merging with main
|
@ -0,0 +1,2 @@
|
|||
URL="http://snf-23385.ok-kno.grnetcloud.net"
|
||||
BASE_URL="/"
|
|
@ -9,6 +9,11 @@ $ git clone https://code-repo.d4science.org/D-Net/openaire-graph-docs.git
|
|||
|
||||
## Local installation and deployment
|
||||
|
||||
From https://docusaurus.io/docs/installation#requirements
|
||||
> Node.js version 16.14 or above (which can be checked by running node -v)
|
||||
|
||||
|
||||
|
||||
To install the required packages use:
|
||||
```
|
||||
$ npm install
|
||||
|
|
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 44 KiB |
After Width: | Height: | Size: 96 KiB |
After Width: | Height: | Size: 180 KiB |
Before Width: | Height: | Size: 256 KiB After Width: | Height: | Size: 256 KiB |
After Width: | Height: | Size: 68 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 74 KiB |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 474 KiB |
After Width: | Height: | Size: 32 KiB |
After Width: | Height: | Size: 90 KiB |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 53 KiB |
After Width: | Height: | Size: 43 KiB |
After Width: | Height: | Size: 41 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 37 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 41 KiB |
After Width: | Height: | Size: 43 KiB |
|
@ -1,11 +1,11 @@
|
|||
# Data model
|
||||
|
||||
The OpenAIRE Research Graph comprises several types of entities and [relationships](./relationships) among them.
|
||||
The OpenAIRE Research Graph comprises several types of [entities](../category/entities) and [relationships](./relationships) among them.
|
||||
|
||||
The latest version of the JSON schema can be found on [Bulk downloads](../download).
|
||||
The latest version of the JSON schema can be found on the [Downloads](../downloads/full-graph) section.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Data model" src="/img/docs/data-model.png" width="80%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Data model" src={require('../assets/img/data-model.png').default} width="80%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
The figure above, presents the graph's data model.
|
||||
|
|
|
@ -37,7 +37,7 @@ _Type: String • Cardinality: ONE_
|
|||
Description of the research community/research infrastructure
|
||||
|
||||
```json
|
||||
"description": "This portal provides access to publications, research data, projects and software that may be relevant to the Corona Virus Disease (COVID-19). The OpenAIRE COVID-19 Gateway aggregates COVID-19 related records, links them and provides a single access point for discovery and navigation. We tag content from the OpenAIRE Research Graph (10,000+ data sources) and additional sources. All COVID-19 related research results are linked to people, organizations and projects, providing a contextualized navigation."
|
||||
"description": "This portal provides access to publications, research data, projects and software that may be relevant to the Corona Virus Disease (COVID-19). The OpenAIRE COVID-19 Gateway aggregates COVID-19 related records, links them and provides a single access point for discovery and navigation. We tag content from the OpenAIRE Graph (10,000+ data sources) and additional sources. All COVID-19 related research results are linked to people, organizations and projects, providing a contextualized navigation."
|
||||
```
|
||||
|
||||
### name
|
||||
|
|
|
@ -646,7 +646,12 @@ A measure computed for this instance (e.g. those provided by [BIP! Finder](https
|
|||
### key
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
The specified measure. Currently supported one of: `{ influence, influence_alt, popularity, popularity_alt, impulse, cc }` (see [the dedicated page](../../data-provision/enrichment/impact-scores) for more details).
|
||||
The specified measure. Currently supported one of:
|
||||
* `influence` (see [PageRank](/data-provision/indicators-ingestion/impact-scores#pagerank-pr))
|
||||
* `influence_alt` (see [Citation Count](/data-provision/indicators-ingestion/impact-scores#citation-count-cc))
|
||||
* `popularity` (see [AttRank](/data-provision/indicators-ingestion/impact-scores#attrank))
|
||||
* `popularity_alt` (see [RAM](/data-provision/indicators-ingestion/impact-scores#ram))
|
||||
* `impulse` (see ["Incubation" Citation Count](/data-provision/indicators-ingestion/impact-scores#incubation-citation-count-icc))
|
||||
|
||||
```json
|
||||
"key": "influence"
|
||||
|
|
|
@ -311,7 +311,7 @@ _Type: [Subject](other#subject) • Cardinality: MANY_
|
|||
Subject, keyword, classification code, or key phrase describing the resource.
|
||||
|
||||
```json
|
||||
"subjecsts": [
|
||||
"subjects": [
|
||||
{
|
||||
"provenance": {
|
||||
"provenance": "Harvested",
|
||||
|
|
|
@ -70,5 +70,5 @@ Currently, the following data sources are used as "PID authorities":
|
|||
| arXiv | `arXiv_______` | arXiv.org e-Print Archive |
|
||||
| handle | `handle______` | any repository |
|
||||
|
||||
OpenAIRE also perform duplicate identification (see the [dedicated section for details](../../data-provision/deduplication/)).
|
||||
OpenAIRE also perform duplicate identification (see the [dedicated section for details](/data-provision/deduplication)).
|
||||
All duplicates are **merged** together in a **representative record** which must be assigned a dedicated OpenAIRE identifier (i.e. it cannot have the identifier of one of the aggregated record).
|
||||
|
|
|
@ -4,17 +4,17 @@ sidebar_position: 1
|
|||
|
||||
# Aggregation
|
||||
|
||||
OpenAIRE materializes an open, participatory research graph (the OpenAIRE Research graph) where products of the research life-cycle (e.g. scientific literature, research data, project, software) are semantically linked to each other and carry information about their access rights (i.e. if they are Open Access, Restricted, Embargoed, or Closed) and the sources from which they have been collected and where they are hosted. The OpenAIRE research graph is materialised via a set of autonomic, orchestrated workflows operating in a regimen of continuous data aggregation and integration. [1]
|
||||
OpenAIRE materializes an open, participatory research graph (the OpenAIRE Research Graph) where products of the research life-cycle (e.g. scientific literature, research data, project, software) are semantically linked to each other and carry information about their access rights (i.e. if they are Open Access, Restricted, Embargoed, or Closed) and the sources from which they have been collected and where they are hosted. The OpenAIRE Research Graph is materialised via a set of autonomic, orchestrated workflows operating in a regimen of continuous data aggregation and integration. [1]
|
||||
|
||||
## What does OpenAIRE collect?
|
||||
|
||||
OpenAIRE aggregates metadata records describing objects of the research life-cycle from content providers compliant to the [OpenAIRE guidelines](https://guidelines.openaire.eu/) and from entity registries (i.e. data sources offering authoritative lists of entities, like [OpenDOAR](https://v2.sherpa.ac.uk/opendoar/), [re3data](https://www.re3data.org/), [DOAJ](https://doaj.org/), and various funder databases). After collection, metadata are transformed according to the OpenAIRE internal metadata model, which is used to generate the final OpenAIRE Research Graph, accessible from the [OpenAIRE EXPLORE portal](https://explore.openaire.eu) and the [APIs](https://graph.openaire.eu/develop/).
|
||||
|
||||
The transformation process includes the application of cleaning functions whose goal is to ensure that values are harmonised according to a common format (e.g. dates as YYYY-MM-dd) and, whenever applicable, to a common controlled vocabulary. The controlled vocabularies used for cleansing are accessible at [api.openaire.eu/vocabularies](https://api.openaire.eu/vocabularies/). Each vocabulary features a set of controlled terms, each with one code, one label, and a set of synonyms. If a synonym is found as field value, the value is updated with the corresponding term.
|
||||
Also, the OpenAIRE Research Graph is extended with other relevant scholarly communication sources that do not follow the OpenAIRE Guidelines and/or are too large to be integrated via the “normal” aggregation mechanism: DOIBoost (which merges Crossref, ORCID, Microsoft Academic Graph, and Unpaywall).
|
||||
In addition, the OpenAIRE Research Graph is extended with other relevant scholarly communication sources that need special handling, either because they do not strictly follow the OpenAIRE Guidelines or due to the vast amount of data of data they offer (e.g. DOIBoost, that merges Crossref, ORCID, Microsoft Academic Graph, and Unpaywall).
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Aggregation" src="/img/docs/aggregation.png" width="65%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Aggregation" src={require('../../assets/img/aggregation.png').default} width="65%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
The OpenAIRE aggregation system collects information about objects of the research life-cycle compliant to the [OpenAIRE acquisition policy](https://www.openaire.eu/content-acquisition-policy) from [different types of data sources](https://explore.openaire.eu/search/find/dataproviders):
|
||||
|
@ -32,7 +32,7 @@ Relationships between objects are collected from the data sources, but also auto
|
|||
|
||||
Objects and relationships in the OpenAIRE Research Graph are extracted from information packages, i.e. metadata records, collected from data sources of the following kinds:
|
||||
|
||||
- *Institutional or thematic repositories*: Information systems where scientists upload the bibliographic metadata and full-texts of their articles, due to obligations from their organization or due to community practices (e.g. ArXiv, Europe PMC);
|
||||
- *Literature, Institutional and thematic repositories*: Information systems where scientists upload the bibliographic metadata and full-texts of their articles, due to obligations from their organization or due to community practices (e.g. ArXiv, Europe PMC);
|
||||
- *Open Access Publishers and journals*: Information system of open access publishers or relative journals, which offer bibliographic metadata and PDFs of their published articles;
|
||||
- *Data archives*: Information systems where scientists deposit descriptive metadata and files about their research data (also known as scientific data, datasets, etc.).;
|
||||
- *Hybrid repositories/archives*: information systems where scientists deposit metadata and file of any kind of scientific products, incuding scientific literature, research data and research software (e.g. Zenodo)
|
||||
|
@ -46,11 +46,13 @@ Objects and relationships in the OpenAIRE Research Graph are extracted from info
|
|||
OpenAIRE collects metadata records describing objects of the research life-cycle from content providers compliant to the OpenAIRE guidelines and from entity registries (i.e. data sources offering authoritative lists of entities, like OpenDOAR, re3data, DOAJ, and funder databases).
|
||||
|
||||
The OpenAIRE aggregator collects metadata records in the majority of cases via [OAI-PMH](https://www.openarchives.org/pmh/), but also supports other standard exchange protocols like FTP(S), SFTP, and some RESTful API.
|
||||
The whole list of available and used collectors could be found in the [RedMine Wiki - API Protocols](https://support.openaire.eu/projects/openaire/wiki/API_protocols)
|
||||
|
||||
For additional details about the aggregation workflows, please refer to [2].
|
||||
|
||||
|
||||
## References
|
||||
|
||||
[1] Manghi P. et al. (2014) "The D-NET software toolkit: A framework for the realization, maintenance, and operation of aggregative infrastructures", Program, Vol. 48 Issue: 4, pp.322-354, [10.1108/PROG-08-2013-0045](https://doi.org/10.1108/PROG-08-2013-0045)
|
||||
[1] Manghi, P., Artini, M., Atzori, C., Bardi, A., Mannocci, A., La Bruzzo, S., Candela, L., Castelli, D. and Pagano, P. (2014), “The D-NET software toolkit: A framework for the realization, maintenance, and operation of aggregative infrastructures”, Program: electronic library and information systems, Vol. 48 No. 4, pp. 322-354. [doi:10.1108/prog-08-2013-0045](http://doi.org/10.1108/prog-08-2013-0045)
|
||||
|
||||
[2] Atzori, Claudio, Bardi, Alessia, Manghi, Paolo, & Mannocci, Andrea. (2017). The OpenAIRE workflows for data management. Zenodo. [10.5281/zenodo.996006](http://doi.org/10.5281/zenodo.996006)
|
||||
[2] Atzori, C., Bardi, A., Manghi, P., & Mannocci, A. (2017, January). "The OpenAIRE workflows for data management". In Italian Research Conference on Digital Libraries (pp. 95-107). Springer, Cham. [doi:10.1007/978-3-319-68130-6_8](https://doi.org/10.1007/978-3-319-68130-6_8)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
sidebar_position: 1
|
||||
---
|
||||
|
||||
# OpenAIRE compatible sources
|
||||
|
||||
The OpenAIRE aggregator collects metadata records from content providers compliant to the OpenAIRE guidelines.
|
||||
|
||||
The OpenAIRE Guidelines help repository managers expose publications, datasets and CRIS metadata via the OAI-PMH protocol in order to integrate with OpenAIRE infrastructure.
|
||||
|
||||
You can find more information in https://guidelines.openaire.eu/en/latest/
|
|
@ -33,7 +33,7 @@ The metadata collection process identifies the most recent record date available
|
|||
|
||||
### Entity Mapping
|
||||
|
||||
The table below describes the mapping from the XML baseline records to the OpenAIRE Graph dump format.
|
||||
The table below describes the mapping from the XML baseline records to the OpenAIRE Research Graph dump format.
|
||||
|
||||
| OpenAIRE Result field path | Datacite record JSON path | # Notes |
|
||||
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
@ -131,7 +131,7 @@ Possible improvements:
|
|||
* Verify if Crossref has a property for `language`, `country`, `container.issnLinking`, `container.iss`, `container.edition`, `container.conferenceplace` and `container.conferencedate`
|
||||
* Different approach to set the `refereed` field and improve its coverage?
|
||||
|
||||
h3. 2 Map Crossref links to projects/funders
|
||||
### Map Crossref links to projects/funders
|
||||
|
||||
Links to funding available in Crossref are mapped as funding relationships (`result -- isProducedBy -- project`) applying the following mapping:
|
||||
|
|
@ -69,7 +69,7 @@ curl -s "https://www.ebi.ac.uk/europepmc/webservices/rest/MED/33024307/datalinks
|
|||
```
|
||||
|
||||
## Mapping
|
||||
The table below describes the mapping from the EBI links records to the OpenAIRE Graph dump format.
|
||||
The table below describes the mapping from the EBI links records to the OpenAIRE Research Graph dump format.
|
||||
We filter all the target links with pid type **ena**, **pdb** or **uniprot**
|
||||
For each target we construct a Bioentity with the following mapping
|
||||
|
|
@ -12,7 +12,7 @@ Pubmed exposes an entry point FTP with all the updates for each one. [ftp baseli
|
|||
|
||||
## Entity Mapping
|
||||
|
||||
The table below describes the mapping from the XML baseline records to the OpenAIRE Graph dump format.
|
||||
The table below describes the mapping from the XML baseline records to the OpenAIRE Research Graph dump format.
|
||||
|
||||
| OpenAIRE Result field path | PubMed record field xpath | Notes |
|
||||
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
@ -1,15 +1,10 @@
|
|||
---
|
||||
sidebar_position: 4
|
||||
---
|
||||
# Cleaning
|
||||
|
||||
# Post cleaning
|
||||
|
||||
At the very end of the processing pipeline, a step is dedicated to perform cleaning operations aimed at improving the overall quality of the data.
|
||||
The output of this final cleansing step is the final version of the OpenAIRE Research Graph.
|
||||
|
||||
## Vocabulary based cleaning
|
||||
<!-- ## Vocabulary based cleaning -->
|
||||
|
||||
The aggregation processes run independently one from another and continuously. Each aggregation process, depending on the characteristics of the records exposed by the data source, makes use of one or more vocabularies to harmonise the values available in a given field.
|
||||
In this page, we describe the *vocabulary-based cleaning* operation performed to harmonise the data of the different data sources.
|
||||
A vocabulary is a data structure that defines a list of terms, and for each term defines a list of synonyms:
|
||||
|
||||
```xml
|
||||
|
@ -39,17 +34,4 @@ The content of the vocabularies can be accessed on [api.openaire.eu/vocabularies
|
|||
Given a value provided in the original records, the cleaning process looks for a synonym and, when found, resolves the corresponding term which is used in turn to build the cleaned record.
|
||||
Each aggregation process applies vocabularies according to their definitions in a given moment of time, however, it could be the case that a vocabulary changes after the aggregation of one data source has finished, thus the aggregated content does not reflect the current status of the controlled vocabularies.
|
||||
|
||||
In addition, the integration of ScholeXplorer and DOIBoost and some enrichment processes applied on the raw and on the de-duplicated graph may introduce values that do not comply with the current status of the OpenAIRE controlled vocabularies. For these reasons, we included a final step of cleansing at the end of the workflow materialisation.
|
||||
|
||||
## Filtering
|
||||
|
||||
Bibliographic records that do not meet minimal requirements for being part of the OpenAIRE Research Graph are eliminated during this phase.
|
||||
Currently, the only criteria applied horizontally to the entire graph aims at excluding scientific results whose title is not meaningful for citation purposes.
|
||||
Then, different criteria are applied in the pre-processing of specific sub-collections:
|
||||
|
||||
* [Crossref filtering](/data-provision/aggregation/doiboost#crossref-filtering)
|
||||
|
||||
## Country cleaning
|
||||
|
||||
This phase is responsible for removing the country information from result records that match specific criteria. The need for this phase is driven by the fact that some datasources, although referred of national pertinence, they contain material that is not always related to the given country.
|
||||
|
||||
In addition, the integration of ScholeXplorer and DOIBoost and some enrichment processes applied on the raw and on the de-duplicated graph may introduce values that do not comply with the current status of the OpenAIRE controlled vocabularies. For these reasons, we included a final step of cleansing at the end of the workflow materialisation.
|
|
@ -1,7 +1,8 @@
|
|||
# Data provision
|
||||
# Graph production workflow
|
||||
|
||||
OpenAIRE collects metadata records from more than 70K scholarly communication sources from all over the world, including Open Access institutional repositories, data archives, journals. All the metadata records (i.e. descriptions of research products) are put together in a data lake, together with records from Crossref, Unpaywall, ORCID, Grid.ac, and information about projects provided by national and international funders. Dedicated inference algorithms applied to metadata and to the full-texts of Open Access publications enrich the content of the data lake with links between research results and projects, author affiliations, subject classification, links to entries from domain-specific databases. Duplicated organisations and results are identified and merged together to obtain an open, trusted, public resource enabling explorations of the scholarly communication landscape like never before.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Data provision" src="/img/docs/architecture.png" width="80%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Data provision" src={require('../assets/img/architecture.png').default} width="100%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
# Deduction
|
||||
|
||||
The Deduction process (also known as “bulk tagging”) enriches each record with new information that can be derived from the existing property values.
|
||||
|
||||
This process is used to associate results to community/research initiatives that are part of OpenAIRE.
|
||||
As of November 2022, three procedures are in place to relate a research product to a research initiative, infrastructure (RI) or community (RC) based on:
|
||||
|
||||
* subjects: it is possible to specify a list of subjects that are relevant for the RC/RI. Every time one of the subjects is found among the subjects of a result, the result is linked to the RC/RI.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Bulktagging Subject" src={require('../../assets/img/enrichment/bulktagging_subject.png').default} width="50%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
|
||||
* data sources: it is possible to list a set of data sources relevant for the RC/RI. All the results collected from these data sources will be linked to the RC/RI
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Bulktagging Data source" src={require('../../assets/img/enrichment/bulktagging_datasource.png').default} width="50%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
When only some results collected from a datasource are relevant for the RC/RI, it is possible to specify a set of selection constraints (SC) that have to be verified before linking the result to the
|
||||
community. The selection constraint has the form <strong>SC = S1 or S2 or ... or Sn</strong>. The generic Si has the form <strong>Si = s<sub>i1</sub> and s<sub>i2</sub> and ...and s<sub>in</sub></strong> and each s<sub>ij</sub> is a condition on a specific field of the result. The set of fields that can be specified is <strong>F={title, author, contributor, description, orcid}</strong>,
|
||||
while the set of condition can be among <strong>V={contains, equals, not_contains, not_equals, contains_ignorecase, equals_ignorecase, not_contains_ignorecase, not_equal_ignorecase}</strong>, and the value is free text.
|
||||
A possible selection criteria can be: “All the products whose contributor contains DARIAH “
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Bulktagging Data source" src={require('../../assets/img/enrichment/bulktagging_selconstraints.png').default} width="70%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
* Zenodo community: it is possible to list a set of Zenodo communities relevant for the RC/RI. All the products collected from the listed Zenodo communities are linked to the RC/RI
|
||||
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Bulktagging Zenodo Community" src={require('../../assets/img/enrichment/bulktagging_zenodo.png').default} width="50%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
|
||||
The list of subjects, Zenodo communities and data sources used to enrich the products are defined by the managers of the community gateway or infrastructure monitoring dashboard associated with the RC/RI.
|
|
@ -0,0 +1,55 @@
|
|||
# Propagation
|
||||
|
||||
This process enriches the graph by adding new links and/or new properties. The new information is added by exploiting existing semantic
|
||||
relationships and values between the involved entities
|
||||
|
||||
As of November 2022, the following procedures are in place:
|
||||
|
||||
* Country propagation: updates the property “country” of a results. This happens when the result is collected from an institutional datasource or when the datasource hosting the result is inserted in a whitelist. For all the results whose hosting datasource verifies one of the conditions above, the country of the organization providing the datasource is added to the country of the result: e.g. publication collected from an institutional repository maintained by an italian university will be enriched with the property “country = IT”.
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Country Propagation" src={require('../../assets/img/enrichment/propagation_country.png').default} width="50%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
* Project propagation: adds a "isProducedBy" relationship (and its inverse) between a Project P and Result R1, if R1 has a strong semantic relationship with another Result R2 and P produces R2: e.g. publication linked to project P “is supplemented by” a dataset D. Dataset D will get the link to project P. The relationships considered for this procedure are “isSupplementedBy” and “isSupplementTo”.
