179 lines
5.1 KiB
R
179 lines
5.1 KiB
R
|
set.seed(999) ## for same random sequence
|
||
|
#require(hacks)
|
||
|
|
||
|
#setwd("C:/Users/Ye/Documents/Data poor fisheries/Martell Froese Method/")
|
||
|
|
||
|
## Read Data for stock, year=yr, catch=ct, and resilience=res. Expects space delimited file with header yr ct and years in integer and catch in real with decimal point
|
||
|
## For example
|
||
|
## stock res yr ct
|
||
|
## cap-icel Medium 1984 1234.32
|
||
|
|
||
|
## filename <- "RAM_MSY.csv"
|
||
|
##filename <- "ICESct2.csv"
|
||
|
|
||
|
cat("Step 1","\n")
|
||
|
TestRUN <- F # if it is true, just run on the test samples, false will go for a formal run!
|
||
|
|
||
|
filename <- "D20.csv"
|
||
|
outfile <- "CatchMSY_Output.csv"
|
||
|
outfile2 <- paste("NonProcessedSpecies.csv",sep="")
|
||
|
|
||
|
#cdat <- read.csv2(filename, header=T, dec=".")
|
||
|
cdat1 <- read.csv(filename)
|
||
|
cat("\n", "File", filename, "read successfully","\n")
|
||
|
|
||
|
cat("Step 2","\n")
|
||
|
if(file.exists("cdat.RData"))
|
||
|
{load("cdat.RData")} else
|
||
|
{
|
||
|
|
||
|
dim(cdat1)
|
||
|
yrs=1950:2012
|
||
|
|
||
|
# to set NA as 0
|
||
|
cdat1[is.na(cdat1)] <- 0
|
||
|
nrow <- length(cdat1[,1])
|
||
|
ndatColn <- length(cdat1[1,c(-1:-12)])
|
||
|
rownames(cdat1) <- NULL
|
||
|
|
||
|
cdat <- NULL
|
||
|
for(i in 1:nrow)
|
||
|
{#i=1
|
||
|
#a <- ctotal3[i,-1]
|
||
|
tmp=data.frame(stock=rep(as.character(cdat1[i,"Stock_ID"]),ndatColn),
|
||
|
species=rep(as.character(cdat1[i,"Scientific_name"]),ndatColn),
|
||
|
yr=yrs,ct=unlist(c(cdat1[i,c(-1:-12)])),
|
||
|
res=rep(cdat1[i,"ResilienceIndex"],ndatColn))
|
||
|
|
||
|
cdat <- rbind(cdat,tmp)
|
||
|
#edit(cdat)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
StockList=unique(as.character(cdat$stock))
|
||
|
|
||
|
colnames(cdat)
|
||
|
|
||
|
|
||
|
#stock_id <- unique(as.character(cdat$stock))
|
||
|
#??
|
||
|
# stock_id <- "cod-2224" ## for selecting individual stocks
|
||
|
# stock=stock_id
|
||
|
#??
|
||
|
|
||
|
cat("Step 3","\n")
|
||
|
|
||
|
## FUNCTIONS are going to be used subsequently
|
||
|
.schaefer <- function(theta)
|
||
|
{
|
||
|
with(as.list(theta), { ## for all combinations of ri & ki
|
||
|
bt=vector()
|
||
|
ell = 0 ## initialize ell
|
||
|
J=0 #Ye
|
||
|
for (j in startbt)
|
||
|
{
|
||
|
if(ell == 0)
|
||
|
{
|
||
|
bt[1]=j*k*exp(rnorm(1,0, sigR)) ## set biomass in first year
|
||
|
for(i in 1:nyr) ## for all years in the time series
|
||
|
{
|
||
|
xt=rnorm(1,0, sigR)
|
||
|
bt[i+1]=(bt[i]+r*bt[i]*(1-bt[i]/k)-ct[i])*exp(xt)
|
||
|
## calculate biomass as function of previous year's biomass plus net production minus catch
|
||
|
}
|
||
|
|
||
|
#Bernoulli likelihood, assign 0 or 1 to each combination of r and k
|
||
|
ell = 0
|
||
|
if(bt[nyr+1]/k>=lam1 && bt[nyr+1]/k <=lam2 && min(bt) > 0 && max(bt) <=k && bt[which(yr==interyr)]/k>=interbio[1] && bt[which(yr==interyr)]/k<=interbio[2])
|
||
|
ell = 1
