set.seed(999) ## for same random sequence #require(hacks) #setwd("C:/Users/Ye/Documents/Data poor fisheries/Martell Froese Method/") ## Read Data for stock, year=yr, catch=ct, and resilience=res. Expects space delimited file with header yr ct and years in integer and catch in real with decimal point ## For example ## stock res yr ct ## cap-icel Medium 1984 1234.32 ## filename <- "RAM_MSY.csv" ##filename <- "ICESct2.csv" cat("Step 1","\n") TestRUN <- F # if it is true, just run on the test samples, false will go for a formal run! filename <- "D20.csv" outfile <- "CatchMSY_Output.csv" outfile2 <- paste("NonProcessedSpecies.csv",sep="") #cdat <- read.csv2(filename, header=T, dec=".") cdat1 <- read.csv(filename) cat("\n", "File", filename, "read successfully","\n") cat("Step 2","\n") if(file.exists("cdat.RData")) {load("cdat.RData")} else { dim(cdat1) yrs=1950:2012 # to set NA as 0 cdat1[is.na(cdat1)] <- 0 nrow <- length(cdat1[,1]) ndatColn <- length(cdat1[1,c(-1:-12)]) rownames(cdat1) <- NULL cdat <- NULL for(i in 1:nrow) {#i=1 #a <- ctotal3[i,-1] tmp=data.frame(stock=rep(as.character(cdat1[i,"Stock_ID"]),ndatColn), species=rep(as.character(cdat1[i,"Scientific_name"]),ndatColn), yr=yrs,ct=unlist(c(cdat1[i,c(-1:-12)])), res=rep(cdat1[i,"ResilienceIndex"],ndatColn)) cdat <- rbind(cdat,tmp) #edit(cdat) } } StockList=unique(as.character(cdat$stock)) colnames(cdat) #stock_id <- unique(as.character(cdat$stock)) #?? # stock_id <- "cod-2224" ## for selecting individual stocks # stock=stock_id #?? cat("Step 3","\n") ## FUNCTIONS are going to be used subsequently .schaefer <- function(theta) { with(as.list(theta), { ## for all combinations of ri & ki bt=vector() ell = 0 ## initialize ell J=0 #Ye for (j in startbt) { if(ell == 0) { bt[1]=j*k*exp(rnorm(1,0, sigR)) ## set biomass in first year for(i in 1:nyr) ## for all years in the time series { xt=rnorm(1,0, sigR) bt[i+1]=(bt[i]+r*bt[i]*(1-bt[i]/k)-ct[i])*exp(xt) ## calculate biomass as function of previous year's biomass plus net production minus catch } #Bernoulli likelihood, assign 0 or 1 to each combination of r and k ell = 0 if(bt[nyr+1]/k>=lam1 && bt[nyr+1]/k <=lam2 && min(bt) > 0 && max(bt) <=k && bt[which(yr==interyr)]/k>=interbio[1] && bt[which(yr==interyr)]/k<=interbio[2]) ell = 1 J=j # Ye } } return(list(ell=ell,J=J)) # Ye adding J=J }) } sraMSY <-function(theta, N) { #This function conducts the stock reduction #analysis for N trials #args: # theta - a list object containing: # r (lower and upper bounds for r) # k (lower and upper bounds for k) # lambda (limits for current depletion) with(as.list(theta), { ri = exp(runif(N, log(r[1]), log(r[2]))) ## get N values between r[1] and r[2], assign to ri ki = exp(runif(N, log(k[1]), log(k[2]))) ## get N values between k[1] and k[2], assing to ki itheta=cbind(r=ri,k=ki, lam1=lambda[1],lam2=lambda[2], sigR=sigR) ## assign ri, ki, and final biomass range to itheta M = apply(itheta,1,.schaefer) ## call Schaefer function with parameters in itheta i=1:N ## prototype objective function get.ell=function(i) M[[i]]$ell ell = sapply(i, get.ell) get.J=function(i) M[[i]]$J # Ye J=sapply(i,get.J) # Ye return(list(r=ri,k=ki, ell=ell, J=J)) # Ye adding J=J }) } getBiomass <- function(r, k, j) { BT <- NULL bt=vector() for (v in 1:length(r)) { bt[1]=j[v]*k[v]*exp(rnorm(1,0, sigR)) ## set biomass in first year for(i in 1:nyr) ## for all years in the time series { xt=rnorm(1,0, sigR) bt[i+1]=(bt[i]+r[v]*bt[i]*(1-bt[i]/k[v])-ct[i])*exp(xt) ## calculate biomass as function of previous year's biomass plus net production minus catch } BT=rbind(BT, t(t(bt))) } return(BT) } ## The End of Functions section cat("Step 4","\n") stockLoop <- StockList # randomly select stocks from randomly selected 5 area codes first if(TestRUN) { set.seed(999) AreaCodeList <- unique(cdat1$AREA_Code) sampledAC <- sample(AreaCodeList,size=5,replace=F) stockLoop <- cdat1[cdat1$AREA_Code %in% sampledAC,c("Stock_ID")] } #setup counters counter1 <- 0 counter2 <- 0 cat("Step 4","\n") ## Loop through stocks #write.table("x",file=outfile,append = FALSE, row.names = FALSE,col.names=FALSE,sep=",") write.table("x",file=outfile2,append = FALSE, row.names = FALSE,col.names=FALSE,sep=",") for(stock in stockLoop) { t0<-Sys.time() xr <- runif(1, 1.0, 10000) x1<-c(paste("processed",xr,sep=",")) xr <- runif(1, 1.0, 10000) x2<-c(paste("non processed",xr,sep=",")) #write.table(x1,file=outfile,append = T, row.names = FALSE,col.names=FALSE,sep=",") write.table(x2,file=outfile2,append = T, row.names = FALSE,col.names=FALSE,sep=",") cat("Elapsed: ",Sys.time()-t0," \n") }