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Project Propagation" src={require('../../assets/img/enrichment/propagation_resulttoproject.png').default} width="40%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
* Result to RC/RI through organization propagation. The manager of the RC/RI can specify a set of organizations whose product are relevant for the
|
||||
community.
|
||||
Each result having such a relation of affiliation with at least one organization relevant for the RC/RI will be linked to it.
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Result to community through organization propagation" src={require('../../assets/img/enrichment/propagation_resulttocommunitythroughorganization.png').default}
|
||||
width="50%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
* Result to RC/RI through semantic relation: extends the set of products linked to a RC/RI by exploiting strong semantic relationships between the results;
|
||||
e.g. if a result R1 is associated to the community C and is supplemented by a result R2 then the result R2 will be linked to the community. The relationships considered for this procedure are “isSupplementedBy” and “supplements”.
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Result to community through semantic relation propagation" src={require('../../assets/img/enrichment/propagation_resulttocommunitythroughsemrel.png').default} width="40%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
* ORCID identifiers to result through semantic relation. This propagation enriches the results by adding ORCID identifiers to authors. The added ORCID will be marked as "potential" since they have been inserted through propagation.
|
||||
The process considers the set of overlapping authors between results (R1 and R2) linked with a strong semantic relationship (IsSupplementedBy, IsSupplementTo).
|
||||
For each author A in the overlapping set, if R1 provides the ORCID value for A and R2 does not, then the author A in R2 will be enriched with the information of the ORCID found in R1.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Orcid propation through semantic relation" src={require('../../assets/img/enrichment/propagation_orcid.png').default} width="40%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
* affiliation to organization through institutional repository. This propagation adds one "hasAuthorInstitution" relationship (and its inverse)
|
||||
between a Result R and Organization O,
|
||||
if R was collected from a datasource D with type institutional repository, and D was provided by O.
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Affiliation propagation through institutional repository" src={require('../../assets/img/enrichment/propagation_affiliationistrepo.png').default} width="40%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
* affiliation to organization through semantic relation. This propagation adds one "hasAuthorInstitution" relationship (and its inverse) between a
|
||||
Result R and an Organization O,
|
||||
if R has an affiliation relation with an organization O1 that is in relation "isChildOf" with O.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Affiliation propagation through semantic relation" src={require('../../assets/img/enrichment/propagation_organizationsemrel.png').default} width="40%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
The algorithm exploits only the organization leaves that are in a "IsChildOf" relation with another organization. So far one single step is done
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="propagation strategy" src={require('../../assets/img/enrichment/organization_tree.png').default} width="40%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
|
@ -10,7 +10,7 @@ The deduplication process can be divided into three different phases:
|
|||
* Duplicates grouping (transitive closure)
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Deduplication Workflow" src="/img/docs/deduplication-workflow.png" width="100%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Deduplication Workflow" src={require('../../assets/img/deduplication-workflow.png').default} width="85%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
### Candidate identification (clustering)
|
||||
|
|
|
@ -43,9 +43,11 @@ The comparison goes through the following decision tree:
|
|||
5. *legalname check*: comparison of the normalized `legalnames` with the `Jaro-Winkler` distance to determine if it is higher than `0.9`. If so, a similarity relation is drawn. Otherwise, no similarity relation is drawn.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Organization Decision Tree" src="/img/docs/decisiontree-organization.png" width="100%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Organization Decision Tree" src={require('../../assets/img/decisiontree-organization.png').default} width="100%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
[//]: # (Link to the image: https://docs.google.com/drawings/d/1YKInGGtHu09QG4pT2gRLEum4LxU82d4nKkvGNvRQmrg/edit?usp=sharing)
|
||||
|
||||
### Data Curation
|
||||
|
||||
All the similarity relations drawn by the algorithm involving the decision tree are exposed in OpenOrgs, where are made available to the data curators to give feedbacks and to improve the organizations metadata.
|
||||
|
|
|
@ -34,9 +34,11 @@ The comparison goes through different stages:
|
|||
5. *strong check*: comparison composed by three substages involving the (i) comparison of the author list sizes and the version of the record to determine if they are coherent, (ii) comparison of the record titles with the Levenshtein distance to determine if it is higher than 0.99, (iii) "smart" comparison of the author lists to check if common authors are more than 60%.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Publications Decision Tree" src="/img/docs/decisiontree-publication.png" width="100%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Publications Decision Tree" src={require('../../assets/img/decisiontree-publication.png').default} width="100%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
[//]: # (Link to the image: https://docs.google.com/drawings/d/19SIilTp1vukw6STMZuPMdc0pv0ODYCiOxP7OU3iPWK8/edit?usp=sharing)
|
||||
|
||||
#### Software
|
||||
For each pair of software in a cluster the following strategy (depicted in the figure below) is applied.
|
||||
The comparison goes through different stages:
|
||||
|
@ -45,17 +47,21 @@ The comparison goes through different stages:
|
|||
3. *strong check*: comparison of the record titles with Levenshtein distance. If the measure is above 0.99, then the similarity relation is drawn
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Software Decision Tree" src="/img/docs/decisiontree-software.png" width="85%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Software Decision Tree" src={require('../../assets/img/decisiontree-software.png').default} width="85%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
[//]: # (Link to the image: https://docs.google.com/drawings/d/19gd1-GTOEEo6awMObGRkYFhpAlO_38mfbDFFX0HAkuo/edit?usp=sharing)
|
||||
|
||||
#### Datasets and Other types of research products
|
||||
For each pair of datasets or other types of research products in a cluster the strategy depicted in the figure below is applied.
|
||||
The decision tree is almost identical to the publication decision tree, with the only exception of the *instance type check* stage. Since such type of record does not have a relatable instance type, the check is not performed and the decision tree node is skipped.
|
||||
|
||||
<p align="center">
|
||||
<img loading="lazy" alt="Dataset and Other types of research products Decision Tree" src="/img/docs/decisiontree-dataset-orp.png" width="90%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
<img loading="lazy" alt="Dataset and Other types of research products Decision Tree" src={require('../../assets/img/decisiontree-dataset-orp.png').default} width="90%" className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module"/>
|
||||
</p>
|
||||
|
||||
[//]: # (Link to the image: https://docs.google.com/drawings/d/1uBa7Bw2KwBRDUYIfyRr_Keol7UOeyvMNN7MPXYLg4qw/edit?usp=sharing)
|
||||
|
||||
### Duplicates grouping (transitive closure)
|
||||
|
||||
The general concept is that the field coming from the record with higher "trust" value is used as reference for the field of the representative record.
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
---
|
||||
sidebar_position: 3
|
||||
---
|
||||
|
||||
# Extraction of acknowledged concepts
|
||||
|
||||
***Short description:*** Scans the plaintexts of publications for acknowledged concepts, including grant identifiers (projects) of funders, accession numbers of bioetities, EPO patent mentions, as well as custom concepts that can link research objects to specific research communities and initiatives in OpenAIRE.
|
||||
|
||||
***Algorithmic details:***
|
||||
The algorithm processes the publication's fulltext and extracts references to acknowledged concepts. It applies pattern matching and string join between the fulltext and a target database which contains the title, the acronym and the identifier of the searched concept.
|
||||
|
||||
***Parameters:***
|
||||
Concept titles, acronyms, and identifiers, publication's identifiers and fulltexts
|
||||
|
||||
***Limitations:*** -
|
||||
|
||||
***Environment:***
|
||||
Python, [madIS](https://github.com/madgik/madis), [APSW](https://github.com/rogerbinns/apsw)
|
||||
|
||||
***References:***
|
||||
* Foufoulas, Y., Zacharia, E., Dimitropoulos, H., Manola, N., Ioannidis, Y. (2022). DETEXA: Declarative Extensible Text Exploration and Analysis. In: , et al. Linking Theory and Practice of Digital Libraries. TPDL 2022. Lecture Notes in Computer Science, vol 13541. Springer, Cham. [doi:10.1007/978-3-031-16802-4_9](https://doi.org/10.1007/978-3-031-16802-4_9)
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** CC-BY/CC-0 • ***Code:*** [iis/referenceextraction](https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,57 @@
|
|||
---
|
||||
sidebar_position: 1
|
||||
---
|
||||
|
||||
# Affiliation matching
|
||||
|
||||
***Short description:*** The goal of the affiliation matching module is to match affiliations extracted from the pdf and xml documents with organizations from the OpenAIRE organization database.
|
||||
|
||||
***Algorithmic details:***
|
||||
|
||||
*The buckets concept*
|
||||
|
||||
In order to get the best possible results, the algorithm should compare every affiliation with every organization. However, this approach would be very inefficient and slow, because it would involve the processing of the cartesian product (all possible pairs) of millions of affiliations and thousands of organizations. To avoid this, IIS has introduced the concept of buckets. A bucket is a smaller group of affiliations and organizations that have been selected to be matched with one another. The matching algorithm compares only these affiliations and organizations that belong to the same bucket.
|
||||
|
||||
*Affiliation matching process*
|
||||
|
||||
Every affiliation in a given *bucket* is compared with every organization in the same bucket multiple times, each time by using a different algorithm (*voter*). Each *voter* is assigned a number (match strength) that describes the estimated correctness of the result of its comparison. All the affiliation-organization pairs that have been matched by at least one *voter*, will be assigned the match strength > 0 (the actual number depends on the voters, its calculation method will be shown later).
|
||||
|
||||
It is very important for the algorithm to group the affiliations and organizations properly i.e. the ones that have a chance to match should be in the same *bucket*. To guarantee this, the affiliation matching module allows to create different methods of dividing the affiliations and organizations into *buckets*, and to use all of these methods in a single matching process. The specific method of grouping the affiliations and organizations into *bucket* and then joining them into pairs is carried out by the service called *Joiner*.
|
||||
|
||||
Every *joiner* can be linked with many different *voters* that will tell if the affiliation-organization pairs joined match or not. By providing new *joiners* and *voters* one can extend the matching algorithm with countless new methods for matching affiliations with organizations, thus adjusting the algorithm to his or her needs.
|
||||
|
||||
All the affiliations and organizations are sequentially computed by all the *matchers*. In every *matcher* they are grouped by some *joiner* in pairs, and then these pairs are processed by all the *voters* in the *matcher*. Every affiliation-organization pair that has been matched at least once is assigned the match strength that depends on the match strengths of the *voters* that pointed the given pair is a match.
|
||||
|
||||
**NOTE:** There can be many organizations matched with a given affiliation, each of them matched with a different match strength. The user of the module can set a match strength threshold which will limit the results to only those matches that have the match strength greater than the specified threshold.
|
||||
|
||||
*Calculation of the match strength of the affiliation-organization pair matched by multiple matchers*
|
||||
|
||||
It often happens that the given affiliation-organization pair is returned as a match by more than one matcher, each time with a different match strength. In such a case **the match with the highest match strength will be selected**.
|
||||
|
||||
*Calculation of the match strength of the affiliation-organization pair within a single matcher*
|
||||
|
||||
Every voter has a match strength that is in the range (0, 1]. **The voter match strength says what the quotient of correct matches to all matches guessed by this voter is, and is based on real data and hundreds of matches prepared by hand.**
|
||||
|
||||
The match strength of the given affiliation-organization pair is based on the match strengths of all the voters in the matcher that have pointed that the pair is a match. It will always be less than or equal to 1 and greater than the match strength of each single voter that matched the given pair.
|
||||
|
||||
The total match strength is calculated in such a way that each consecutive voter reduces (by its match strength) the gap of uncertainty about the correctness of the given match.
|
||||
|
||||
***Parameters:***
|
||||
|
||||
* input
|
||||
* input_document_metadata: [ExtractedDocumentMetadata](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/metadataextraction/ExtractedDocumentMetadata.avdl) avro datastore location. Document metadata is the source of affiliations.
|
||||
* input_organizations: [Organization](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/importer/Organization.avdl) avro datastore location.
|
||||
* input_document_to_project: [DocumentToProject](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/importer/DocumentToProject.avdl) avro datastore location with **imported** document-to-project relations. These relations (alongside with inferred document-project and project-organization relations) are used to generate document-organization pairs which are used as a hint for matching affiliations.
|
||||
* input_inferred_document_to_project: [DocumentToProject](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/referenceextraction/project/DocumentToProject.avdl) avro datastore location with **inferred** document-to-project relations.
|
||||
* input_project_to_organization: [ProjectToOrganization](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/importer/ProjectToOrganization.avdl) avro datastore location. These relations (alongside with infered document-project and document-project relations) are used to generate document-organization pairs which are used as a hint for matching affiliations
|
||||
* output
|
||||
* [MatchedOrganization](https://github.com/openaire/iis/blob/master/iis-wf/iis-wf-affmatching/src/main/resources/eu/dnetlib/iis/wf/affmatching/model/MatchedOrganization.avdl) avro datastore location with matched publications with organizations.
|
||||
|
||||
***Limitations:*** -
|
||||
|
||||
***Environment:***
|
||||
Java, Spark
|
||||
|
||||
***References:*** -
|
||||
|
||||
***Authority:*** ICM • ***License:*** AGPL-3.0 • ***Code:*** [CoAnSys/affiliation-organization-matching](https://github.com/CeON/CoAnSys/tree/master/affiliation-organization-matching)
|
|
@ -0,0 +1,41 @@
|
|||
# Citation matching
|
||||
|
||||
***Short description:*** During a citation matching task, bibliographic entries are linked to the documents that they reference. The citation matching module - one of the modules of the Information Inference Service (IIS) - receives as an input a list of documents accompanied by their metadata and bibliography. Among them, it discovers links described above and returns them as a list. In this document we shall evaluate if the module has been properly integrated with the whole
|
||||
system and assess the accuracy of the algorithm used. It is worth mentioning that the implemented algorithm has been described in detail in arXiv:1303.6906 [cs.IR]1. However, in the referenced paper the algorithm was tested on small datasets, but here we will focus on larger datasets, which are expected to be analysed by the system in the production environment.
|
||||
|
||||
***Algorithmic details:***
|
||||
|
||||
*General description*
|
||||
|
||||
The algorithm used in citation matching task consists of two phases. In the first one, for each citation string a set of potentially matching documents is retrieved using a heuristic. In the second one, the metadata of these documents is analysed in order to assess which of them is the most similar to given citation. We assume that citations are parsed, i.e. fragments containing meaningful pieces of metadata information are marked in a special way. Note that in the IIS system, the citation parsing step is executed by another module. The following metadata fields are used by the described solution:
|
||||
|
||||
* an author,
|
||||
* a title,
|
||||
* a journal name,
|
||||
* pages,
|
||||
* a year of publication.
|
||||
|
||||
*Heuristic matching*
|
||||
|
||||
The heuristic is based on indexing of document metadata by their author names. For each citation we extract author names and try to find documents in the index which have the same author entries. As spelling errors and inaccuracies commonly occur in citations, we have implemented approximate index which enables retrieval of entities with edit distance less than or equal 1.
|
||||
|
||||
*Strict matching*
|
||||
|
||||
In this step, all the potentially matching pairs obtained in the heuristic step are evaluated and only the most probable ones are returned as the final result. As citations tend to contain spelling errors and differ in style, there is a need to introduce fuzzy similarity measures fitted to the specifics of various metadata fields. Most of them compute a fraction of tokens or trigrams that occur in both fields being compared. When comparing journal
|
||||
names, we have taken longest common subsequence (LCS) of two strings into consideration. This can be seen as an instance of the assignment problem with some refinements added. The overall similarity of two citation strings is obtained by applying a linear Support Vector Machine (SVM) using field similarities as features.
|
||||
|
||||
***Parameters:***
|
||||
|
||||
* input:
|
||||
* input_metadata: [ExtractedDocumentMetadataMergedWithOriginal](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/transformers/metadatamerger/ExtractedDocumentMetadataMergedWithOriginal.avdl) avro datastore location with the metadata of both publications and bibliorgaphic references to be matched
|
||||
* input_matched_citations: [Citation](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/common/citations/Citation.avdl) avro datastore location with citations which were already matched and should be excluded from fuzzy matching
|
||||
* output: [Citation](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/common/citations/Citation.avdl) avro datastore location with matched publications
|
||||
|
||||
***Limitations:*** -
|
||||
|
||||
***Environment:***
|
||||
Java, Spark
|
||||
|
||||
***References:*** -
|
||||
|
||||
***Authority:*** ICM • ***License:*** AGPL-3.0 • ***Code:*** [CoAnSys/citation-matching](https://github.com/CeON/CoAnSys/tree/master/citation-matching)
|
|
@ -0,0 +1,23 @@
|
|||
---
|
||||
sidebar_position: 4
|
||||
---
|
||||
|
||||
# Extraction of cited concepts
|
||||
|
||||
***Short description:*** Scans the plaintexts of publications for cited concepts, currently for references to datasets and software URIs.
|
||||
|
||||
***Algorithmic details:***
|
||||
The algorithm extracts citations to specific datasets and software. It extracts the citation section of a publication's fulltext and applies string matching against a target database which includes an inverted index with dataset/software titles, urls and other metadata.
|
||||
|
||||
***Parameters:***
|
||||
Title, URL, creator names, publisher names and publication year for each concept to create the target database. Identifier and publication's fulltext to extract the cited concepts
|
||||
|
||||
***Limitations:*** -
|
||||
|
||||
***Environment:***
|
||||
Python, [madIS](https://github.com/madgik/madis), [APSW](https://github.com/rogerbinns/apsw)
|
||||
|
||||
***References:***
|
||||
* Foufoulas Y., Stamatogiannakis L., Dimitropoulos H., Ioannidis Y. (2017) “High-Pass Text Filtering for Citation Matching”. In: Kamps J., Tsakonas G., Manolopoulos Y., Iliadis L., Karydis I. (eds) Research and Advanced Technology for Digital Libraries. TPDL 2017. Lecture Notes in Computer Science, vol 10450. Springer, Cham. [doi:10.1007/978-3-319-67008-9_28](https://doi.org/10.1007/978-3-319-67008-9_28)
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** CC-BY/CC-0 • ***Code:*** [iis/referenceextraction](https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction)
|
|
@ -0,0 +1,22 @@
|
|||
---
|
||||
sidebar_position: 5
|
||||
---
|
||||
|
||||
# Classifiers
|
||||
|
||||
***Short description:*** A document classification algorithm that employs analysis of free text stemming from the abstracts of the publications. The purpose of applying a document classification module is to assign a scientific text to one or more predefined content classes.
|
||||
|
||||
***Algorithmic details:***
|
||||
The algorithm classifies publication's fulltexts using a Bayesian classifier and weighted terms according to an offline training phase. The training has been done using the following taxonomies: arXiv, MeSH (Medical Subject Headings), ACM, and DDC (Dewey Decimal Classification, or Dewey Decimal System).
|
||||
|
||||
***Parameters:*** Publication's identifier and fulltext
|
||||
|
||||
***Limitations:*** -
|
||||
|
||||
***Environment:***
|
||||
Python, [madIS](https://github.com/madgik/madis), [APSW](https://github.com/rogerbinns/apsw)
|
||||
|
||||
***References:***
|
||||
* Giannakopoulos, T., Stamatogiannakis, E., Foufoulas, I., Dimitropoulos, H., Manola, N., Ioannidis, Y. (2014). Content Visualization of Scientific Corpora Using an Extensible Relational Database Implementation. In: Bolikowski, Ł., Casarosa, V., Goodale, P., Houssos, N., Manghi, P., Schirrwagen, J. (eds) Theory and Practice of Digital Libraries -- TPDL 2013 Selected Workshops. TPDL 2013. Communications in Computer and Information Science, vol 416. Springer, Cham. [doi:10.1007/978-3-319-08425-1_10](https://doi.org/10.1007/978-3-319-08425-1_10)
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** CC-BY/CC-0 • ***Code:*** [iis/referenceextraction](https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction)
|
|
@ -0,0 +1,48 @@
|
|||
# Documents similarity
|
||||
|
||||
***Short description:*** Document similarity module is responsible for finding similar documents among the ones available in the OpenAIRE Information Space. It produces "similarity" links between the documents stored in the OpenAIRE Information Space. Each link has a similarity score from [0,1] range assigned; it is expected that the higher the score, the more similar are the documents with respect to their content.
|
||||
|
||||
***Algorithmic details:***
|
||||
The similarity between two documents is expressed as the similarity between weights of their common terms (i.e., words being reduced to their root form) within a context of all terms from the first and the second document. In this approach, the computation can be divided into three consecutive steps:
|
||||
|
||||
1. selection of proper terms,
|
||||
2. calculation of weights of terms for each document,
|
||||
3. calculation of a given similarity function on weights of terms corresponding to each pair of documents.
|
||||
|
||||
The document similarity module uses the term frequency inverse-document frequency (TFIDF) measure and the cosine similarity to produce weights for terms and calculate their similarity respectively.
|
||||
|
||||
*Steps of execution*
|
||||
|
||||
Computation of similarity between documents is executed in the following steps.
|
||||
|
||||
1. First, we create a text representation of each document. The text is a concatenation of 3 attributes of document object coming from Information Space: title, abstract, and keywords.
|
||||
2. Text representation of each document is split into words. Next, stop words or words which occur in more than the N percent of documents (say 99%) or these occurring in less than M documents (say 5) are discarded as we assume that they carry no important information.
|
||||
3. Next, the words are stemmed (reduced to their root form) and thus converted to terms. The importance of each term in each document is calculated using TFIDF measure (resulting in a vector of weights of terms for each document). Only the top P (say 20) important terms per documents remain for the further computations.