|
||
|
J=j # Ye
|
||
|
}
|
||
|
}
|
||
|
return(list(ell=ell,J=J)) # Ye adding J=J
|
||
|
|
||
|
|
||
|
})
|
||
|
}
|
||
|
|
||
|
sraMSY <-function(theta, N)
|
||
|
{
|
||
|
#This function conducts the stock reduction
|
||
|
#analysis for N trials
|
||
|
#args:
|
||
|
# theta - a list object containing:
|
||
|
# r (lower and upper bounds for r)
|
||
|
# k (lower and upper bounds for k)
|
||
|
# lambda (limits for current depletion)
|
||
|
|
||
|
|
||
|
with(as.list(theta),
|
||
|
{
|
||
|
ri = exp(runif(N, log(r[1]), log(r[2]))) ## get N values between r[1] and r[2], assign to ri
|
||
|
ki = exp(runif(N, log(k[1]), log(k[2]))) ## get N values between k[1] and k[2], assing to ki
|
||
|
itheta=cbind(r=ri,k=ki, lam1=lambda[1],lam2=lambda[2], sigR=sigR)
|
||
|
## assign ri, ki, and final biomass range to itheta
|
||
|
M = apply(itheta,1,.schaefer) ## call Schaefer function with parameters in itheta
|
||
|
i=1:N
|
||
|
## prototype objective function
|
||
|
get.ell=function(i) M[[i]]$ell
|
||
|
ell = sapply(i, get.ell)
|
||
|
get.J=function(i) M[[i]]$J # Ye
|
||
|
J=sapply(i,get.J) # Ye
|
||
|
return(list(r=ri,k=ki, ell=ell, J=J)) # Ye adding J=J
|
||
|
})
|
||
|
}
|
||
|
|
||
|
|
||
|
getBiomass <- function(r, k, j)
|
||
|
{
|
||
|
BT <- NULL
|
||
|
bt=vector()
|
||
|
for (v in 1:length(r))
|
||
|
{
|
||
|
bt[1]=j[v]*k[v]*exp(rnorm(1,0, sigR)) ## set biomass in first year
|
||
|
for(i in 1:nyr) ## for all years in the time series
|
||
|
{
|
||
|
xt=rnorm(1,0, sigR)
|
||
|
bt[i+1]=(bt[i]+r[v]*bt[i]*(1-bt[i]/k[v])-ct[i])*exp(xt)
|
||
|
## calculate biomass as function of previous year's biomass plus net production minus catch
|
||
|
}
|
||
|
BT=rbind(BT, t(t(bt)))
|
||
|
}
|
||
|
return(BT)
|
||
|
}
|
||
|
|
||
|
## The End of Functions section
|
||
|
|
||
|
cat("Step 4","\n")
|
||
|
stockLoop <- StockList
|
||
|
# randomly select stocks from randomly selected 5 area codes first
|
||
|
if(TestRUN)
|
||
|
{
|
||
|
set.seed(999)
|
||
|
AreaCodeList <- unique(cdat1$AREA_Code)
|
||
|
sampledAC <- sample(AreaCodeList,size=5,replace=F)
|
||
|
stockLoop <- cdat1[cdat1$AREA_Code %in% sampledAC,c("Stock_ID")]
|
||
|
}
|
||
|
|
||
|
#setup counters
|
||
|
counter1 <- 0
|
||
|
counter2 <- 0
|
||
|
|
||
|
cat("Step 4","\n")
|
||
|
## Loop through stocks
|
||
|
#write.table("x",file=outfile,append = FALSE, row.names = FALSE,col.names=FALSE,sep=",")
|
||
|
write.table("x",file=outfile2,append = FALSE, row.names = FALSE,col.names=FALSE,sep=",")
|
||
|
|
||
|
for(stock in stockLoop)
|
||
|
{
|
||
|
t0<-Sys.time()
|
||
|
xr <- runif(1, 1.0, 10000)
|
||
|
x1<-c(paste("processed",xr,sep=","))
|
||
|
xr <- runif(1, 1.0, 10000)
|
||
|
x2<-c(paste("non processed",xr,sep=","))
|
||
|
#write.table(x1,file=outfile,append = T, row.names = FALSE,col.names=FALSE,sep=",")
|
||
|
write.table(x2,file=outfile2,append = T, row.names = FALSE,col.names=FALSE,sep=",")
|
||
|
|
||
|
cat("Elapsed: ",Sys.time()-t0," \n")
|
||
|
}
|