOI"),
col("OAlex"),
explode(col("Matchings")).alias("match")
) \
.groupBy("DOI") \
.agg(first("OAlex").alias("OAlex"), #for each DOI it says what are the other columns Since OALEX is equal for each doi just select the first, while use the collect_list function to aggregate the Matchings
collect_list("match").alias("Matchings") #each exploded match is collected again
) \
.write \
.mode("overwrite") \
.option("compression","gzip") \
.json(hdfs_output_path)