|
||||
4. In order to calculate the cosine similarity value for the documents, we execute the following steps.
|
||||
a. Triples [document id, term, term weight] are grouped by a common term and for each pair of triples from the group, term importance is recalculated as the multiplication of terms weights, producing quads [document id 1, document id 2, term, multiplied term weight].
|
||||
b. Quads are grouped by [document id 1, document id 2] and the values of the multiplied term weight are summed up, resulting in the creation of triples [document id 1, document id 2, total common weight].
|
||||
c. Finally, triples are normalized using product of the norm of the term weights' vectors. The normalized value is the final similarity measure with value between 0 and 1.
|
||||
5. For a given document, only the top R (say 20) links to similar documents are returned. The links that are thrown away are assumed to be uninteresting for the end-user and thus storing them would only needlessly take disk space.
|
||||
|
||||
***Parameters:***
|
||||
* input:
|
||||
* input_document: [DocumentMetadata](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/documentssimilarity/DocumentMetadata.avdl) avro datastore location
|
||||
* parallel: sets parameter parallel for Pig actions (default=80)
|
||||
* mapredChildJavaOpts: mapreduce's map and reduce child java opts set to all PIG actions (default=Xmx12g)
|
||||
* tfidfTopnTermPerDocument: number of the most important terms taken into account (default=20)
|
||||
* similarityTopnDocumentPerDocument: maximum number of similar documents for each publication (default=20)
|
||||
* removal_rate: removal rate (default=0.99)
|
||||
* removal_least_used: removal of the least used terms (default=20)
|
||||
* threshold_num_of_vector_elems_length: vector elements length threshold, when set to less than 2 all documents will be included in similarity matching (default=2)
|
||||
* output: [DocumentSimilarity](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/documentssimilarity/DocumentSimilarity.avdl) avro datastore location
|
||||
|
||||
***Limitations:*** -
|
||||
|
||||
***Environment:***
|
||||
Pig, Java
|
||||
|
||||
***References:***
|
||||
|
||||
* P. J. Dendek, A. Czeczko, M. Fedoryszak, A. Kawa, and L. Bolikowski, "Content Analysis of Scientific Articles in Apache Hadoop Ecosystem", Stud. Comp.Intelligence, vol. 541, 2014.
|
||||
|
||||
***Authority:*** ICM • ***License:*** AGPL-3.0 • ***Code:*** [CoAnSys/document-similarity](https://github.com/CeON/CoAnSys/tree/master/document-similarity)
|
After Width: | Height: | Size: 37 KiB |
|
@ -0,0 +1,36 @@
|
|||
# Metadata extraction
|
||||
|
||||
***Short description:*** Metadata Extraction algorithm is responsible for plaintext and metadata extraction out of the PDF documents. It based on [CERMINE](http://cermine.ceon.pl/about.html) project.
|
||||
|
||||
CERMINE is a comprehensive open source system for extracting metadata and content from scientific articles in born-digital form. The system is able to process documents in PDF format and extracts:
|
||||
|
||||
* document's metadata, including title, authors, affiliations, abstract, keywords, journal name, volume and issue,
|
||||
* parsed bibliographic references
|
||||
* the structure of document's sections, section titles and paragraphs
|
||||
|
||||
CERMINE is based on a modular workflow, whose architecture ensures that individual workflow steps can be maintained separately. As a result it is easy to perform evaluation, training, improve or replace one step implementation without changing other parts of the workflow. Most steps implementations utilize supervised and unsupervised machine-leaning techniques, which increases the maintainability of the system, as well as its ability to adapt to new document layouts.
|
||||
|
||||
***Algorithmic details:***
|
||||
CERMINE workflow is composed of four main parts:
|
||||
|
||||
* Basic structure extraction takes a PDF file on the input and produces a geometric hierarchical structure representing the document. The structure is composed of pages, zones, lines, words and characters. The reading order of all elements is determined. Every zone is labelled with one of four general categories: METADATA, REFERENCES, BODY and OTHER.
|
||||
* Metadata extraction part analyses parts of the geometric hierarchical structure labelled as METADATA and extracts a rich set of document's metadata from it.
|
||||
* References extraction part analyses parts of the geometric hierarchical structure labelled as REFERENCES and the result is a list of document's parsed bibliographic references.
|
||||
* Text extraction part analyses parts of the geometric hierarchical structure labelled as BODY and extracts document's body structure composed of sections, subsections and paragraphs.
|
||||
|
||||
CERMINE uses supervised and unsupervised machine-leaning techniques, such as Support Vector Machines, K-means clustering and Conditional Random Fields. Content classifiers are trained on [GROTOAP2 dataset](http://cermine.ceon.pl/grotoap2/). More information about CERMINE can be found in the [presentation](http://cermine.ceon.pl/static/docs/slides.pdf).
|
||||
|
||||
***Parameters:***
|
||||
* input: [DocumentText](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/metadataextraction/DocumentText.avdl) avro datastore location
|
||||
* output: [ExtractedDocumentMetadata](https://github.com/openaire/iis/blob/master/iis-schemas/src/main/avro/eu/dnetlib/iis/metadataextraction/ExtractedDocumentMetadata.avdl) avro datastore location
|
||||
|
||||
***Limitations:***
|
||||
Born-digital form of PDF documents is supported only. Large PDF documents may require more than 4g of assgined memory (set by default).
|
||||
|
||||
***Environment:***
|
||||
Java, Hadoop
|
||||
|
||||
***References:***
|
||||
* Dominika Tkaczyk, Pawel Szostek, Mateusz Fedoryszak, Piotr Jan Dendek and Lukasz Bolikowski. CERMINE: automatic extraction of structured metadata from scientific literature. In International Journal on Document Analysis and Recognition, 2015, vol. 18, no. 4, pp. 317-335, doi: 10.1007/s10032-015-0249-8.
|
||||
|
||||
***Authority:*** ICM • ***License:*** AGPL-3.0 • ***Code:*** [CERMINE](https://github.com/CeON/CERMINE)
|
|
@ -1,44 +0,0 @@
|
|||
# Enrichment
|
||||
|
||||
## Mining
|
||||
|
||||
The OpenAIRE Research Graph is enriched by links mined by OpenAIRE’s full-text mining algorithms that scan the plaintexts of publications for funding information, references to datasets, software URIs, accession numbers of bioetities, and EPO patent mentions. Custom mining modules also link research objects to specific research communities, initiatives and infrastructures. In addition, other inference modules provide content-based document classification, document similarity, citation matching, and author affiliation matching.
|
||||
|
||||
**Project mining** in OpenAIRE text mines the full-texts of publications in order to extract matches to funding project codes/IDs. The mining algorithm works by utilising (i) the grant identifier, and (ii) the project acronym (if available) of each project. The mining algorithm: (1) Preprocesses/normalizes the full-texts using several functions, which depend on the characteristics of each funder (i.e., the format of the grant identifiers), such as stopword and/or punctuation removal, tokenization, stemming, converting to lowercase; then (2) String matching of grant identifiers against the normalized text is done using database techniques; and (3) The results are validated and cleaned using the context near the match by looking at the context around the matched ID for relevant metadata and positive or negative words/phrases, in order to calculate a confidence value for each publication-->project link. A confidence threshold is set to optimise high accuracy while minimising false positives, such as matches with page or report numbers, post/zip codes, parts of telephone numbers, DOIs or URLs, accession numbers. The algorithm also applies rules for disambiguating results, as different funders can share identical project IDs; for example, grant number 633172 could refer to H2020 project EuroMix but also to Australian-funded NHMRC project “Brain activity (EEG) analysis and brain imaging techniques to measure the neurobiological effects of sleep apnea”. Project mining works very well and was the first Text & Data Mining (TDM) service of OpenAIRE. Performance results vary from funder to funder but precision is higher than 98% for all funders and 99.5% for EC projects. Recall is higher than 95% (99% for EC projects), when projects are properly acknowledged using project/grant IDs.
|
||||
|
||||
**Dataset extraction** runs on publications full-texts as described in “High pass text-filtering for Citation matching”, TPDL 2017[1]. In particular, we search for citations to datasets using their DOIs, titles and other metadata (i.e., dates, creator names, publishers, etc.). We extract parts of the text which look like citations and search for datasets using database join and pattern matching techniques. Based on the experiments described in the paper, precision of the dataset extraction module is 98.5% and recall is 97.4% but it is also probably overestimated since it does not take into account corruptions that may take place during pdf to text extraction. It is calculated on the extracted full-texts of small samples from PubMed and arXiv.
|
||||
|
||||
**Software extraction** runs also on parts of the text which look like citations. We search the citations for links to software in open software repositories, specifically github, sourceforge, bitbucket and the google code archive. After that, we search for links that are included in Software Heritage (SH, https://www.softwareheritage.org) and return the permanent URL that SH provides for each software project. We also enrich this content with user names, titles and descriptions of the software projects using web mining techniques. Since software mining is based on URL matching, our precision is 100% (we return a software link only if we find it in the text and there is no need to disambiguate). As for recall rate, this is not calculable for this mining task. Although we apply all the necessary normalizations to the URLs in order to overcome usual issues (e.g., http or https, existence of www or not, lower/upper case), we do not calculate cases where a software is mentioned using its name and not by a link from the supported software repositories.
|
||||
|
||||
**For the extraction of bio-entities**, we focus on Protein Data Bank (PDB) entries. We have downloaded the database with PDB codes and we update it regularly. We search through the whole publication’s full-text for references to PDB codes. We apply disambiguation rules (e.g., there are PDB codes that are the same as antibody codes or other issues) so that we return valid results. Current precision is 98%. Although it's risky to mention recall rates since these are usually overestimated, we have calculated a recall rate of 98% using small samples from pubmed publications. Moreover, our technique is able to identify about 30% more links to proteins than the ones that are tagged in Pubmed xmls.
|
||||
|
||||
**Other text-mining modules** include mining for links to EPO patents, or custom mining modules for linking research objects to specific research communities, initiatives and infrastructures, e.g. COVID-19 mining module. Apart from text-mining modules, OpenAIRE also provides a document classification service that employs analysis of free text stemming from the abstracts of the publications. The purpose of applying a document classification module is to assign a scientific text one or more predefined content classes. In OpenAIRE, the currently used taxonomies are arXiv, MeSH (Medical Subject Headings), ACM and DDC (Dewey Decimal Classification, or Dewey Decimal System).
|
||||
|
||||
## Bulk Tagging/Deduction
|
||||
|
||||
The Deduction process (also known as “bulk tagging”) enriches each record with new information that can be derived from the existing property values.
|
||||
|
||||
As of September 2020, three procedures are in place to relate a research product to a research initiative, infrastructure (RI) or community (RC) based on:
|
||||
|
||||
* subjects (2.7M results tagged)
|
||||
|
||||
* Zenodo community (16K results tagged)
|
||||
|
||||
* the data source it comes from (250K results tagged)
|
||||
|
||||
The list of subjects, Zenodo communities and data sources used to enrich the products are defined by the managers of the community gateway or infrastructure monitoring dashboard associated with the RC/RI.
|
||||
|
||||
## Propagation
|
||||
|
||||
This process “propagates” properties and links from one product to another if between the two there is a “strong” semantic relationship.
|
||||
|
||||
As of September 2020, the following procedures are in place:
|
||||
Propagation of the property “country” to results from institutional repositories: e.g. publication collected from an institutional repository maintained by an italian university will be enriched with the property “country = IT”.
|
||||
|
||||
* Propagation of links to projects: e.g. publication linked to project P “is supplemented by” a dataset D. Dataset D will get the link to project P. The relationships considered for this procedure are “isSupplementedBy” and “supplements”.
|
||||
|
||||
* Propagation of related community/infrastructure/initiative from organizations to products via affiliation relationships: e.g. a publication with an author affiliated with organization O. The manager of the community gateway C declared that the outputs of O are all relevant for his/her community C. The publication is tagged as relevant for C.
|
||||
|
||||
* Propagation of related community/infrastructure/initiative to related products: e.g. publication associated to community C is supplemented by a dataset D. Dataset D will get the association to C. The relationships considered for this procedure are “isSupplementedBy” and “supplements”.
|
||||
|
||||
* Propagation of ORCID identifiers to related products, if the products have the same authors: e.g. publication has ORCID for its authors and is supplemented by a dataset D. Dataset D has the same authors as the publication. Authors of D are enriched with the ORCIDs available in the publication. The relationships considered for this procedure are “isSupplementedBy” and “supplements”.
|
|
@ -1,73 +0,0 @@
|
|||
---
|
||||
sidebar_position: 2
|
||||
---
|
||||
|
||||
# Impact scores
|
||||
<span className="todo">TODO - add intro</span>
|
||||
|
||||
## Citation Count (CC)
|
||||
|
||||
This is the most widely used scientific impact indicator, which sums all citations received by each article. The citation count of a
|
||||
publication $i$ corresponds to the in-degree of the corresponding node in the underlying citation network: $s_i = \sum_{j} A_{i,j}$,
|
||||
where $A$ is the adjacency matrix of the network (i.e., $A_{i,j}=1$ when paper $j$ cites paper $i$, while $A_{i,j}=0$ otherwise).
|
||||
Citation count can be viewed as a measure of a publication's overall impact, since it conveys the number of other works that directly
|
||||
drew on it.
|
||||
|
||||
## "Incubation" Citation Count (iCC)
|
||||
|
||||
This measure is essentially a time-restricted version of the citation count, where the time window is distinct for each paper, i.e.,
|
||||
only citations $y$ years after its publication are counted (usually, $y=3$). The "incubation" citation count of a paper $i$ is
|
||||
calculated as: $s_i = \sum_{j,t_j \leq t_i+3} A_{i,j}$, where $A$ is the adjacency matrix and $t_j, t_i$ are the citing and cited paper's
|
||||
publication years, respectively. $t_i$ is cited paper $i$'s publication year. iCC can be seen as an indicator of a paper's initial momentum
|
||||
(impulse) directly after its publication.
|
||||
|
||||
## PageRank (PR)
|
||||
|
||||
Originally developed to rank Web pages, PageRank has been also widely used to rank publications in citation
|
||||
networks. In this latter context, a publication's PageRank
|
||||
score also serves as a measure of its influence. In particular, the PageRank score of a publication is calculated
|
||||
as its probability of being read by a researcher that either randomly selects publications to read or selects
|
||||
publications based on the references of her latest read. Formally, the score of a publication $i$ is given by:
|
||||
|
||||
$$
|
||||
s_i = \alpha \cdot \sum_{j} P_{i,j} \cdot s_j + (1-\alpha) \cdot \frac{1}{N}
|
||||
$$
|
||||
|
||||
where $P$ is the stochastic transition matrix, which corresponds to the column normalised version of adjacency
|
||||
matrix $A$, $\alpha \in [0,1]$, and $N$ is the number of publications in the citation network. The first addend
|
||||
of the equation corresponds to the selection (with probability $\alpha$) of following a reference, while the
|
||||
second one to the selection of randomly choosing any publication in the network. It should be noted that the
|
||||
score of each publication relies of the score of publications citing it (the algorithm is executed iteratively
|
||||
until all scores converge). As a result, PageRank differentiates citations based on the importance of citing
|
||||
articles, thus alleviating the corresponding issue of the Citation Count.
|
||||
|
||||
## RAM
|
||||
|
||||
RAM is essentially a modified Citation Count, where recent citations are considered of higher importance compared
|
||||
to older ones. Hence, it better captures the popularity of publications. This "time-awareness" of citations
|
||||
alleviates the bias of methods like Citation Count and PageRank against recently published articles, which have
|
||||
not had "enough" time to gather as many citations. The RAM score of each paper $i$ is calculated as follows:
|
||||
|
||||
$$
|
||||
s_i = \sum_j{R_{i,j}}
|
||||
$$
|
||||
|
||||
where $R$ is the so-called Retained Adjacency Matrix (RAM) and $R_{i,j}=\gamma^{t_c-t_j}$ when publication $j$ cites publication
|
||||
$i$, and $R_{i,j}=0$ otherwise. Parameter $\gamma \in (0,1)$, $t_c$ corresponds to the current year and $t_j$ corresponds to the
|
||||
publication year of citing article $j$.
|
||||
|
||||
## AttRank
|
||||
|
||||
AttRank is a PageRank variant that alleviates its bias against recent publications (i.e., it is tailored to capture popularity).
|
||||
AttRank achieves this by modifying PageRank's probability of randomly selecting a publication. Instead of using a uniform probability,
|
||||
AttRank defines it based on a combination of the publication's age and the citations it received in recent years. The AttRank score
|
||||
of each publication $i$ is calculated based on:
|
||||
|
||||
$$
|
||||
s_i = \alpha \cdot \sum_{j} P_{i,j} \cdot s_j
|
||||
+ \beta \cdot Att(i)+ \gamma \cdot c \cdot e^{-\rho \cdot (t_c-t_i)}
|
||||
$$
|
||||
|
||||
where $\alpha + \beta + \gamma =1$ and $\alpha,\beta,\gamma \in [0,1]$. $Att(i)$ denotes a recent attention-based score for publication $i$,
|
||||
which reflects its share of citations in the $y$ most recent years, $t_i$ is the publication year of article $i$, $t_c$ denotes the current
|
||||
year, and $c$ is a normalisation constant. Finally, $P$ is the stochastic transition matrix.
|
|
@ -1,6 +0,0 @@
|
|||
---
|
||||
sidebar_position: 1
|
||||
---
|
||||
|
||||
# Mining algorithms
|
||||
<span className="todo">TODO</span>
|
|
@ -0,0 +1,18 @@
|
|||
# Finalisation
|
||||
|
||||
At the very end of the graph production workflow, a step is dedicated to perform certain finalisation operations, that we describe in this page,
|
||||
aiming to improve the overall quality of the data.
|
||||
The output of this final step is the final version of the OpenAIRE Research Graph.
|
||||
|
||||
## Filtering
|
||||
|
||||
Bibliographic records that do not meet minimal requirements for being part of the OpenAIRE Research Graph are eliminated during this phase.
|
||||
Currently, the only criteria applied horizontally to the entire graph aims at excluding scientific results whose title is not meaningful for citation purposes.
|
||||
Then, different criteria are applied in the pre-processing of specific sub-collections:
|
||||
|
||||
* [Crossref filtering](/data-provision/aggregation/non-compatible-sources/doiboost#crossref-filtering)
|
||||
|
||||
## Country cleaning
|
||||
|
||||
This phase is responsible for removing the country information from result records that match specific criteria. The need for this phase is driven by the fact that some datasources, although referred of national pertinence, they contain material that is not always related to the given country.
|
||||
|
|
@ -1,13 +1,17 @@
|
|||
---
|
||||
sidebar_position: 5
|
||||
---
|
||||
|
||||
# Indexing
|
||||
|
||||
The final version of the OpenAIRE Research Graph is indexed on a Solr server that is used by the OpenAIRE portals (EXPLORE, CONNECT, PROVIDE) and APIs, the latter adopted by several third-party applications and organizations, such as:
|
||||
The final version of the OpenAIRE Research Graph is indexed on a Solr server that is used by the OpenAIRE portals ([EXPLORE](https://explore.openaire.eu), [CONNECT](https://connect.openaire.eu), [PROVIDE](https://provide.openaire.eu)) and APIs, the latter adopted by several third-party applications and organizations, such as:
|
||||
|
||||
* EOSC --The OpenAIRE Research Graph APIs and Portals will offer to the EOSC an Open Science Resource Catalogue, keeping an up to date map of all research results (publications, datasets, software), services, organizations, projects, funders in Europe and beyond.
|
||||
* The OpenAIRE Graph APIs and Portals will offer to the EOSC (European Open Science Cloud) an Open Science Resource Catalogue, keeping an up to date map of all research results (publications, datasets, software), services, organizations, projects, funders in Europe and beyond.
|
||||
|
||||
* DSpace & EPrints repositories can install the OpenAIRE plugin to expose OpenAIRE compliant metadata records via their OAI-PMH endpoint and offer to researchers the possibility to link their depositions to the funding project, by selecting it from the list of project provided by OpenAIRE
|
||||
* DSpace & EPrints repositories can install the OpenAIRE plugin to expose OpenAIRE compliant metadata records via their OAI-PMH endpoint and offer to researchers the possibility to link their depositions to the funding project, by selecting it from the list of project provided by OpenAIRE.
|
||||
|
||||
* EC participant portal (Sygma - System for Grant Management) uses the OpenAIRE API in the “Continuous Reporting” section. Sygma automatically fetches from the OpenAIRE Search API the list of publications and datasets in the OpenAIRE Research Graph that are linked to the project. The user can select the research products from the list and easily compile the continuous reporting data of the project.
|
||||
* EC participant portal (Sygma - System for Grant Management) uses the OpenAIRE API in the “Continuous Reporting” section. Sygma automatically fetches from the OpenAIRE Search API the list of publications and datasets in the OpenAIRE Research Graph that are linked to the project. The user can select the research products from the list and easily compile the continuous reporting data of the project.
|
||||
|
||||
* ScholExplorer is used by different players of the scholarly communication ecosystem. For example, [Elsevier](https://www.elsevier.com/authors/tools-and-resources/research-data/data-base-linking) uses its API to make the links between
|
||||
publications and datasets automatically appear on ScienceDirect.
|
||||
ScholExplorer indexes the links among the four major types of research products (API v3) available in the OpenAIRE Research Graph and makes them available through an HTTP API that allows
|
||||
to search them by the following criteria:
|
||||
* Links whose source object has a given PID or PID type;
|
||||
* Links whose source object has been published by a given data source ("data source as publisher");
|
||||
* Links that were collected from a given data source ("data source as provider").
