affRo/strings.py

53 lines
1.7 KiB
Python
Raw Normal View History

2024-10-16 12:42:51 +02:00
import json
from affro_cluster import *
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, explode, first, collect_list
2024-10-16 12:42:51 +02:00
import sys
spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
2024-10-18 10:48:18 +02:00
folder_path = sys.argv[1]
hdfs_output_path = sys.argv[2]
working_dir_path = sys.argv[3]
2024-10-18 10:48:18 +02:00
#Version of affro application on a single raw_aff_string and returns just the Matchins set
def oalex_affro(aff_string):
try:
matchings = affro(aff_string)
if not isinstance(matchings, list):
matchings = [matchings]
return matchings
2024-10-16 12:42:51 +02:00
except Exception as e:
print(f"Error processing affiliation string {aff_string}: {str(e)}")
return []
explode = spark.read.json(folder_path) \
2024-12-05 11:22:10 +01:00
.filter(col("doi").isNotNull()) \
.select(
col("doi").alias("DOI"),
col("ror").alias("OAlex"),
explode(col("raw_aff_string")).alias("affiliation") #this allows to split all the raw_aff_string and to parallelize better
)
affs = explode \
.select("affiliation") \
.distinct() \
.withColumn("Matchings", oalex_affro(col("aff_string")))
affs.join(explode, on = "affiliation") \
.select(col("DOI"),
col("OAlex"),
explode("Matchins").alias("match")
) \
2024-12-05 11:22:10 +01:00
.groupBy("DOI") \
.agg(first("OAlex").alias("OAlex"), #for each DOI it says what are the other columns Since OALEX is equal for each doi just select the first, while use the collect_list function to aggregate the Matchings
2024-12-05 11:22:10 +01:00
collect_list("match").alias("Matchings") #each exploded match is collected again
) \
.write \
.mode("overwrite") \
.option("compression","gzip") \
.json(hdfs_output_path)
2024-10-16 12:42:51 +02:00