|
||||
|
|
|
@ -0,0 +1,169 @@
|
|||
# Impact indicators
|
||||
|
||||
This page summarises all calculated impact indicators, which are included into the [measure](/data-model/entities/other#measure) property.
|
||||
It should be noted that the impact indicators are being calculated both on the level of the research output as well on the level of distinct DOIs.
|
||||
Below we explain their main intuition, the way they are calculated, and their most important limitations, in an attempt help avoiding common pitfalls and misuses.
|
||||
|
||||
|
||||
## Citation Count (CC)
|
||||
|
||||
***Short description:***
|
||||
This is the most widely used scientific impact indicator, which sums all citations received by each article.
|
||||
Citation count can be viewed as a measure of a publication's overall impact, since it conveys the number of other works that directly
|
||||
drew on it.
|
||||
|
||||
***Algorithmic details:***
|
||||
The citation count of a
|
||||
publication $i$ corresponds to the in-degree of the corresponding node in the underlying citation network: $s_i = \sum_{j} A_{i,j}$,
|
||||
where $A$ is the adjacency matrix of the network (i.e., $A_{i,j}=1$ when paper $j$ cites paper $i$, while $A_{i,j}=0$ otherwise).
|
||||
|
||||
***Parameters:*** -
|
||||
|
||||
***Limitations:***
|
||||
OpenAIRE collects data from specific data sources which means that part of the existing literature may not be considered when computing this indicator.
|
||||
Also, since some indicators require the publication year for their calculation, we consider only research products for which we can gather this information from at least one data source.
|
||||
|
||||
***Environment:*** PySpark
|
||||
|
||||
***References:*** -
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** GPL-2.0 • ***Code:*** [BIP! Ranker](https://github.com/athenarc/Bip-Ranker)
|
||||
|
||||
|
||||
## "Incubation" Citation Count (iCC)
|
||||
|
||||
***Short description:***
|
||||
This measure is essentially a time-restricted version of the citation count, where the time window is distinct for each paper, i.e.,
|
||||
only citations $y$ years after its publication are counted.
|
||||
|
||||
***Algorithmic details:***
|
||||
The "incubation" citation count of a paper $i$ is
|
||||
calculated as: $s_i = \sum_{j,t_j \leq t_i+y} A_{i,j}$, where $A$ is the adjacency matrix and $t_j, t_i$ are the citing and cited paper's
|
||||
publication years, respectively. $t_i$ is cited paper $i$'s publication year. iCC can be seen as an indicator of a paper's initial momentum
|
||||
(impulse) directly after its publication.
|
||||
|
||||
***Parameters:***
|
||||
$y=3$
|
||||
|
||||
***Limitations:***
|
||||
OpenAIRE collects data from specific data sources which means that part of the existing literature may not be considered when computing this indicator.
|
||||
Also, since some indicators require the publication year for their calculation, we consider only research products for which we can gather this information from at least one data source.
|
||||
|
||||
***Environment:*** PySpark
|
||||
|
||||
***References:***
|
||||
* Vergoulis, T., Kanellos, I., Atzori, C., Mannocci, A., Chatzopoulos, S., Bruzzo, S. L., Manola, N., & Manghi, P. (2021, April). Bip! db: A dataset of impact measures for scientific publications. In Companion Proceedings of the Web Conference 2021 (pp. 456-460).
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** GPL-2.0 • ***Code:*** [BIP! Ranker](https://github.com/athenarc/Bip-Ranker)
|
||||
|
||||
|
||||
## PageRank (PR)
|
||||
|
||||
***Short description:***
|
||||
Originally developed to rank Web pages, PageRank has been also widely used to rank publications in citation
|
||||
networks. In this latter context, a publication's PageRank
|
||||
score also serves as a measure of its influence.
|
||||
|
||||
***Algorithmic details:***
|
||||
The PageRank score of a publication is calculated
|
||||
as its probability of being read by a researcher that either randomly selects publications to read or selects
|
||||
publications based on the references of her latest read. Formally, the score of a publication $i$ is given by:
|
||||
|
||||
$$
|
||||
s_i = \alpha \cdot \sum_{j} P_{i,j} \cdot s_j + (1-\alpha) \cdot \frac{1}{N}
|
||||
$$
|
||||
|
||||
where $P$ is the stochastic transition matrix, which corresponds to the column normalised version of adjacency
|
||||
matrix $A$, $\alpha \in [0,1]$, and $N$ is the number of publications in the citation network. The first addend
|
||||
of the equation corresponds to the selection (with probability $\alpha$) of following a reference, while the
|
||||
second one to the selection of randomly choosing any publication in the network. It should be noted that the
|
||||
score of each publication relies of the score of publications citing it (the algorithm is executed iteratively
|
||||
until all scores converge). As a result, PageRank differentiates citations based on the importance of citing
|
||||
articles, thus alleviating the corresponding issue of the Citation Count.
|
||||
|
||||
***Parameters:***
|
||||
$\alpha = 0.5, convergence\_error = 10^{-12}$
|
||||
|
||||
***Limitations:***
|
||||
OpenAIRE collects data from specific data sources which means that part of the existing literature may not be considered when computing this indicator.
|
||||
Also, since some indicators require the publication year for their calculation, we consider only research products for which we can gather this information from at least one data source.
|
||||
|
||||
***Environment:*** PySpark
|
||||
|
||||
***References:***
|
||||
* Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Stanford InfoLab.
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** GPL-2.0 • ***Code:*** [BIP! Ranker](https://github.com/athenarc/Bip-Ranker)
|
||||
|
||||
|
||||
## RAM
|
||||
|
||||
***Short description:***
|
||||
RAM is essentially a modified Citation Count, where recent citations are considered of higher importance compared to older ones.
|
||||
Hence, it better captures the popularity of publications. This "time-awareness" of citations
|
||||
alleviates the bias of methods like Citation Count and PageRank against recently published articles, which have
|
||||
not had "enough" time to gather as many citations.
|
||||
|
||||
***Algorithmic details:***
|
||||
The RAM score of each paper $i$ is calculated as follows:
|
||||
|
||||
$$
|
||||
s_i = \sum_j{R_{i,j}}
|
||||
$$
|
||||
|
||||
where $R$ is the so-called Retained Adjacency Matrix (RAM) and $R_{i,j}=\gamma^{t_c-t_j}$ when publication $j$ cites publication
|
||||
$i$, and $R_{i,j}=0$ otherwise. Parameter $\gamma \in (0,1)$, $t_c$ corresponds to the current year and $t_j$ corresponds to the
|
||||
publication year of citing article $j$.
|
||||
|
||||
***Parameters:***
|
||||
$\gamma = 0.6$
|
||||
|
||||
***Limitations:***
|
||||
OpenAIRE collects data from specific data sources which means that part of the existing literature may not be considered when computing this indicator.
|
||||
Also, since some indicators require the publication year for their calculation, we consider only research products for which we can gather this information from at least one data source.
|
||||
|
||||
***Environment:*** PySpark
|
||||
|
||||
***References:***
|
||||
* Ghosh, R., Kuo, T. T., Hsu, C. N., Lin, S. D., & Lerman, K. (2011, December). Time-aware ranking in dynamic citation networks. In 2011 ieee 11^{th} international conference on data mining workshops (pp. 373-380). IEEE.
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** GPL-2.0 • ***Code:*** [BIP! Ranker](https://github.com/athenarc/Bip-Ranker)
|
||||
|
||||
|
||||
## AttRank
|
||||
|
||||
***Short description:***
|
||||
AttRank is a PageRank variant that alleviates its bias against recent publications (i.e., it is tailored to capture popularity).
|
||||
AttRank achieves this by modifying PageRank's probability of randomly selecting a publication. Instead of using a uniform probability,
|
||||
AttRank defines it based on a combination of the publication's age and the citations it received in recent years.
|
||||
|
||||
***Algorithmic details:***
|
||||
The AttRank score
|
||||
of each publication $i$ is calculated based on:
|
||||
|
||||
$$
|
||||
s_i = \alpha \cdot \sum_{j} P_{i,j} \cdot s_j
|
||||
+ \beta \cdot Att(i)+ \gamma \cdot c \cdot e^{-\rho \cdot (t_c-t_i)}
|
||||
$$
|
||||
|
||||
where $\alpha + \beta + \gamma =1$ and $\alpha,\beta,\gamma \in [0,1]$. $Att(i)$ denotes a recent attention-based score for publication $i$,
|
||||
which reflects its share of citations in the $y$ most recent years, $t_i$ is the publication year of article $i$, $t_c$ denotes the current
|
||||
year, and $c$ is a normalisation constant. Finally, $P$ is the stochastic transition matrix.
|
||||
|
||||
***Parameters:***
|
||||
$\alpha = 0.2, \beta = 0.5, \gamma = 0.3, \rho = -0.16, convergence\_error = 10^-{12}$
|
||||
|
||||
Note that recent attention is based on the 3 most recent years (including current one).
|
||||
|
||||
***Limitations:***
|
||||
OpenAIRE collects data from specific data sources which means that part of the existing literature may not be considered when computing this indicator.
|
||||
Also, since some indicators require the publication year for their calculation, we consider only research products for which we can gather this information from at least one data source.
|
||||
|
||||
***Environment:*** PySpark
|
||||
|
||||
***References:***
|
||||
* Kanellos, I., Vergoulis, T., Sacharidis, D., Dalamagas, T., & Vassiliou, Y. (2021, April). Ranking papers by their short-term scientific impact. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1997-2002). IEEE.
|
||||
|
||||
***Authority:*** ATHENA RC • ***License:*** GPL-2.0 • ***Code:*** [BIP! Ranker](https://github.com/athenarc/Bip-Ranker)
|
||||
|
||||
|
|
@ -0,0 +1,7 @@
|
|||
# Usage Statistics Indicators
|
||||
|
||||
Usage Statistics indicators for research products, like publications, datasets,etc., are an important complement to other (traditional and alternative) bibliometric indicators to provide a comprehensive and recent view of the impact of such resources but also about their authors, institutions and the platforms themselves. They are taking into account different levels of information: the usage of data sources, the usage of individual items in the context of their resource type and the usage of individual web resources or files.
|
||||
|
||||
Usage Statistics Indicators are built by the OpenAIRE's UsageCounts Service. The service collects usage data and consolidated usage statistics reports respectively, from its distributed network of data providers (repositories, e-journals, CRIS) by utilizing open standards and protocols and delivers reliable, consolidated and comparable usage metrics like counts of item downloads and metadata views conformant to COUNTER Code of Practice.
|
||||
|
||||
You can find more information about the UsageCounts service [here](https://usagecounts.openaire.eu/).
|
|
@ -0,0 +1,28 @@
|
|||
# Merge by id
|
||||
|
||||
In the metadata aggregation system it is common to find the same record provided by
|
||||
different datasources and, sometimes, even inside the same datasource (especially in
|
||||
case of aggregators). As the harmonisation processes are performed per datasource
|
||||
contents, the relative records are the output of different mapping implementations.
|
||||
This approach has the advantage to be deeply customisable to catch datasource specific
|
||||
aspects, but it leaves room for inconsistencies when evaluating the different mappings
|
||||
across the various datasources.
|
||||
|
||||
This phase is therefore responsible to compensate for such inconsistencies and performs
|
||||
a global grouping of every record available in the graph:
|
||||
|
||||
- entities are grouped by [`id`](../data-model/entities/result#id)
|
||||
- relations are grouped by [`source`, `target`, `reltype`](../data-model/relationships#the-relationship-object)
|
||||
|
||||
This ensures that the same record, possibly assigned to different types by different
|
||||
mappings, appears only once in the graph and under a single typing. In case of clashing
|
||||
identifiers, the properties are merged (including the provencance information), considering
|
||||
the following precedence order for the result typing:
|
||||
|
||||
```
|
||||
publication > dataset > software > other
|
||||
```
|
||||
|
||||
The same holds for relationships, as the same (e.g.) DOI-to-DOI citation relation could
|
||||
be aggregated from multiple sources, this grouping phase would collapse all the different
|
||||
duplicates onto a single relation that would however include all the individual provenances.
|
|
@ -1,7 +1,12 @@
|
|||
---
|
||||
sidebar_position: 6
|
||||
---
|
||||
|
||||
# Stats analysis
|
||||
|
||||
The OpenAIRE Research Graph is also processed by a pipeline for extracting the statistics and producing the charts for funders, research initiative, infrastructures, and policy makers that you can see on MONITOR. Based on the information available on the graph, OpenAIRE provides a set of indicators for monitoring the funding and research impact and the uptake of Open Science publishing practices, such as Open Access publishing of publications and datasets, availability of interlinks between research products, availability of post-print versions in institutional or thematic Open Access repositories, etc.
|
||||
The OpenAIRE Graph is also processed by a pipeline for extracting the statistics
|
||||
and producing the charts for funders, research initiative, research infrastructures,
|
||||
and policymakers available on [MONITOR](https://monitor.openaire.eu).
|
||||
|
||||
Based on the information available on the graph, OpenAIRE provides a set of
|
||||
indicators for monitoring the funding and research impact and the uptake of
|
||||
Open Science publishing practices, such as Open Access publishing of publications
|
||||
and datasets, availability of interlinks between research products, availability
|
||||
of post-print versions in institutional or thematic Open Access repositories, etc.
|
||||
|
||||
|
|
|
@ -1,17 +0,0 @@
|
|||
---
|
||||
sidebar_position: 4
|
||||
---
|
||||
|
||||
# Bulk downloads
|
||||
|
||||
In order to facilitate users, different dumps are available. All are available under the Zenodo community called [OpenAIRE Research Graph](https://zenodo.org/communities/openaire-research-graph).
|
||||
Here we provide detailed documentation about the full dump:
|
||||
|
||||
* JSON dump: https://doi.org/10.5281/zenodo.3516917
|
||||
* JSON schema: https://doi.org/10.5281/zenodo.4238938
|
||||
|
||||
:::note Tip!
|
||||
|
||||
For a visual and interactive overview of the JSON schema, we suggest to use a JSON schema viewer like [jsonschemaviewer](https://navneethg.github.io/jsonschemaviewer/) (you just need to copy the schema and then you can easily navigate through the nodes).
|
||||
|
||||
:::
|
|
@ -0,0 +1,30 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
# CfHbKeyValue
|
||||
|
||||
Information about the sources from which the record has been collected.
|
||||
|
||||
|
||||
@JsonSchema(description = "the OpenAIRE identifier of the data source")
|
||||
### key
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
the OpenAIRE identifier of the data source
|
||||
|
||||
```json
|
||||
"key":"10|openaire____::081b82f96300b6a6e3d282bad31cb6e2"
|
||||
```
|
||||
|
||||
### value
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
The name of the data source.
|
||||
|
||||
```json
|
||||
"value":"Crossref"
|
||||
```
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
# CommunityInstance
|
||||
|
||||
It is a subclass of [Instance](../../data-model/entities/result#instance) extended with information regarding the collection and hosting source for this materialization of the result.
|
||||
|
||||
### hostedby
|
||||
_Type: [CfHbKeyValue](./cfhb) • Cardinality: ONE_
|
||||
|
||||
Information about the source from which the instance can be viewed or downloaded.
|
||||
|
||||
```json
|
||||
|
||||
"hostedby": {
|
||||
"key": "10|issn___print::35ee75a5ad42581d604be113a8f56427",
|
||||
"value": "New Phytologist"
|
||||
},
|
||||
|
||||
```
|
||||
|
||||
### collectedfrom
|
||||
_Type: [CfHbKeyValue](./cfhb) • Cardinality: ONE_
|
||||
|
||||
Information about the source from which the record has been collected
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"collectedfrom": {
|
||||
"key": "10|openaire____::081b82f96300b6a6e3d282bad31cb6e2",
|
||||
"value": "Crossref"
|
||||
}
|
||||
```
|
|
@ -0,0 +1,46 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
# Context
|
||||
|
||||
Information related to research initiative/community (RI/RC) related to the result.
|
||||
|
||||
### code
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
Code identifying the RI/RC.
|
||||
|
||||
```json
|
||||
"code":"sdsn-gr"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### label
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
Label of the RI/RC.
|
||||
|
||||
```json
|
||||
"label":"SDSN - Greece"
|
||||
```
|
||||
|
||||
### provenance
|
||||
_Type: [Provenance](/data-model/entities/other#provenance-2) • Cardinality: MANY_
|
||||
|
||||
Why this result is associated to the RI/RC.
|
||||
|
||||
```json
|
||||
|
||||
"provenance":[{
|
||||
"provenance":"Inferred by OpenAIRE",
|
||||
"trust":"0.9"
|
||||
},
|
||||
...
|
||||
]
|
||||
|
||||
```
|
||||
|
|
@ -0,0 +1,141 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
|
||||
# Extended Result
|
||||
|
||||
|
||||
It is a subclass of [Result](/data-model/entities/result) extended with information regarding projects (and funders), research communities/infrastructure and related data sources.
|
||||
|
||||
|
||||
|
||||
### projects
|
||||
|
||||
_Type: [Project](project.md) • Cardinality: MANY_
|
||||
|
||||
|
||||
List of projects (i.e. grants) that (co-)funded the production of the research results.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"projects": [
|
||||
{
|
||||
"id": "40|corda__h2020::94c4a066401e22002c4811a301bb4655",
|
||||
"code": "727929",
|
||||
"acronym": "TomRes",
|
||||
"title": "A NOVEL AND INTEGRATED APPROACH TO INCREASE MULTIPLE AND COMBINED STRESS TOLERANCE IN PLANTS USING TOMATO AS A MODEL",
|
||||
"funder": {
|
||||
"shortName": "EC",
|
||||
"name": "European Commission",
|
||||
"jurisdiction": "EU",
|
||||
"fundingStream": "H2020"
|
||||
},
|
||||
"provenance": {
|
||||
"provenance": "Harvested",
|
||||
"trust": "0.900000000000000022"
|
||||
},
|
||||
"validated": {
|
||||
"validationDate": "2021-0101",
|
||||
"validatedByFunder": true
|
||||
}
|
||||
},
|
||||
...
|
||||
]
|
||||
|
||||
```
|
||||
|
||||
### context
|
||||
|
||||
_Type: [Context](./context) • Cardinality: MANY_
|
||||
|
||||
|
||||
Reference to relevant research infrastructure, initiative or communities (RI/RC) among those collaborating with OpenAIRE. Please see https://connect.openaire.eu that are publicly visible.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"context":[
|
||||
{
|
||||
"code":"sdsn-gr",
|
||||
"label":"SDSN - Greece",
|
||||
"provenance":[
|
||||
{
|
||||
"provenance":"Inferred by OpenAIRE",
|
||||
"trust":"0.9"
|
||||
}
|
||||
]
|
||||
},
|
||||
...
|
||||
]
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
### collectedfrom
|
||||
|
||||
_Type: [CfHbKeyValue](./cfhb) • Cardinality: MANY_
|
||||
|
||||
|
||||
Information about the sources from which the record has been collected.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"collectedfrom":[
|
||||
{
|
||||
"key":"10|openaire____::081b82f96300b6a6e3d282bad31cb6e2",
|
||||
"value":"Crossref"
|
||||
},
|
||||
...
|
||||
]
|
||||
|
||||
```
|
||||
|
||||
|
||||
### instance
|
||||
|
||||
_Type: [CommunityInstance](./communityInstance) • Cardinality: MANY_
|
||||
|
||||
Information about the source from which the instance can be viewed or downloaded.
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"instance": [
|
||||
{
|
||||
"license": "http://doi.wiley.com/10.1002/tdm_license_1.1",
|
||||
"accessright": {
|
||||
"code": "c_16ec",
|
||||
"label": "RESTRICTED",
|
||||
"scheme": "http://vocabularies.coar-repositories.org/documentation/access_rights/",
|
||||
"openAccessRoute": null
|
||||
},
|
||||
"type": "Article",
|
||||
"url": [
|
||||
"https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fnph.15014",
|
||||
"http://onlinelibrary.wiley.com/wol1/doi/10.1111/nph.15014/fullpdf",
|
||||
"http://dx.doi.org/10.1111/nph.15014"
|
||||
],
|
||||
"publicationdate": "2018-02-09",
|
||||
"refereed": "UNKNOWN",
|
||||
"hostedby": {
|
||||
"key": "10|issn___print::35ee75a5ad42581d604be113a8f56427",
|
||||
"value": "New Phytologist"
|
||||
},
|
||||
"collectedfrom": {
|
||||
"key": "10|openaire____::081b82f96300b6a6e3d282bad31cb6e2",
|
||||
"value": "Crossref"
|
||||
}
|
||||
},
|
||||
...
|
||||
]
|
||||
|
||||
|
||||
```
|
|
@ -0,0 +1,72 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
# Funder
|
||||
|
||||
|
||||
Information about the funder funding the project.
|
||||
|
||||
|
||||
### fundingStream
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
Funding information for the project.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"funding_stream": "H2020"
|
||||
|
||||
|
||||
```
|
||||
|
||||
### jurisdiction
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
Geographical jurisdiction (e.g. for European Commission is EU, for Croatian Science Foundation is HR).
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"jurisdiction": "EU"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### name
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
The name of the funder.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"name": "European Commission"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### shortName
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
The short name of the funder.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"shortName": "EC"
|
||||
|
||||
```
|
||||
|
||||
|
|
@ -0,0 +1,134 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
|
||||
|
||||
# Project
|
||||
|
||||
|
||||
The information about the projects related to the result.
|
||||
|
||||
|
||||
### id
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
Main entity identifier, created according to the [OpenAIRE entity identifier and PID mapping policy](../../data-model/pids-and-identifiers).
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"id": "40|corda__h2020::70ea22400fd890c5033cb31642c4ae68"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### code
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
Τhe grant agreement code of the project.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"code": "777541"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### acronym
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
Project's acronym.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"acronym": "OpenAIRE-Advance"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### title
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
Project's title.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"title": "OpenAIRE Advancing Open Scholarship"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### funder
|
||||
|
||||
_Type [Funder](funder.md) • Cardinality: ONE_
|
||||
|
||||
|
||||
Information about the funder funding the project.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"funder": {
|
||||
"shortName": "EC",
|
||||
"name": "European Commission",
|
||||
"jurisdiction": "EU",
|
||||
"fundingStream": "H2020"
|
||||
}
|
||||
|
||||
|
||||
```
|
||||
|
||||
### provenace
|
||||
|
||||
|
||||
_Type [Provenance](../../data-model/entities/other#provenance-2) • Cardinality: ONE_
|
||||
|
||||
|
||||
The reason why the project is associated to the result.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"provenance": {
|
||||
"provenance": "Harvested",
|
||||
"trust": "0.900000000000000022"
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
### validated
|
||||
|
||||
|
||||
_Type [Validated](validated.md) • Cardinality: ONE_
|
||||
|
||||
|
||||
Specifies it the association between the project and the result was validated.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"validated": {
|
||||
"validationDate": "2021-0101",
|
||||
"validatedByFunder": true
|
||||
}
|
||||
|
||||
```
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
---
|
||||
|
||||
sidebar_position: 1
|
||||
|
||||
---
|
||||
|
||||
# Validated
|
||||
|
||||
|
||||
Information about the validtion of the association between the result and the funding information.
|
||||
|
||||
|
||||
### validationDate
|
||||
|
||||
_Type: String • Cardinality: ONE_
|
||||
|
||||
|
||||
When OpenAIRE collected the association between the funding and the result from an authoritative source (i.e. Sygma).
|
||||
|
||||
|
||||
```json
|
||||
|
||||
"validationDate": "2021-0101"
|
||||
|
||||
```
|
||||
|
||||
|
||||
### validatedByFunder
|
||||
|
||||
_Type: Boolean • Cardinality: ONE_
|
||||
|
||||
|
||||
Specifies if the validation comes from the funder.
|
||||
|
||||
|
||||
```json
|
||||
|
||||
|
||||
"validatedByFunder": true
|
||||
|
||||
```
|
|
@ -0,0 +1,6 @@
|
|||
---
|
||||
sidebar_position: 2
|
||||
---
|
||||
|
||||
# Beginners kit
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
---
|
||||
sidebar_position: 1
|
||||
---
|
||||
|
||||
# Full graph dump
|
||||
|
||||
You can download the full OpenAIRE Research Graph Dump as well as its schema from the following links:
|
||||
|
||||
Dataset: https://doi.org/10.5281/zenodo.3516917
|
||||
|
||||
Schema: https://doi.org/10.5281/zenodo.4238938
|
||||
|
||||
The schema used to dump this dataset mirrors the one described in the [Data Model](../data-model).
|
||||
This dataset is licensed under a Creative Commons Attribution 4.0 International License.
|
||||
It is composed of several files so that you can download the parts you are interested into. The files are named after the entity they store (i.e. publication, dataset). Each file is at most 10GB and it is
|
||||
a tar archive containing gz files, each with one json per line.
|
||||
|
||||
## How to acknowledge this work
|
||||
|
||||
Open Science services are open and transparent and survive thanks to your active support and to the visibility and reward they gather. If you use one of the [OpenAIRE Research Graph dumps](https://doi.org/10.5281/zenodo.3516917) for your research, please provide a proper citation following the recommendation that you find on the dump's Zenodo page or as provided below.
|
||||
|
||||
:::note How to cite
|
||||
|
||||
Manghi P., Atzori C., Bardi A., Baglioni M., Schirrwagen J., Dimitropoulos H., La Bruzzo S., Foufoulas I., Mannocci A., Horst M., Czerniak A., Kiatropoulou K., Kokogiannaki A., De Bonis M., Artini M., Ottonello E., Lempesis A., Ioannidis A., Manola N., Principe P. (2022). "OpenAIRE Research Graph Dump", *Dataset*, Zenodo. [doi:10.5281/zenodo.3516917](https://doi.org/10.5281/zenodo.3516917) ([BibTex](/bibtex/OpenAIRE_Research_Graph_dump.bib))
|
||||
:::
|
||||
|
||||
Please also consider citing [other relevant research products](/publications#relevant-research-products) that can be of interest.
|
||||
|
||||
Also consider adding one of the following badges to your service with the appropriate link to [our website](https://graph.openaire.eu); click on the badges below to download the respective badge image files.
|
||||
|
||||
|
||||
<div className="row">
|
||||
<div className="col col--4 left-badge">
|
||||
<a target="_blank" href={require('../assets/badges/openaire-badge-1.zip').default} download>
|
||||
<img loading="lazy" alt="Openaire badge" src={require('../assets/badges/openaire-badge-1.png').default} className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module pagination-nav__link" style={{ paddingTop: '1.2em', paddingBottom: '1.2em'}} title="Click to download"/>
|
||||
</a>
|
||||
</div>
|
||||
<div className="col col--4 mid-badge">
|
||||
<a target="_blank" href={require('../assets/badges/openaire-badge-2.zip').default} download>
|
||||
<img loading="lazy" alt="Openaire badge" src={require('../assets/badges/openaire-badge-2.png').default} className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module pagination-nav__link dark-badge" style={{ paddingTop: '1.2em', paddingBottom: '1.2em'}} title="Click to download"/>
|
||||
</a>
|
||||
</div>
|
||||
<div className="col col--4 right-badge">
|
||||
<a target="_blank" href={require('../assets/badges/openaire-badge-3.zip').default} download>
|
||||
<img loading="lazy" alt="Openaire badge" src={require('../assets/badges/openaire-badge-3.png').default} className="img_node_modules-@docusaurus-theme-classic-lib-theme-MDXComponents-Img-styles-module pagination-nav__link" style={{ paddingTop: '1.2em', paddingBottom: '1.2em'}} title="Click to download"/>
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
|
@ -0,0 +1,30 @@
|
|||
---
|
||||
sidebar_position: 4
|
||||
---
|
||||
|
||||
# Other related datasets
|
||||
|
||||
In this page, we list other related datasets; please refer to their respective schema definitions for the data model they follow.
|
||||
|
||||
## The dump of ScholeXplorer
|
||||
|
||||
Dataset: https://doi.org/10.5281/zenodo.6338616
|
||||
|
||||
Schema (Scholix version 3): https://doi.org/10.5281/zenodo.1120275
|
||||
|
||||
Schema (Scholix version 4): https://doi.org/10.5281/zenodo.6351557
|
||||
|
||||
This dataset is licensed under a CC0 1.0 Universal (CC0 1.0) Public Domain Dedication.
|
||||
The dataset contains the GZ-compressed dump of the Scholix links exposed by the OpenAIRE ScholeXplorer service.
|
||||
|
||||
## The OpenAIRE LOD dump
|
||||
|
||||
Dataset (RDF dump): https://doi.org/10.5281/zenodo.609943
|
||||
|
||||
LOD Ontology: http://lod.openaire.eu/vocab
|
||||
|
||||
SPARQL Endpoint: http://lod.openaire.eu/sparql
|
||||
|
||||
|
||||
The OpenAIRE Linked Open Data (LOD) Services and their integration with the OpenAIRE information space have been released as a beta version. The LOD exporting process started with a specification of the OpenAIRE data model as an RDF vocabulary, and then mapping of the OpenAIRE data to the graph-based RDF data model. To interlink the OpenAIRE data with related data on the Web, we have identified a list of potential datasets to interlinked with, including the DBpedia dataset extracted from Wikipedia and the publication databases DBLP and CiteSeer.
|
||||
Please refer [here](http://lod.openaire.eu/documentation) for more details on the LOD documentation.
|
|
@ -0,0 +1,68 @@
|
|||
---
|
||||
sidebar_position: 3
|
||||
---
|
||||
|
||||
# Sub-graph dumps
|
||||
|
||||
In order to facilitate users, different dumps are available under the Zenodo community called [OpenAIRE Research Graph](https://zenodo.org/communities/openaire-research-graph).
|
||||
This page lists all alternative dumps currently available.
|
||||
|
||||
|
||||
## The OpenAIRE COVID-19 dump
|
||||
|
||||
Dataset: https://doi.org/10.5281/zenodo.6638745
|
||||
|
||||
Schema: https://doi.org/10.5281/zenodo.6372977
|
||||
|
||||
This dataset is licensed under a Creative Commons Attribution 4.0 International License.
|
||||
It contains metadata records of publications, research data, software and projects on the topic of Corona Virus and COVID-19.
|
||||
This dump is part of the activities of OpenAIRE to support the fight against COVID-19 together with the OpenAIRE COVID-19 Gateway.
|
||||
The dump consists of a tar archive containing gzip files with one json per line. Please refer [here](#alternative-sub-graph-data-model) for details on the data model of this dump.
|
||||
|
||||
## The dump of funded products
|
||||
|
||||
Dataset: https://doi.org/10.5281/zenodo.6634431
|
||||
|
||||
Schema: https://doi.org/10.5281/zenodo.6372977
|
||||
|
||||
This dataset is licensed under a Creative Commons Attribution 4.0 International License.
|
||||
It contains metadata records of research products (research literature, data, software, other types of research products) with funding
|
||||
information available in the OpenAIRE Research Graph. Records are grouped by funder in a dedicated archive file. Each tar archive contains
|
||||
gzip files, each with one json record per line. The model of this dump differs from the one of the whole graph.
|
||||
Please refer [here](#alternative-sub-graph-data-model) for details on the data model of this dump.
|
||||
|
||||
## The dump of delta projects
|
||||
|
||||
Dataset: https://doi.org/10.5281/zenodo.7119633
|
||||
|
||||
Schema: https://doi.org/10.5281/zenodo.4238938
|
||||
|
||||
This dataset is licensed under a Creative Commons Attribution 4.0 International License.
|
||||
It contains the metadata records of projects collected by OpenAIRE in a given time frame. Usually one deposition of collected projects is done for each release of the OpenAIRE Research Graph
|
||||
The deposition is one tar archive containing gzip files, each with one json record per line.
|
||||
|
||||
## The dumps about research communities, initiatives and infrastructures
|
||||
|
||||
Dataset: https://doi.org/10.5281/zenodo.6638478
|
||||
|
||||
Schema: https://doi.org/10.5281/zenodo.6372977
|
||||
|
||||
This dataset is licensed under a Creative Commons Attribution 4.0 International License.
|
||||
The dataset contains one file per community/initiative/infrastructure collaborating with OpenAIRE. Check out also their community gateways on
|
||||
CONNECT. Each file is a tar archive containing gzip files with one json per line. The only communities/research initiative/infrastructure we dump are those visible to everyone.
|
||||
The model of this dump differs from the one of the whole graph.
|
||||
Please refer [here](#alternative-sub-graph-data-model) for details on the data model of this dump.
|
||||
|
||||
---
|
||||
|
||||
## Alternative sub-graph data model
|
||||
|
||||
It should be noted that the dumps for research communities, infrastructures, and products related to projects do not strictly follow the main data model of the OpenAIRE Research Graph. In particular, they differ in the following:
|
||||
|
||||
* only research products are dumped (no relations, and entities different from results)
|
||||
* the dumped results are extended with information that can be inferred in the whole dump namely:
|
||||
* funding information if present
|
||||
* associated research community/infrastructure
|
||||
* associated data sources
|
||||
|
||||
So they have just one entity type, that is the [Extended Result](alternative-model/extendedresult.md).
|
|
@ -3,4 +3,6 @@ sidebar_position: 11
|
|||
---
|
||||
|
||||
# License
|
||||
<span className="todo">TODO</span>
|
||||
|
||||
OpenAIRE Research Graph is available for download and re-use as CC-BY (due to some input sources whose license is CC-BY). Parts of the graphs can be re-used as CC-0.
|
||||
|
||||
|
|
|
@ -2,70 +2,78 @@
|
|||
sidebar_position: 7
|
||||
---
|
||||
|
||||
# How to cite
|
||||
# Relevant publications
|
||||
|
||||
Open Science services are open and transparent and survive thanks to your active support and to the visibility and reward they gather. If you use one of the [OpenAIRE Research Graph dumps](https://zenodo.org/record/6616871) for your research, please provide a proper citation following the recommendation that you find on the dump's Zenodo page.
|
||||
Open Science services are open and transparent and survive thanks to your active support and to the visibility and reward they gather. If you use one of the [OpenAIRE Research Graph dumps](https://doi.org/10.5281/zenodo.3516917) for your research, please provide a proper citation following the recommendation that you find on the dump's Zenodo page or as provided below.
|
||||
|
||||
## Relevant research products
|
||||
:::note How to cite
|
||||
|
||||
Manghi P., Atzori C., Bardi A., Baglioni M., Schirrwagen J., Dimitropoulos H., La Bruzzo S., Foufoulas I., Mannocci A., Horst M., Czerniak A., Kiatropoulou K., Kokogiannaki A., De Bonis M., Artini M., Ottonello E., Lempesis A., Ioannidis A., Manola N., Principe P. (2022). "OpenAIRE Research Graph Dump", *Dataset*, Zenodo. [doi:10.5281/zenodo.3516917](https://doi.org/10.5281/zenodo.3516917) ([BibTex](/bibtex/OpenAIRE_Research_Graph_dump.bib))
|
||||
:::
|
||||
|
||||
## Other relevant research products
|
||||
|
||||
Please also consider citing the related research products listed below.
|
||||
|
||||
### Aggregation system
|
||||
|
||||
Manghi, P., Artini, M., Atzori, C., Bardi, A., Mannocci, A., La Bruzzo, S., Candela, L., Castelli, D. and Pagano, P. (2014), “The D-NET software toolkit: A framework for the realization, maintenance, and operation of aggregative infrastructures”, Program: electronic library and information systems, Vol. 48 No. 4, pp. 322-354. [doi:10.1108/prog-08-2013-0045](http://doi.org/10.1108/prog-08-2013-0045)
|
||||
Manghi P., Artini M., Atzori C., Bardi A., Mannocci A., La Bruzzo S., Candela L., Castelli D., Pagano P. (2014). "The D-NET software toolkit: A framework for the realization, maintenance, and operation of aggregative infrastructures", Program: electronic library and information systems, Vol. 48 No. 4, pp. 322-354. [doi:10.1108/prog-08-2013-0045](http://doi.org/10.1108/prog-08-2013-0045)
|
||||
|
||||
Atzori, C., Bardi, A., Manghi, P., & Mannocci, A. (2017, January). "The OpenAIRE workflows for data management". In Italian Research Conference on Digital Libraries (pp. 95-107). Springer, Cham. [doi:10.1007/978-3-319-68130-6_8](https://doi.org/10.1007/978-3-319-68130-6_8)
|
||||
Atzori C., Bardi A., Manghi P., Mannocci A. (2017). "The OpenAIRE workflows for data management", In Italian Research Conference on Digital Libraries (IRCDL), pp. 95-107, Springer, Cham. [doi:10.1007/978-3-319-68130-6_8](https://doi.org/10.1007/978-3-319-68130-6_8)
|
||||
|
||||
*Software* Michele Artini, Claudio Atzori, Alessia Bardi, Sandro La Bruzzo, Paolo Manghi, & Andrea Mannocci. (2016, November 24). "The D-NET software toolkit: dnet-basic-aggregator (Version 1.3.0)". Zenodo. [doi:10.5281/zenodo.168356](https://doi.org/10.5281/zenodo.168356) <i className="fa-solid fa-arrow-up-right-from-square"></i>
|
||||
Artini M., Atzori C., Bardi A., La Bruzzo S., Manghi P., Mannocci A. (2016). "The D-NET software toolkit: dnet-basic-aggregator (Version 1.3.0)". *Software*, Zenodo. [doi:10.5281/zenodo.168356](https://doi.org/10.5281/zenodo.168356) <i className="fa-solid fa-arrow-up-right-from-square"></i>
|
||||
|
||||
Mannocci, A., & Manghi, P. (2016, September). "DataQ: a data flow quality monitoring system for aggregative data infrastructures". In International Conference on Theory and Practice of Digital Libraries (pp. 357-369). Springer, Cham. [doi:10.1007/978-3-319-43997-6_28](https://doi.org/10.1007/978-3-319-43997-6_28)
|
||||
Mannocci A., Manghi P. (2016). "DataQ: a data flow quality monitoring system for aggregative data infrastructures", International Conference on Theory and Practice of Digital Libraries (TPDL), pp. 357-369, Springer, Cham. [doi:10.1007/978-3-319-43997-6_28](https://doi.org/10.1007/978-3-319-43997-6_28)
|
||||
|
||||
### Deduplication
|
||||
|
||||
Vichos K., De Bonis M., Kanellos I., Chatzopoulos S., Atzori C., Manola N., Manghi P., Vergoulis T. (Feb. 2022), "A preliminary assessment of the article deduplication algorithm used for the OpenAIRE Research Graph". IRCDL 2022 - 18th Italian Research Conference on Digital Libraries, Padua, Italy. CEUR-WS Proceedings. [http://ceur-ws.org/Vol-3160](http://ceur-ws.org/Vol-3160/)
|
||||
Vichos K., De Bonis M., Kanellos I., Chatzopoulos S., Atzori C., Manola N., Manghi P., Vergoulis T. (2022). "A preliminary assessment of the article deduplication algorithm used for the OpenAIRE Research Graph", In Italian Research Conference on Digital Libraries (IRCDL), Padua, Italy, CEUR-WS Proceedings. [http://ceur-ws.org/Vol-3160](http://ceur-ws.org/Vol-3160/)
|
||||
|
||||
De Bonis, M., Manghi, P., & Atzori, C. (2022). "FDup: a framework for general-purpose and efficient entity deduplication of record collections". PeerJ Computer Science, 8, e1058. [https://peerj.com/articles/cs-1058](https://peerj.com/articles/cs-1058)
|
||||
De Bonis M., Manghi P., Atzori C. (2022). "FDup: a framework for general-purpose and efficient entity deduplication of record collections", PeerJ Computer Science, 8, e1058. [https://peerj.com/articles/cs-1058](https://peerj.com/articles/cs-1058)
|
||||
|
||||
Manghi, P., Atzori, C., De Bonis, M., & Bardi, A. (2020). "Entity deduplication in big data graphs for scholarly communication". Data Technologies and Applications. [doi:10.1108/dta-09-2019-0163](https://doi.org/10.1108/dta-09-2019-0163)
|
||||
Manghi P., Atzori C., De Bonis M., Bardi, A. (2020). "Entity deduplication in big data graphs for scholarly communication", Data Technologies and Applications. [doi:10.1108/dta-09-2019-0163](https://doi.org/10.1108/dta-09-2019-0163)
|
||||
|
||||
|
||||
Atzori, C., Manghi, P., & Bardi, A. (2018, December). "GDup: de-duplication of scholarly communication big graphs". In 2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT) (pp. 142-151). IEEE. [doi:10.1109/bdcat.2018.00025](https://doi.org/10.1109/bdcat.2018.00025)
|
||||
Atzori C., Manghi P., Bardi, A. (2018). "GDup: de-duplication of scholarly communication big graphs", In 2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT) (pp. 142-151). IEEE. [doi:10.1109/bdcat.2018.00025](https://doi.org/10.1109/bdcat.2018.00025)
|
||||
|
||||
*Software* Claudio Atzori, & Paolo Manghi. (2017, February 17). "GDup: a big graph entity deduplication system" (Version 4.0.5). Zenodo. [doi:/10.5281/zenodo.292980](https://doi.org/10.5281/zenodo.292980)
|
||||
Atzori C., & Paolo Manghi. (2017). "GDup: a big graph entity deduplication system" (Version 4.0.5), *Software*, Zenodo. [doi:/10.5281/zenodo.292980](https://doi.org/10.5281/zenodo.292980)
|
||||
|
||||
Atzori, Claudio. "GDup: an Integrated, Scalable Big Graph Deduplication System." (2016). [doi:10.5281/zenodo.1454879](https://doi.org/10.5281/zenodo.1454879)
|
||||
Atzori C. (2016). "GDup: an Integrated, Scalable Big Graph Deduplication System.". [doi:10.5281/zenodo.1454879](https://doi.org/10.5281/zenodo.1454879)
|
||||
|
||||
Manghi, Paolo, Marko Mikulicic, and Claudio Atzori. "De-duplication of aggregation authority files." International Journal of Metadata, Semantics and Ontologies 7.2 (2012): 114-130. [doi:10.1504/ijmso.2012.050014](https://doi.org/10.1504/ijmso.2012.050014)
|
||||
Manghi P., Mikulicic M., Atzori C. (2012). "De-duplication of aggregation authority files." International Journal of Metadata, Semantics and Ontologies 7.2: 114-130. [doi:10.1504/ijmso.2012.050014](https://doi.org/10.1504/ijmso.2012.050014)
|
||||
|
||||
Manghi, P., & Mikulicic, M. (2011, October). "PACE: A general-purpose tool for authority control". In Research Conference on Metadata and Semantic Research (pp. 80-92). Springer, Berlin, Heidelberg. [doi:10.1007/978-3-642-24731-6_8](https://doi.org/10.1007/978-3-642-24731-6_8)
|
||||
Manghi P., Mikulicic M. (2011). "PACE: A general-purpose tool for authority control", In Research Conference on Metadata and Semantic Research, pp. 80-92, Springer, Berlin, Heidelberg. [doi:10.1007/978-3-642-24731-6_8](https://doi.org/10.1007/978-3-642-24731-6_8)
|
||||
|
||||
### Mining
|
||||
|
||||
Giannakopoulos T., Foufoulas Y., Dimitropoulos H., Manola N. (2019) “Interactive Text Analysis and Information Extraction”. In: Manghi P., Candela L., Silvello G. (eds) Digital Libraries: Supporting Open Science. IRCDL 2019. Communications in Computer and Information Science, vol 988. Springer, Cham. [doi:10.1007/978-3-030-11226-4_27](https://doi.org/10.1007/978-3-030-11226-4_27)
|
||||
Giannakopoulos T., Foufoulas Y., Dimitropoulos H., Manola N. (2019). "Interactive Text Analysis and Information Extraction", In Italian Research Conference on Digital Libraries (IRCDL), vol 988. Springer, Cham. [doi:10.1007/978-3-030-11226-4_27](https://doi.org/10.1007/978-3-030-11226-4_27)
|
||||
|
||||
Foufoulas Y., Stamatogiannakis L., Dimitropoulos H., Ioannidis Y. (2017) “High-Pass Text Filtering for Citation Matching”. In: Kamps J., Tsakonas G., Manolopoulos Y., Iliadis L., Karydis I. (eds) Research and Advanced Technology for Digital Libraries. TPDL 2017. Lecture Notes in Computer Science, vol 10450. Springer, Cham. [doi:10.1007/978-3-319-67008-9_28](https://doi.org/10.1007/978-3-319-67008-9_28)
|
||||
Foufoulas Y., Stamatogiannakis L., Dimitropoulos H., Ioannidis Y. (2017). "High-Pass Text Filtering for Citation Matching", In International Conference on Theory and Practice of Digital Libraries (TPDL). Springer, Cham. [doi:10.1007/978-3-319-67008-9_28](https://doi.org/10.1007/978-3-319-67008-9_28)
|
||||
|
||||
Y. Chronis, Y. Foufoulas, V. Nikolopoulos, A. Papadopoulos, L. Stamatogiannakis, C. Svingos, Y. E. Ioannidis, "A Relational Approach to Complex Dataflows", in Workshop Proceedings of the EDBT/ICDT 2016 (MEDAL 2016) Joint Conference (March 15, 2016, Bordeaux, France) on CEUR-WS.org (ISSN 1613-0073) [http://ceur-ws.org/Vol-1558/paper45.pdf](http://ceur-ws.org/Vol-1558/paper45.pdf)
|
||||
Chronis Y., Foufoulas Y., Nikolopoulos V., Papadopoulos A., Stamatogiannakis L., Svingos C., Ioannidis Y. E. (2016). "A Relational Approach to Complex Dataflows", In Workshop Proceedings of the EDBT/ICDT 2016 (MEDAL 2016) Joint Conference on CEUR-WS.org (ISSN 1613-0073) [http://ceur-ws.org/Vol-1558/paper45.pdf](http://ceur-ws.org/Vol-1558/paper45.pdf)
|
||||
|
||||
T. Giannakopoulos, I. Foufoulas, E. Stamatogiannakis, H. Dimitropoulos, N. Manola, and Y. Ioannidis. 2015. “Visual-Based Classification of Figures from Scientific Literature”. In Proceedings of the 24th International Conference on World Wide Web (WWW '15 Companion). Association for Computing Machinery, New York, NY, USA, 1059–1060. [doi:10.1145/2740908.2742024](https://doi.org/10.1145/2740908.2742024)
|
||||
Giannakopoulos T., Foufoulas I., Stamatogiannakis E., Dimitropoulos H., Manola N., Ioannidis Y. (2015). "Visual-Based Classification of Figures from Scientific Literature", In Proceedings of the 24th International Conference on World Wide Web (WWW), Association for Computing Machinery, New York, NY, USA, 1059–1060. [doi:10.1145/2740908.2742024](https://doi.org/10.1145/2740908.2742024)
|
||||
|
||||
Giannakopoulos, T., Foufoulas, I., Stamatogiannakis, E., Dimitropoulos, H., Manola, N., & Ioannidis, Y. (2014). “Discovering and Visualizing Interdisciplinary Content Classes in Scientific Publications”. D-Lib Mag., Volume 20, Number 11/12. [doi:10.1045/november14-giannakopoulos](https://doi.org/10.1045/november14-giannakopoulos)
|
||||
Giannakopoulos T., Foufoulas I., Stamatogiannakis E., Dimitropoulos H., Manola N., Ioannidis Y. (2014). "Discovering and Visualizing Interdisciplinary Content Classes in Scientific Publications". D-Lib Mag., Volume 20, Number 11/12. [doi:10.1045/november14-giannakopoulos](https://doi.org/10.1045/november14-giannakopoulos)
|
||||
|
||||
Giannakopoulos T., Stamatogiannakis E., Foufoulas I., Dimitropoulos H., Manola N., Ioannidis Y. (2014) “Content Visualization of Scientific Corpora Using an Extensible Relational Database Implementation”. In: Bolikowski Ł., Casarosa V., Goodale P., Houssos N., Manghi P., Schirrwagen J. (eds) Theory and Practice of Digital Libraries -- TPDL 2013 Selected Workshops. TPDL 2013. Communications in Computer and Information Science, vol 416. Springer, Cham. [doi:10.1007/978-3-319-08425-1_10](https://doi.org/10.1007/978-3-319-08425-1_10)
|
||||
Giannakopoulos T., Stamatogiannakis E., Foufoulas I., Dimitropoulos H., Manola N., Ioannidis Y. (2014). "Content Visualization of Scientific Corpora Using an Extensible Relational Database Implementation", International Conference on Theory and Practice of Digital Libraries (TPDL), Springer, Cham. [doi:10.1007/978-3-319-08425-1_10](https://doi.org/10.1007/978-3-319-08425-1_10)
|
||||
|
||||
Giannakopoulos T., Dimitropoulos H., Metaxas O., Manola N., Ioannidis Y. (2013) “Supervised Content Visualization of Scientific Publications: A Case Study on the ArXiv Dataset”. In: Kłopotek M.A., Koronacki J., Marciniak M., Mykowiecka A., Wierzchoń S.T. (eds) Language Processing and Intelligent Information Systems. IIS 2013. Lecture Notes in Computer Science, vol 7912. Springer, Berlin, Heidelberg. [doi:10.1007/978-3-642-38634-3_23](https://doi.org/10.1007/978-3-642-38634-3_23)
|
||||
Giannakopoulos T., Dimitropoulos H., Metaxas O., Manola N., Ioannidis Y. (2013). "Supervised Content Visualization of Scientific Publications: A Case Study on the ArXiv Dataset", Intelligent Information Systems Symposium (IIS) vol 7912, Springer, Berlin, Heidelberg. [doi:10.1007/978-3-642-38634-3_23](https://doi.org/10.1007/978-3-642-38634-3_23)
|
||||
|
||||
Tkaczyk, D., Szostek, P., Fedoryszak, M. et al. "CERMINE: automatic extraction of structured metadata from scientific literature". IJDAR 18, 317–335 (2015). [doi:10.1007/s10032-015-0249-8](https://doi.org/10.1007/s10032-015-0249-8)
|
||||
Tkaczyk, D., Szostek, P., Fedoryszak, M., Jan Dendek P., Bolikowski Ł. (2015). "CERMINE: automatic extraction of structured metadata from scientific literature", International Journal on Document Analysis and Recognition (IJDAR), 317–335. [doi:10.1007/s10032-015-0249-8](https://doi.org/10.1007/s10032-015-0249-8)
|
||||
|
||||
M. Kobos, Ł. Bolikowski, M. Horst, P. Manghi, N. Manola, J. Schirrwagen (2014) “Information inference in scholarly communication infrastructures: the OpenAIREplus project experience”, Procedia Computer Science 38, 92-99. [doi:10.1016/j.procs.2014.10.016](https://doi.org/10.1016/j.procs.2014.10.016)
|
||||
Kobos M., Bolikowski Ł., Horst M., Manghi P., Μanola N., Schirrwagen J. (2014). "Information inference in scholarly communication infrastructures: the OpenAIREplus project experience", Procedia Computer Science 38, 92-99. [doi:10.1016/j.procs.2014.10.016](https://doi.org/10.1016/j.procs.2014.10.016)
|
||||
|
||||
### Portals
|
||||
|
||||
Baglioni M. et al. (2019) "The OpenAIRE Research Community Dashboard: On Blending Scientific Workflows and Scientific Publishing". In: Doucet A., Isaac A., Golub K., Aalberg T., Jatowt A. (eds) Digital Libraries for Open Knowledge. TPDL 2019. Lecture Notes in Computer Science, vol 11799. Springer, Cham. [doi:10.1007/978-3-030-30760-8_5](https://doi.org/10.1007/978-3-030-30760-8_5)
|
||||
Baglioni Μ., Bardi Α., Kokogiannaki Α., Manghi P., Iatropoulou K., Principe P., Vieira A., Nielsen L. H., Dimitropoulos H., Foufoulas I., Manola N., Atzori C., La Bruzzo S., Lazzeri E., Artini M., De Bonis M., Dell’Amico A. (2019). "The OpenAIRE Research Community Dashboard: On Blending Scientific Workflows and Scientific Publishing",
|
||||
International Conference on Theory and Practice of Digital Libraries (TPDL). Lecture Notes in Computer Science, vol 11799. Springer, Cham. [doi:10.1007/978-3-030-30760-8_5](https://doi.org/10.1007/978-3-030-30760-8_5)
|
||||
|
||||
### Broker Service
|
||||
|
||||
Manghi, P., Atzori, C., Bardi, A., La Bruzzo, S., & Artini, M. (2016, February). "Realizing a Scalable and History-Aware Literature Broker Service for OpenAIRE". In Italian Research Conference on Digital Libraries (pp. 92-103). Springer, Cham. [doi:10.1007/978-3-319-56300-8_9](https://doi.org/10.1007/978-3-319-56300-8_9)
|
||||
Manghi P., Atzori C., Bardi A., La Bruzzo S., Artini M. (2016). "Realizing a Scalable and History-Aware Literature Broker Service for OpenAIRE", Italian Research Conference on Digital Libraries (IRCDL), pp. 92-103, Springer, Cham. [doi:10.1007/978-3-319-56300-8_9](https://doi.org/10.1007/978-3-319-56300-8_9)
|
||||
|
||||
Artini, M., Atzori, C., Bardi, A., La Bruzzo, S., Manghi, P., & Mannocci, A. (2015). "The OpenAIRE literature broker service for institutional repositories". D-Lib Magazine, 21(11/12), 1. [doi:10.1045/november2015-artini](https://doi.org/10.1045/november2015-artini)
|
||||
Artini M., Atzori C., Bardi A., La Bruzzo S., Manghi P., Mannocci A. (2015). "The OpenAIRE literature broker service for institutional repositories", D-Lib Magazine, 21(11/12), 1. [doi:10.1045/november2015-artini](https://doi.org/10.1045/november2015-artini)
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,20 +0,0 @@
|
|||
---
|
||||
sidebar_position: 8
|
||||
---
|
||||
|
||||
# Graph-based services
|
||||
|
||||
## Explore
|
||||
<span className="todo">TODO</span>
|
||||
|
||||
## Provide
|
||||
<span className="todo">TODO</span>
|
||||
|
||||
## Connect
|
||||
<span className="todo">TODO</span>
|
||||
|
||||
## Monitor
|
||||
<span className="todo">TODO</span>
|
||||
|
||||
## Develop
|
||||
<span className="todo">TODO</span>
|
|
@ -5,14 +5,23 @@ const lightCodeTheme = require('prism-react-renderer/themes/github');
|
|||
const darkCodeTheme = require('prism-react-renderer/themes/dracula');
|
||||
const math = require('remark-math');
|
||||
const katex = require('rehype-katex');
|
||||
const { filterItems } = require('./sidebar-utils');
|
||||
const dotenv = require('dotenv');
|
||||
|
||||
// load env variables (see .env file)
|
||||
const env = dotenv.config();
|
||||
if (env.error) {
|
||||
throw env.error;
|
||||
}
|
||||
|
||||
console.info("ENV VARIABLES:");
|
||||
console.info(env.parsed);
|
||||
|
||||
/** @type {import('@docusaurus/types').Config} */
|
||||
const config = {
|
||||
title: 'OpenAIRE Documentation',
|
||||
title: 'OpenAIRE Research Graph Documentation',
|
||||
tagline: 'Open Access Infrastructure for Research in Europe',
|
||||
url: 'http://snf-23385.ok-kno.grnetcloud.net',
|
||||
baseUrl: '/', // serve the website at route
|
||||
url: process.env.URL,
|
||||
baseUrl: process.env.BASE_URL, // serve the website at route
|
||||
onBrokenLinks: 'throw',
|
||||
onBrokenMarkdownLinks: 'warn',
|
||||
favicon: 'img/favicon.ico',
|
||||
|
@ -29,7 +38,19 @@ const config = {
|
|||
defaultLocale: 'en',
|
||||
locales: ['en'],
|
||||
},
|
||||
|
||||
themes: [
|
||||
[
|
||||
require.resolve("@easyops-cn/docusaurus-search-local"),
|
||||
/** @type {import("@easyops-cn/docusaurus-search-local").PluginOptions} */
|
||||
({
|
||||
language: ["en"],
|
||||
indexBlog: false,
|
||||
highlightSearchTermsOnTargetPage: true,
|
||||
searchBarShortcutHint: false,
|
||||
docsRouteBasePath: "/",
|
||||
}),
|
||||
],
|
||||
],
|
||||
presets: [
|
||||
[
|
||||
'classic',
|
||||
|
@ -37,18 +58,7 @@ const config = {
|
|||
({
|
||||
docs: {
|
||||
routeBasePath: '/', // serve the docs at the site's route
|
||||
|
||||
sidebarPath: require.resolve('./sidebars.js'),
|
||||
async sidebarItemsGenerator({ defaultSidebarItemsGenerator, ...args }) {
|
||||
const sidebarItems = await defaultSidebarItemsGenerator(args);
|
||||
|
||||
const itemsToFilterOut = [
|
||||
'data-model/entities/entity-identifiers',
|
||||
'data-model/entities/other'
|
||||
];
|
||||
|
||||
return filterItems(sidebarItems, itemsToFilterOut);
|
||||
},
|
||||
// Please change this to your repo.
|
||||
// Remove this to remove the "edit this page" links.
|
||||
// editUrl:
|
||||
|
@ -63,6 +73,12 @@ const config = {
|
|||
// },
|
||||
theme: {
|
||||
customCss: require.resolve('./src/css/custom.css'),
|
||||
},
|
||||
sitemap: {
|
||||
changefreq: 'monthly',
|
||||
priority: 0.5,
|
||||
ignorePatterns: ['/tags/**'],
|
||||
filename: 'sitemap.xml',
|
||||
},
|
||||
}),
|
||||
],
|
||||
|
@ -81,98 +97,45 @@ const config = {
|
|||
/** @type {import('@docusaurus/preset-classic').ThemeConfig} */
|
||||
({
|
||||
navbar: {
|
||||
// title: 'OpenAIRE Documentation',
|
||||
title: 'documentation',
|
||||
logo: {
|
||||
alt: 'OpenAIRE',
|
||||
src: 'img/logo.png',
|
||||
},
|
||||
items: [
|
||||
{
|
||||
type: 'doc',
|
||||
docId: 'intro',
|
||||
position: 'left',
|
||||
label: 'Research graph v5.0',
|
||||
},
|
||||
//
|
||||
// documentation version in the navbar
|
||||
// {
|
||||
// type: 'docsVersionDropdown',
|
||||
// position: 'right'
|
||||
// type: 'doc',
|
||||
// docId: 'intro',
|
||||
// position: 'left',
|
||||
// label: 'Research graph v5.0',
|
||||
// },
|
||||
//
|
||||
// documentation version in the navbar
|
||||
{
|
||||
type: 'docsVersionDropdown',
|
||||
position: 'right'
|
||||
},
|
||||
|
||||
// link to blog, the blog must be enabled first
|
||||
// {to: '/blog', label: 'Blog', position: 'left'},
|
||||
//
|
||||
|
||||
// link to github repo
|
||||
// {
|
||||
// href: 'https://github.com/facebook/docusaurus',
|
||||
// label: 'GitHub',
|
||||
// label: 'Issues',
|
||||
// position: 'right',
|
||||
// },
|
||||
],
|
||||
},
|
||||
footer: {
|
||||
style: 'dark',
|
||||
links: [
|
||||
{
|
||||
title: 'Docs',
|
||||
items: [
|
||||
{
|
||||
label: 'Research Graph',
|
||||
to: '/',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
title: 'Dashboards',
|
||||
items: [
|
||||
{
|
||||
label: 'Explore',
|
||||
href: 'https://explore.openaire.eu/',
|
||||
},
|
||||
{
|
||||
label: 'Provide',
|
||||
href: 'https://provide.openaire.eu/',
|
||||
},
|
||||
{
|
||||
label: 'Connect',
|
||||
href: 'https://connect.openaire.eu/',
|
||||
},
|
||||
{
|
||||
label: 'Monitor',
|
||||
href: 'https://monitor.openaire.eu/',
|
||||
},
|
||||
{
|
||||
label: 'Develop',
|
||||
href: 'https://graph.openaire.eu/',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
title: 'Community',
|
||||
items: [
|
||||
{
|
||||
label: 'Facebook',
|
||||
href: 'http://www.facebook.com/groups/openaire/'
|
||||
},
|
||||
{
|
||||
label: 'Linkedin',
|
||||
href: 'https://www.linkedin.com/company/openaire-eu/',
|
||||
},
|
||||
{
|
||||
label: 'Twitter',
|
||||
href: 'https://twitter.com/OpenAIRE_eu',
|
||||
},
|
||||
{
|
||||
label: 'Youtube',
|
||||
href: 'https://www.youtube.com/channel/UChFYqizc-S6asNjQSoWuwjw',
|
||||
},
|
||||
],
|
||||
},
|
||||
|
||||
],
|
||||
style: 'light',
|
||||
copyright: `Copyright © ${new Date().getFullYear()} OpenAIRE`,
|
||||
},
|
||||
colorMode: {
|
||||
defaultMode: 'light',
|
||||
disableSwitch: true,
|
||||
respectPrefersColorScheme: false,
|
||||
},
|
||||
prism: {
|
||||
theme: lightCodeTheme,
|
||||
darkTheme: darkCodeTheme,
|
||||
|
|
10
package.json
|
@ -4,20 +4,22 @@
|
|||
"private": true,
|
||||
"scripts": {
|
||||
"docusaurus": "docusaurus",
|
||||
"start": "docusaurus start",
|
||||
"start": "docusaurus start --host 0.0.0.0",
|
||||
"build": "docusaurus build",
|
||||
"swizzle": "docusaurus swizzle",
|
||||
"deploy": "docusaurus deploy",
|
||||
"clear": "docusaurus clear",
|
||||
"serve": "docusaurus serve",
|
||||
"serve": "docusaurus serve --host 0.0.0.0",
|
||||
"write-translations": "docusaurus write-translations",
|
||||
"write-heading-ids": "docusaurus write-heading-ids"
|
||||
},
|
||||
"dependencies": {
|
||||
"@docusaurus/core": "^2.1.0",
|
||||
"@docusaurus/preset-classic": "^2.1.0",
|
||||
"@docusaurus/core": "^2.2.0",
|
||||
"@docusaurus/preset-classic": "^2.2.0",
|
||||
"@easyops-cn/docusaurus-search-local": "^0.33.6",
|
||||
"@mdx-js/react": "^1.6.22",
|
||||
"clsx": "^1.2.1",
|
||||
"dotenv": "^16.0.3",
|
||||
"hast-util-is-element": "^1.1.0",
|
||||
"prism-react-renderer": "^1.3.5",
|
||||
"react": "^17.0.2",
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
#The name of the tag
|
||||
tag_name=1.1
|
||||
# A description of the tag
|
||||
tag_description=1.1 is our 1st tag
|
||||
#The release name
|
||||
release_name=release-1.1
|
||||
#The release description
|
||||
release_description=this is the release 1.1
|
|
@ -1,18 +0,0 @@
|
|||
// filter out specific items from the sidebar
|
||||
function filterItems(items, itemsToFilter) {
|
||||
|
||||
// filter out items of categories
|
||||
let result = items.map((item) => {
|
||||
if (item.type === 'category') {
|
||||
return {...item, items: filterItems(item.items, itemsToFilter)};
|
||||
}
|
||||
return item;
|
||||
});
|
||||
|
||||
// filter out items in current level
|
||||
return result.filter( item => !itemsToFilter.includes(item.id) );
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
filterItems
|
||||
};
|
103
sidebars.js
|
@ -51,12 +51,22 @@ const sidebars = {
|
|||
href: "https://graph.openaire.eu/develop/overview.html"
|
||||
},
|
||||
{
|
||||
type: 'doc',
|
||||
id: 'download'
|
||||
},
|
||||
type: 'category',
|
||||
label: "Downloads",
|
||||
link: {
|
||||
type: 'generated-index',
|
||||
description: 'All resources, available for download, are listed below.'
|
||||
},
|
||||
items: [
|
||||
{ type: 'doc', id: 'downloads/full-graph'},
|
||||
{ type: 'doc', id: 'downloads/beginners-kit' },
|
||||
{ type: 'doc', id: 'downloads/subgraphs' },
|
||||
{ type: 'doc', id: 'downloads/related-datasets' },
|
||||
]
|
||||
},
|
||||
{
|
||||
type: 'category',
|
||||
label: "Data provision",
|
||||
label: "Graph production workflow",
|
||||
link: {type: 'doc', id: 'data-provision/data-provision'},
|
||||
items: [
|
||||
{
|
||||
|
@ -64,12 +74,46 @@ const sidebars = {
|
|||
label: "Aggregation",
|
||||
link: {type: 'doc', id: 'data-provision/aggregation/aggregation'},
|
||||
items: [
|
||||
{ type: 'doc', id: 'data-provision/aggregation/doiboost', label: 'DOIBoost' },
|
||||
{ type: 'doc', id: 'data-provision/aggregation/pubmed' },
|
||||
{ type: 'doc', id: 'data-provision/aggregation/datacite' },
|
||||
{ type: 'doc', id: 'data-provision/aggregation/ebi', label: 'EMBL-EBI' },
|
||||
{
|
||||
type: 'doc',
|
||||
label: "OpenAIRE compatible sources",
|
||||
id: 'data-provision/aggregation/compatible-sources',
|
||||
},
|
||||
{
|
||||
type: 'category',
|
||||
label: "Non-compatible sources",
|
||||
link: { type: 'generated-index' },
|
||||
items: [
|
||||
{ type: 'doc', id: 'data-provision/aggregation/non-compatible-sources/doiboost', label: 'DOIBoost' },
|
||||
{ type: 'doc', id: 'data-provision/aggregation/non-compatible-sources/pubmed' },
|
||||
{ type: 'doc', id: 'data-provision/aggregation/non-compatible-sources/datacite' },
|
||||
{ type: 'doc', id: 'data-provision/aggregation/non-compatible-sources/ebi', label: 'EMBL-EBI' },
|
||||
]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
type: 'doc',
|
||||
id: 'data-provision/merge-by-id'
|
||||
},
|
||||
{
|
||||
type: 'category',
|
||||
label: "Enrichment by mining",
|
||||
link: {
|
||||
type: 'generated-index',
|
||||
description: 'The OpenAIRE Research Graph is enriched using the different Text and Data Mining (TDM) algorithms that are grouped in the following categories.'
|
||||
},
|
||||
items: [
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/affiliation_matching' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/citation_matching' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/classifies' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/documents_similarity' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/acks' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/cites' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment-by-mining/metadata_extraction' },
|
||||
]
|
||||
},
|
||||
{ type: 'doc', id: 'data-provision/cleaning' },
|
||||
{
|
||||
type: 'category',
|
||||
label: "Deduplication",
|
||||
|
@ -80,23 +124,36 @@ const sidebars = {
|
|||
]
|
||||
},
|
||||
{
|
||||
type: 'category',
|
||||
label: "Enrichment",
|
||||
link: {type: 'doc', id: 'data-provision/enrichment/enrichment'},
|
||||
type: 'category',
|
||||
label: "Deduction & propagation",
|
||||
link: {
|
||||
type: 'generated-index' ,
|
||||
description: 'The OpenAIRE Research Graph is further enriched by the deduction and propagation processes descibed in this section.'
|
||||
|
||||
},
|
||||
items: [
|
||||
{ type: 'doc', id: 'data-provision/enrichment/mining' },
|
||||
{ type: 'doc', id: 'data-provision/enrichment/impact-scores' },
|
||||
{ type: 'doc', id: 'data-provision/deduction-and-propagation/bulk-tagging' },
|
||||
{ type: 'doc', id: 'data-provision/deduction-and-propagation/propagation' },
|
||||
]
|
||||
},
|
||||
{ type: 'doc', id: 'data-provision/post-cleaning' },
|
||||
{
|
||||
type: 'category',
|
||||
label: "Indicators ingestion",
|
||||
link: {
|
||||
type: 'generated-index' ,
|
||||
description: 'In this step, the following types of indicators are ingested in the OpenAIRE Research Graph.'
|
||||
|
||||
},
|
||||
items: [
|
||||
{ type: 'doc', id: 'data-provision/indicators-ingestion/impact-scores' },
|
||||
{ type: 'doc', id: 'data-provision/indicators-ingestion/usage-counts' },
|
||||
]
|
||||
},
|
||||
{ type: 'doc', id: 'data-provision/finalisation' },
|
||||
{ type: 'doc', id: 'data-provision/indexing' },
|
||||
{ type: 'doc', id: 'data-provision/stats' },
|
||||
{ type: 'doc', id: 'data-provision/stats' }
|
||||
]
|
||||
},
|
||||
{
|
||||
type: 'doc',
|
||||
id: 'services'
|
||||
},
|
||||
{
|
||||
type: "link",
|
||||
label: "Learning center",
|
||||
|
@ -107,10 +164,10 @@ const sidebars = {
|
|||
id: 'publications',
|
||||
label: "Relevant publications"
|
||||
},
|
||||
{
|
||||
type: 'doc',
|
||||
id: 'faq'
|
||||
},
|
||||
// {
|
||||
// type: 'doc',
|
||||
// id: 'faq'
|
||||
// },
|
||||
{
|
||||
type: 'doc',
|
||||
id: 'license'
|
||||
|
|
|
@ -5,58 +5,66 @@
|
|||
*/
|
||||
|
||||
/* You can override the default Infima variables here. */
|
||||
/*
|
||||
:root {
|
||||
--ifm-color-primary: #2e8555;
|
||||
--ifm-color-primary-dark: #29784c;
|
||||
--ifm-color-primary-darker: #277148;
|
||||
--ifm-color-primary-darkest: #205d3b;
|
||||
--ifm-color-primary-light: #33925d;
|
||||
--ifm-color-primary-lighter: #359962;
|
||||
--ifm-color-primary-lightest: #3cad6e;
|
||||
--ifm-code-font-size: 95%;
|
||||
--docusaurus-highlighted-code-line-bg: rgba(0, 0, 0, 0.1);
|
||||
}
|
||||
*/
|
||||
|
||||
/* For readability concerns, you should choose a lighter palette in dark mode. */
|
||||
/*
|
||||
[data-theme='dark'] {
|
||||
--ifm-color-primary: #25c2a0;
|
||||
--ifm-color-primary-dark: #21af90;
|
||||
--ifm-color-primary-darker: #1fa588;
|
||||
--ifm-color-primary-darkest: #1a8870;
|
||||
--ifm-color-primary-light: #29d5b0;
|
||||
--ifm-color-primary-lighter: #32d8b4;
|
||||
--ifm-color-primary-lightest: #4fddbf;
|
||||
--docusaurus-highlighted-code-line-bg: rgba(0, 0, 0, 0.3);
|
||||
}
|
||||
*/
|
||||
|
||||
:root {
|
||||
--ifm-color-primary: #4666ca;
|
||||
--ifm-color-primary-dark: #3757be;
|
||||
--ifm-color-primary-darker: #3353b4;
|
||||
--ifm-color-primary-darkest: #2a4494;
|
||||
--ifm-color-primary-light: #5b77d0;
|
||||
--ifm-color-primary-lighter: #6680d3;
|
||||
--ifm-color-primary-lightest: #859adc;
|
||||
--ifm-color-primary: #e6122e;
|
||||
--ifm-color-primary-dark: #cf1029;
|
||||
--ifm-color-primary-darker: #c30f27;
|
||||
--ifm-color-primary-darkest: #a10d20;
|
||||
--ifm-color-primary-light: #ee233e;
|
||||
--ifm-color-primary-lighter: #ef2f48;
|
||||
--ifm-color-primary-lightest: #f15166;
|
||||
--ifm-background-color: #F5F5F5;
|
||||
--ifm-navbar-background-color: #fff;
|
||||
--ifm-code-font-size: 95%;
|
||||
--docusaurus-highlighted-code-line-bg: rgba(0, 0, 0, 0.1);
|
||||
}
|
||||
|
||||
[data-theme='dark'] {
|
||||
--ifm-color-primary: #5dade2;
|
||||
--ifm-color-primary-dark: #429fdd;
|
||||
--ifm-color-primary-darker: #3498db;
|
||||
--ifm-color-primary-darkest: #227fbd;
|
||||
--ifm-color-primary-light: #78bbe7;
|
||||
--ifm-color-primary-lighter: #86c2e9;
|
||||
--ifm-color-primary-lightest: #aed6f1;
|
||||
--ifm-color-primary: #f15166;
|
||||
--ifm-color-primary-dark: #ef334c;
|
||||
--ifm-color-primary-darker: #ed243f;
|
||||
--ifm-color-primary-darkest: #d1112a;
|
||||
--ifm-color-primary-light: #f36f80;
|
||||
--ifm-color-primary-lighter: #f57e8d;
|
||||
--ifm-color-primary-lightest: #f8aab5;
|
||||
--ifm-background-color: #2c2e3a;
|
||||
--ifm-navbar-background-color: #2c2e3a;
|
||||
--docusaurus-highlighted-code-line-bg: rgba(0, 0, 0, 0.3);
|
||||
}
|
||||
|
||||
.navbar__logo {
|
||||
height: 2.5rem;
|
||||
}
|
||||
|
||||
.todo {
|
||||
background-color: yellow;
|
||||
}
|
||||
}
|
||||
|
||||
@media (min-width: 996px) {
|
||||
|
||||
.left-badge {
|
||||
padding-right: 5px;
|
||||
}
|
||||
|
||||
.mid-badge {
|
||||
padding-left: 0;
|
||||
padding-right: 5px;
|
||||
}
|
||||
|
||||
.right-badge {
|
||||
padding-left: 0;
|
||||
}
|
||||
}
|
||||
|
||||
.dark-badge {
|
||||
background-color: #c6c6c6;
|
||||
}
|
||||
|
||||
.footer {
|
||||
background-color: var(--ifm-navbar-background-color);
|
||||
padding-bottom: 2em;
|
||||
padding-top: 1em;
|
||||
height: var(--ifm-navbar-height);
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
@dataset{manghi_paolo_2022_6616871,
|
||||
author = {Manghi, Paolo and
|
||||
Atzori, Claudio and
|
||||
Bardi, Alessia and
|
||||
Baglioni, Miriam and
|
||||
Schirrwagen, Jochen and
|
||||
Dimitropoulos, Harry and
|
||||
La Bruzzo, Sandro and
|
||||
Foufoulas, Ioannis and
|
||||
Mannocci, Andrea and
|
||||
Horst, Marek and
|
||||
Czerniak, Andreas and
|
||||
Kiatropoulou, Katerina and
|
||||
Kokogiannaki, Argiro and
|
||||
De Bonis, Michele and
|
||||
Artini, Michele and
|
||||
Ottonello, Enrico and
|
||||
Lempesis, Antonis and
|
||||
Ioannidis, Alexandros and
|
||||
Manola, Natalia and
|
||||
Principe, Pedro},
|
||||
title = {OpenAIRE Research Graph Dump},
|
||||
month = Jun,
|
||||
year = 2022,
|
||||
note = {{A new version of this dataset is published every 6
|
||||
months. The content available on the OpenAIRE
|
||||
EXPLORE and CONNECT portals might be more up-to-
|
||||
date with respect to the data you find here.}},
|
||||
publisher = {Zenodo},
|
||||
version = {4.1},
|
||||
doi = {10.5281/zenodo.6616871},
|
||||
url = {https://doi.org/10.5281/zenodo.6616871}
|
||||
}
|
Before Width: | Height: | Size: 236 KiB |
Before Width: | Height: | Size: 649 KiB |
Before Width: | Height: | Size: 170 KiB |
Before Width: | Height: | Size: 129 KiB |
Before Width: | Height: | Size: 181 KiB |
Before Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 152 KiB |
Before Width: | Height: | Size: 914 KiB |
Before Width: | Height: | Size: 5.0 KiB |
Before Width: | Height: | Size: 6.1 KiB After Width: | Height: | Size: 7.5 KiB |
|
@ -1,171 +0,0 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" width="1088" height="687.962" viewBox="0 0 1088 687.962">
|
||||
<title>Easy to Use</title>
|
||||
<g id="Group_12" data-name="Group 12" transform="translate(-57 -56)">
|
||||
<g id="Group_11" data-name="Group 11" transform="translate(57 56)">
|
||||
<path id="Path_83" data-name="Path 83" d="M1017.81,560.461c-5.27,45.15-16.22,81.4-31.25,110.31-20,38.52-54.21,54.04-84.77,70.28a193.275,193.275,0,0,1-27.46,11.94c-55.61,19.3-117.85,14.18-166.74,3.99a657.282,657.282,0,0,0-104.09-13.16q-14.97-.675-29.97-.67c-15.42.02-293.07,5.29-360.67-131.57-16.69-33.76-28.13-75-32.24-125.27-11.63-142.12,52.29-235.46,134.74-296.47,155.97-115.41,369.76-110.57,523.43,7.88C941.15,276.621,1036.99,396.031,1017.81,560.461Z" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
<path id="Path_84" data-name="Path 84" d="M986.56,670.771c-20,38.52-47.21,64.04-77.77,80.28a193.272,193.272,0,0,1-27.46,11.94c-55.61,19.3-117.85,14.18-166.74,3.99a657.3,657.3,0,0,0-104.09-13.16q-14.97-.675-29.97-.67-23.13.03-46.25,1.72c-100.17,7.36-253.82-6.43-321.42-143.29L382,283.981,444.95,445.6l20.09,51.59,55.37-75.98L549,381.981l130.2,149.27,36.8-81.27L970.78,657.9l14.21,11.59Z" transform="translate(-56 -106.019)" fill="#f2f2f2"/>
|
||||
<path id="Path_85" data-name="Path 85" d="M302,282.962l26-57,36,83-31-60Z" opacity="0.1"/>
|
||||
<path id="Path_86" data-name="Path 86" d="M610.5,753.821q-14.97-.675-29.97-.67L465.04,497.191Z" transform="translate(-56 -106.019)" opacity="0.1"/>
|
||||
<path id="Path_87" data-name="Path 87" d="M464.411,315.191,493,292.962l130,150-132-128Z" opacity="0.1"/>
|
||||
<path id="Path_88" data-name="Path 88" d="M908.79,751.051a193.265,193.265,0,0,1-27.46,11.94L679.2,531.251Z" transform="translate(-56 -106.019)" opacity="0.1"/>
|
||||
<circle id="Ellipse_11" data-name="Ellipse 11" cx="3" cy="3" r="3" transform="translate(479 98.962)" fill="#f2f2f2"/>
|
||||
<circle id="Ellipse_12" data-name="Ellipse 12" cx="3" cy="3" r="3" transform="translate(396 201.962)" fill="#f2f2f2"/>
|
||||
<circle id="Ellipse_13" data-name="Ellipse 13" cx="2" cy="2" r="2" transform="translate(600 220.962)" fill="#f2f2f2"/>
|
||||
<circle id="Ellipse_14" data-name="Ellipse 14" cx="2" cy="2" r="2" transform="translate(180 265.962)" fill="#f2f2f2"/>
|
||||
<circle id="Ellipse_15" data-name="Ellipse 15" cx="2" cy="2" r="2" transform="translate(612 96.962)" fill="#f2f2f2"/>
|
||||
<circle id="Ellipse_16" data-name="Ellipse 16" cx="2" cy="2" r="2" transform="translate(736 192.962)" fill="#f2f2f2"/>
|
||||
<circle id="Ellipse_17" data-name="Ellipse 17" cx="2" cy="2" r="2" transform="translate(858 344.962)" fill="#f2f2f2"/>
|
||||
<path id="Path_89" data-name="Path 89" d="M306,121.222h-2.76v-2.76h-1.48v2.76H299V122.7h2.76v2.759h1.48V122.7H306Z" fill="#f2f2f2"/>
|
||||
<path id="Path_90" data-name="Path 90" d="M848,424.222h-2.76v-2.76h-1.48v2.76H841V425.7h2.76v2.759h1.48V425.7H848Z" fill="#f2f2f2"/>
|
||||
<path id="Path_91" data-name="Path 91" d="M1144,719.981c0,16.569-243.557,74-544,74s-544-57.431-544-74,243.557,14,544,14S1144,703.413,1144,719.981Z" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
<path id="Path_92" data-name="Path 92" d="M1144,719.981c0,16.569-243.557,74-544,74s-544-57.431-544-74,243.557,14,544,14S1144,703.413,1144,719.981Z" transform="translate(-56 -106.019)" opacity="0.1"/>
|
||||
<ellipse id="Ellipse_18" data-name="Ellipse 18" cx="544" cy="30" rx="544" ry="30" transform="translate(0 583.962)" fill="#3f3d56"/>
|
||||
<path id="Path_93" data-name="Path 93" d="M624,677.981c0,33.137-14.775,24-33,24s-33,9.137-33-24,33-96,33-96S624,644.844,624,677.981Z" transform="translate(-56 -106.019)" fill="#ff6584"/>
|
||||
<path id="Path_94" data-name="Path 94" d="M606,690.66c0,15.062-6.716,10.909-15,10.909s-15,4.153-15-10.909,15-43.636,15-43.636S606,675.6,606,690.66Z" transform="translate(-56 -106.019)" opacity="0.1"/>
|
||||
<rect id="Rectangle_97" data-name="Rectangle 97" width="92" height="18" rx="9" transform="translate(489 604.962)" fill="#2f2e41"/>
|
||||
<rect id="Rectangle_98" data-name="Rectangle 98" width="92" height="18" rx="9" transform="translate(489 586.962)" fill="#2f2e41"/>
|
||||
<path id="Path_95" data-name="Path 95" d="M193,596.547c0,55.343,34.719,100.126,77.626,100.126" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
<path id="Path_96" data-name="Path 96" d="M270.626,696.673c0-55.965,38.745-101.251,86.626-101.251" transform="translate(-56 -106.019)" fill="#6c63ff"/>
|
||||
<path id="Path_97" data-name="Path 97" d="M221.125,601.564c0,52.57,22.14,95.109,49.5,95.109" transform="translate(-56 -106.019)" fill="#6c63ff"/>
|
||||
<path id="Path_98" data-name="Path 98" d="M270.626,696.673c0-71.511,44.783-129.377,100.126-129.377" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
<path id="Path_99" data-name="Path 99" d="M254.3,697.379s11.009-.339,14.326-2.7,16.934-5.183,17.757-1.395,16.544,18.844,4.115,18.945-28.879-1.936-32.19-3.953S254.3,697.379,254.3,697.379Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
|
||||
<path id="Path_100" data-name="Path 100" d="M290.716,710.909c-12.429.1-28.879-1.936-32.19-3.953-2.522-1.536-3.527-7.048-3.863-9.591l-.368.014s.7,8.879,4.009,10.9,19.761,4.053,32.19,3.953c3.588-.029,4.827-1.305,4.759-3.2C294.755,710.174,293.386,710.887,290.716,710.909Z" transform="translate(-56 -106.019)" opacity="0.2"/>
|
||||
<path id="Path_101" data-name="Path 101" d="M777.429,633.081c0,38.029,23.857,68.8,53.341,68.8" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
<path id="Path_102" data-name="Path 102" d="M830.769,701.882c0-38.456,26.623-69.575,59.525-69.575" transform="translate(-56 -106.019)" fill="#6c63ff"/>
|
||||
<path id="Path_103" data-name="Path 103" d="M796.755,636.528c0,36.124,15.213,65.354,34.014,65.354" transform="translate(-56 -106.019)" fill="#6c63ff"/>
|
||||
<path id="Path_104" data-name="Path 104" d="M830.769,701.882c0-49.139,30.773-88.9,68.8-88.9" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
<path id="Path_105" data-name="Path 105" d="M819.548,702.367s7.565-.233,9.844-1.856,11.636-3.562,12.2-.958,11.368,12.949,2.828,13.018-19.844-1.33-22.119-2.716S819.548,702.367,819.548,702.367Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
|
||||
<path id="Path_106" data-name="Path 106" d="M844.574,711.664c-8.54.069-19.844-1.33-22.119-2.716-1.733-1.056-2.423-4.843-2.654-6.59l-.253.01s.479,6.1,2.755,7.487,13.579,2.785,22.119,2.716c2.465-.02,3.317-.9,3.27-2.2C847.349,711.159,846.409,711.649,844.574,711.664Z" transform="translate(-56 -106.019)" opacity="0.2"/>
|
||||
<path id="Path_107" data-name="Path 107" d="M949.813,724.718s11.36-1.729,14.5-4.591,16.89-7.488,18.217-3.667,19.494,17.447,6.633,19.107-30.153,1.609-33.835-.065S949.813,724.718,949.813,724.718Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
|
||||
<path id="Path_108" data-name="Path 108" d="M989.228,734.173c-12.86,1.659-30.153,1.609-33.835-.065-2.8-1.275-4.535-6.858-5.2-9.45l-.379.061s1.833,9.109,5.516,10.783,20.975,1.725,33.835.065c3.712-.479,4.836-1.956,4.529-3.906C993.319,732.907,991.991,733.817,989.228,734.173Z" transform="translate(-56 -106.019)" opacity="0.2"/>
|
||||
<path id="Path_109" data-name="Path 109" d="M670.26,723.9s9.587-1.459,12.237-3.875,14.255-6.32,15.374-3.095,16.452,14.725,5.6,16.125-25.448,1.358-28.555-.055S670.26,723.9,670.26,723.9Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
|
||||
<path id="Path_110" data-name="Path 110" d="M703.524,731.875c-10.853,1.4-25.448,1.358-28.555-.055-2.367-1.076-3.827-5.788-4.39-7.976l-.32.051s1.547,7.687,4.655,9.1,17.7,1.456,28.555.055c3.133-.4,4.081-1.651,3.822-3.3C706.977,730.807,705.856,731.575,703.524,731.875Z" transform="translate(-56 -106.019)" opacity="0.2"/>
|
||||
<path id="Path_111" data-name="Path 111" d="M178.389,719.109s7.463-1.136,9.527-3.016,11.1-4.92,11.969-2.409,12.808,11.463,4.358,12.553-19.811,1.057-22.23-.043S178.389,719.109,178.389,719.109Z" transform="translate(-56 -106.019)" fill="#a8a8a8"/>
|
||||
<path id="Path_112" data-name="Path 112" d="M204.285,725.321c-8.449,1.09-19.811,1.057-22.23-.043-1.842-.838-2.979-4.506-3.417-6.209l-.249.04s1.2,5.984,3.624,7.085,13.781,1.133,22.23.043c2.439-.315,3.177-1.285,2.976-2.566C206.973,724.489,206.1,725.087,204.285,725.321Z" transform="translate(-56 -106.019)" opacity="0.2"/>
|
||||
<path id="Path_113" data-name="Path 113" d="M439.7,707.337c0,30.22-42.124,20.873-93.7,20.873s-93.074,9.347-93.074-20.873,42.118-36.793,93.694-36.793S439.7,677.117,439.7,707.337Z" transform="translate(-56 -106.019)" opacity="0.1"/>
|
||||
<path id="Path_114" data-name="Path 114" d="M439.7,699.9c0,30.22-42.124,20.873-93.7,20.873s-93.074,9.347-93.074-20.873S295.04,663.1,346.616,663.1,439.7,669.676,439.7,699.9Z" transform="translate(-56 -106.019)" fill="#3f3d56"/>
|
||||
</g>
|
||||
<g id="docusaurus_keytar" transform="translate(312.271 493.733)">
|
||||
<path id="Path_40" data-name="Path 40" d="M99,52h91.791V89.153H99Z" transform="translate(5.904 -14.001)" fill="#fff" fill-rule="evenodd"/>
|
||||
<path id="Path_41" data-name="Path 41" d="M24.855,163.927A21.828,21.828,0,0,1,5.947,153a21.829,21.829,0,0,0,18.908,32.782H46.71V163.927Z" transform="translate(-3 -4.634)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_42" data-name="Path 42" d="M121.861,61.1l76.514-4.782V45.39A21.854,21.854,0,0,0,176.52,23.535H78.173L75.441,18.8a3.154,3.154,0,0,0-5.464,0l-2.732,4.732L64.513,18.8a3.154,3.154,0,0,0-5.464,0l-2.732,4.732L53.586,18.8a3.154,3.154,0,0,0-5.464,0L45.39,23.535c-.024,0-.046,0-.071,0l-4.526-4.525a3.153,3.153,0,0,0-5.276,1.414l-1.5,5.577-5.674-1.521a3.154,3.154,0,0,0-3.863,3.864L26,34.023l-5.575,1.494a3.155,3.155,0,0,0-1.416,5.278l4.526,4.526c0,.023,0,.046,0,.07L18.8,48.122a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,59.05a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,69.977a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,80.9a3.154,3.154,0,0,0,0,5.464L23.535,89.1,18.8,91.832a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,102.76a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,113.687a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,124.615a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,135.542a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,146.469a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,157.4a3.154,3.154,0,0,0,0,5.464l4.732,2.732L18.8,168.324a3.154,3.154,0,0,0,0,5.464l4.732,2.732A21.854,21.854,0,0,0,45.39,198.375H176.52a21.854,21.854,0,0,0,21.855-21.855V89.1l-76.514-4.782a11.632,11.632,0,0,1,0-23.219" transform="translate(-1.681 -17.226)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_43" data-name="Path 43" d="M143,186.71h32.782V143H143Z" transform="translate(9.984 -5.561)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_44" data-name="Path 44" d="M196.71,159.855a5.438,5.438,0,0,0-.7.07c-.042-.164-.081-.329-.127-.493a5.457,5.457,0,1,0-5.4-9.372q-.181-.185-.366-.367a5.454,5.454,0,1,0-9.384-5.4c-.162-.046-.325-.084-.486-.126a5.467,5.467,0,1,0-10.788,0c-.162.042-.325.08-.486.126a5.457,5.457,0,1,0-9.384,5.4,21.843,21.843,0,1,0,36.421,21.02,5.452,5.452,0,1,0,.7-10.858" transform="translate(10.912 -6.025)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_45" data-name="Path 45" d="M153,124.855h32.782V103H153Z" transform="translate(10.912 -9.271)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_46" data-name="Path 46" d="M194.855,116.765a2.732,2.732,0,1,0,0-5.464,2.811,2.811,0,0,0-.349.035c-.022-.082-.04-.164-.063-.246a2.733,2.733,0,0,0-1.052-5.253,2.7,2.7,0,0,0-1.648.566q-.09-.093-.184-.184a2.7,2.7,0,0,0,.553-1.633,2.732,2.732,0,0,0-5.245-1.07,10.928,10.928,0,1,0,0,21.031,2.732,2.732,0,0,0,5.245-1.07,2.7,2.7,0,0,0-.553-1.633q.093-.09.184-.184a2.7,2.7,0,0,0,1.648.566,2.732,2.732,0,0,0,1.052-5.253c.023-.081.042-.164.063-.246a2.814,2.814,0,0,0,.349.035" transform="translate(12.767 -9.377)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_47" data-name="Path 47" d="M65.087,56.891a2.732,2.732,0,0,1-2.732-2.732,8.2,8.2,0,0,0-16.391,0,2.732,2.732,0,0,1-5.464,0,13.659,13.659,0,0,1,27.319,0,2.732,2.732,0,0,1-2.732,2.732" transform="translate(0.478 -15.068)" fill-rule="evenodd"/>
|
||||
<path id="Path_48" data-name="Path 48" d="M103,191.347h65.565a21.854,21.854,0,0,0,21.855-21.855V93H124.855A21.854,21.854,0,0,0,103,114.855Z" transform="translate(6.275 -10.199)" fill="#ffff50" fill-rule="evenodd"/>
|
||||
<path id="Path_49" data-name="Path 49" d="M173.216,129.787H118.535a1.093,1.093,0,1,1,0-2.185h54.681a1.093,1.093,0,0,1,0,2.185m0,21.855H118.535a1.093,1.093,0,1,1,0-2.186h54.681a1.093,1.093,0,0,1,0,2.186m0,21.855H118.535a1.093,1.093,0,1,1,0-2.185h54.681a1.093,1.093,0,0,1,0,2.185m0-54.434H118.535a1.093,1.093,0,1,1,0-2.185h54.681a1.093,1.093,0,0,1,0,2.185m0,21.652H118.535a1.093,1.093,0,1,1,0-2.186h54.681a1.093,1.093,0,0,1,0,2.186m0,21.855H118.535a1.093,1.093,0,1,1,0-2.186h54.681a1.093,1.093,0,0,1,0,2.186M189.585,61.611c-.013,0-.024-.007-.037-.005-3.377.115-4.974,3.492-6.384,6.472-1.471,3.114-2.608,5.139-4.473,5.078-2.064-.074-3.244-2.406-4.494-4.874-1.436-2.835-3.075-6.049-6.516-5.929-3.329.114-4.932,3.053-6.346,5.646-1.5,2.762-2.529,4.442-4.5,4.364-2.106-.076-3.225-1.972-4.52-4.167-1.444-2.443-3.112-5.191-6.487-5.1-3.272.113-4.879,2.606-6.3,4.808-1.5,2.328-2.552,3.746-4.551,3.662-2.156-.076-3.27-1.65-4.558-3.472-1.447-2.047-3.077-4.363-6.442-4.251-3.2.109-4.807,2.153-6.224,3.954-1.346,1.709-2.4,3.062-4.621,2.977a1.093,1.093,0,0,0-.079,2.186c3.3.11,4.967-1.967,6.417-3.81,1.286-1.635,2.4-3.045,4.582-3.12,2.1-.09,3.091,1.218,4.584,3.327,1.417,2,3.026,4.277,6.263,4.394,3.391.114,5.022-2.42,6.467-4.663,1.292-2,2.406-3.734,4.535-3.807,1.959-.073,3.026,1.475,4.529,4.022,1.417,2.4,3.023,5.121,6.324,5.241,3.415.118,5.064-2.863,6.5-5.5,1.245-2.282,2.419-4.437,4.5-4.509,1.959-.046,2.981,1.743,4.492,4.732,1.412,2.79,3.013,5.95,6.365,6.071l.185,0c3.348,0,4.937-3.36,6.343-6.331,1.245-2.634,2.423-5.114,4.444-5.216Z" transform="translate(7.109 -13.11)" fill-rule="evenodd"/>
|
||||
<path id="Path_50" data-name="Path 50" d="M83,186.71h43.71V143H83Z" transform="translate(4.42 -5.561)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<g id="Group_8" data-name="Group 8" transform="matrix(0.966, -0.259, 0.259, 0.966, 109.327, 91.085)">
|
||||
<rect id="Rectangle_3" data-name="Rectangle 3" width="92.361" height="36.462" rx="2" transform="translate(0 0)" fill="#d8d8d8"/>
|
||||
<g id="Group_2" data-name="Group 2" transform="translate(1.531 23.03)">
|
||||
<rect id="Rectangle_4" data-name="Rectangle 4" width="5.336" height="5.336" rx="1" transform="translate(16.797 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_5" data-name="Rectangle 5" width="5.336" height="5.336" rx="1" transform="translate(23.12 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_6" data-name="Rectangle 6" width="5.336" height="5.336" rx="1" transform="translate(29.444 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_7" data-name="Rectangle 7" width="5.336" height="5.336" rx="1" transform="translate(35.768 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_8" data-name="Rectangle 8" width="5.336" height="5.336" rx="1" transform="translate(42.091 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_9" data-name="Rectangle 9" width="5.336" height="5.336" rx="1" transform="translate(48.415 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_10" data-name="Rectangle 10" width="5.336" height="5.336" rx="1" transform="translate(54.739 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_11" data-name="Rectangle 11" width="5.336" height="5.336" rx="1" transform="translate(61.063 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_12" data-name="Rectangle 12" width="5.336" height="5.336" rx="1" transform="translate(67.386 0)" fill="#4a4a4a"/>
|
||||
<path id="Path_51" data-name="Path 51" d="M1.093,0H14.518a1.093,1.093,0,0,1,1.093,1.093V4.243a1.093,1.093,0,0,1-1.093,1.093H1.093A1.093,1.093,0,0,1,0,4.243V1.093A1.093,1.093,0,0,1,1.093,0ZM75,0H88.426a1.093,1.093,0,0,1,1.093,1.093V4.243a1.093,1.093,0,0,1-1.093,1.093H75a1.093,1.093,0,0,1-1.093-1.093V1.093A1.093,1.093,0,0,1,75,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
</g>
|
||||
<g id="Group_3" data-name="Group 3" transform="translate(1.531 10.261)">
|
||||
<path id="Path_52" data-name="Path 52" d="M1.093,0H6.218A1.093,1.093,0,0,1,7.31,1.093V4.242A1.093,1.093,0,0,1,6.218,5.335H1.093A1.093,1.093,0,0,1,0,4.242V1.093A1.093,1.093,0,0,1,1.093,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<rect id="Rectangle_13" data-name="Rectangle 13" width="5.336" height="5.336" rx="1" transform="translate(8.299 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_14" data-name="Rectangle 14" width="5.336" height="5.336" rx="1" transform="translate(14.623 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_15" data-name="Rectangle 15" width="5.336" height="5.336" rx="1" transform="translate(20.947 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_16" data-name="Rectangle 16" width="5.336" height="5.336" rx="1" transform="translate(27.271 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_17" data-name="Rectangle 17" width="5.336" height="5.336" rx="1" transform="translate(33.594 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_18" data-name="Rectangle 18" width="5.336" height="5.336" rx="1" transform="translate(39.918 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_19" data-name="Rectangle 19" width="5.336" height="5.336" rx="1" transform="translate(46.242 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_20" data-name="Rectangle 20" width="5.336" height="5.336" rx="1" transform="translate(52.565 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_21" data-name="Rectangle 21" width="5.336" height="5.336" rx="1" transform="translate(58.888 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_22" data-name="Rectangle 22" width="5.336" height="5.336" rx="1" transform="translate(65.212 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_23" data-name="Rectangle 23" width="5.336" height="5.336" rx="1" transform="translate(71.536 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_24" data-name="Rectangle 24" width="5.336" height="5.336" rx="1" transform="translate(77.859 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_25" data-name="Rectangle 25" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<g id="Group_4" data-name="Group 4" transform="translate(91.05 9.546) rotate(180)">
|
||||
<path id="Path_53" data-name="Path 53" d="M1.093,0H6.219A1.093,1.093,0,0,1,7.312,1.093v3.15A1.093,1.093,0,0,1,6.219,5.336H1.093A1.093,1.093,0,0,1,0,4.243V1.093A1.093,1.093,0,0,1,1.093,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<rect id="Rectangle_26" data-name="Rectangle 26" width="5.336" height="5.336" rx="1" transform="translate(8.299 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_27" data-name="Rectangle 27" width="5.336" height="5.336" rx="1" transform="translate(14.623 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_28" data-name="Rectangle 28" width="5.336" height="5.336" rx="1" transform="translate(20.947 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_29" data-name="Rectangle 29" width="5.336" height="5.336" rx="1" transform="translate(27.271 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_30" data-name="Rectangle 30" width="5.336" height="5.336" rx="1" transform="translate(33.594 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_31" data-name="Rectangle 31" width="5.336" height="5.336" rx="1" transform="translate(39.918 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_32" data-name="Rectangle 32" width="5.336" height="5.336" rx="1" transform="translate(46.242 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_33" data-name="Rectangle 33" width="5.336" height="5.336" rx="1" transform="translate(52.565 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_34" data-name="Rectangle 34" width="5.336" height="5.336" rx="1" transform="translate(58.889 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_35" data-name="Rectangle 35" width="5.336" height="5.336" rx="1" transform="translate(65.213 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_36" data-name="Rectangle 36" width="5.336" height="5.336" rx="1" transform="translate(71.537 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_37" data-name="Rectangle 37" width="5.336" height="5.336" rx="1" transform="translate(77.86 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_38" data-name="Rectangle 38" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_39" data-name="Rectangle 39" width="5.336" height="5.336" rx="1" transform="translate(8.299 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_40" data-name="Rectangle 40" width="5.336" height="5.336" rx="1" transform="translate(14.623 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_41" data-name="Rectangle 41" width="5.336" height="5.336" rx="1" transform="translate(20.947 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_42" data-name="Rectangle 42" width="5.336" height="5.336" rx="1" transform="translate(27.271 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_43" data-name="Rectangle 43" width="5.336" height="5.336" rx="1" transform="translate(33.594 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_44" data-name="Rectangle 44" width="5.336" height="5.336" rx="1" transform="translate(39.918 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_45" data-name="Rectangle 45" width="5.336" height="5.336" rx="1" transform="translate(46.242 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_46" data-name="Rectangle 46" width="5.336" height="5.336" rx="1" transform="translate(52.565 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_47" data-name="Rectangle 47" width="5.336" height="5.336" rx="1" transform="translate(58.889 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_48" data-name="Rectangle 48" width="5.336" height="5.336" rx="1" transform="translate(65.213 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_49" data-name="Rectangle 49" width="5.336" height="5.336" rx="1" transform="translate(71.537 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_50" data-name="Rectangle 50" width="5.336" height="5.336" rx="1" transform="translate(77.86 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_51" data-name="Rectangle 51" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<g id="Group_6" data-name="Group 6" transform="translate(1.531 16.584)">
|
||||
<path id="Path_54" data-name="Path 54" d="M1.093,0h7.3A1.093,1.093,0,0,1,9.485,1.093v3.15A1.093,1.093,0,0,1,8.392,5.336h-7.3A1.093,1.093,0,0,1,0,4.243V1.094A1.093,1.093,0,0,1,1.093,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<g id="Group_5" data-name="Group 5" transform="translate(10.671 0)">
|
||||
<rect id="Rectangle_52" data-name="Rectangle 52" width="5.336" height="5.336" rx="1" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_53" data-name="Rectangle 53" width="5.336" height="5.336" rx="1" transform="translate(6.324 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_54" data-name="Rectangle 54" width="5.336" height="5.336" rx="1" transform="translate(12.647 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_55" data-name="Rectangle 55" width="5.336" height="5.336" rx="1" transform="translate(18.971 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_56" data-name="Rectangle 56" width="5.336" height="5.336" rx="1" transform="translate(25.295 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_57" data-name="Rectangle 57" width="5.336" height="5.336" rx="1" transform="translate(31.619 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_58" data-name="Rectangle 58" width="5.336" height="5.336" rx="1" transform="translate(37.942 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_59" data-name="Rectangle 59" width="5.336" height="5.336" rx="1" transform="translate(44.265 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_60" data-name="Rectangle 60" width="5.336" height="5.336" rx="1" transform="translate(50.589 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_61" data-name="Rectangle 61" width="5.336" height="5.336" rx="1" transform="translate(56.912 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_62" data-name="Rectangle 62" width="5.336" height="5.336" rx="1" transform="translate(63.236 0)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<path id="Path_55" data-name="Path 55" d="M1.094,0H8A1.093,1.093,0,0,1,9.091,1.093v3.15A1.093,1.093,0,0,1,8,5.336H1.093A1.093,1.093,0,0,1,0,4.243V1.094A1.093,1.093,0,0,1,1.093,0Z" transform="translate(80.428 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
</g>
|
||||
<g id="Group_7" data-name="Group 7" transform="translate(1.531 29.627)">
|
||||
<rect id="Rectangle_63" data-name="Rectangle 63" width="5.336" height="5.336" rx="1" transform="translate(0 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_64" data-name="Rectangle 64" width="5.336" height="5.336" rx="1" transform="translate(6.324 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_65" data-name="Rectangle 65" width="5.336" height="5.336" rx="1" transform="translate(12.647 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_66" data-name="Rectangle 66" width="5.336" height="5.336" rx="1" transform="translate(18.971 0)" fill="#4a4a4a"/>
|
||||
<path id="Path_56" data-name="Path 56" d="M1.093,0H31.515a1.093,1.093,0,0,1,1.093,1.093V4.244a1.093,1.093,0,0,1-1.093,1.093H1.093A1.093,1.093,0,0,1,0,4.244V1.093A1.093,1.093,0,0,1,1.093,0ZM34.687,0h3.942a1.093,1.093,0,0,1,1.093,1.093V4.244a1.093,1.093,0,0,1-1.093,1.093H34.687a1.093,1.093,0,0,1-1.093-1.093V1.093A1.093,1.093,0,0,1,34.687,0Z" transform="translate(25.294 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<rect id="Rectangle_67" data-name="Rectangle 67" width="5.336" height="5.336" rx="1" transform="translate(66.003 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_68" data-name="Rectangle 68" width="5.336" height="5.336" rx="1" transform="translate(72.327 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_69" data-name="Rectangle 69" width="5.336" height="5.336" rx="1" transform="translate(84.183 0)" fill="#4a4a4a"/>
|
||||
<path id="Path_57" data-name="Path 57" d="M5.336,0V1.18A1.093,1.093,0,0,1,4.243,2.273H1.093A1.093,1.093,0,0,1,0,1.18V0Z" transform="translate(83.59 2.273) rotate(180)" fill="#4a4a4a"/>
|
||||
<path id="Path_58" data-name="Path 58" d="M5.336,0V1.18A1.093,1.093,0,0,1,4.243,2.273H1.093A1.093,1.093,0,0,1,0,1.18V0Z" transform="translate(78.255 3.063)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<rect id="Rectangle_70" data-name="Rectangle 70" width="88.927" height="2.371" rx="1.085" transform="translate(1.925 1.17)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_71" data-name="Rectangle 71" width="4.986" height="1.581" rx="0.723" transform="translate(4.1 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_72" data-name="Rectangle 72" width="4.986" height="1.581" rx="0.723" transform="translate(10.923 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_73" data-name="Rectangle 73" width="4.986" height="1.581" rx="0.723" transform="translate(16.173 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_74" data-name="Rectangle 74" width="4.986" height="1.581" rx="0.723" transform="translate(21.421 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_75" data-name="Rectangle 75" width="4.986" height="1.581" rx="0.723" transform="translate(26.671 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_76" data-name="Rectangle 76" width="4.986" height="1.581" rx="0.723" transform="translate(33.232 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_77" data-name="Rectangle 77" width="4.986" height="1.581" rx="0.723" transform="translate(38.48 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_78" data-name="Rectangle 78" width="4.986" height="1.581" rx="0.723" transform="translate(43.73 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_79" data-name="Rectangle 79" width="4.986" height="1.581" rx="0.723" transform="translate(48.978 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_80" data-name="Rectangle 80" width="4.986" height="1.581" rx="0.723" transform="translate(55.54 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_81" data-name="Rectangle 81" width="4.986" height="1.581" rx="0.723" transform="translate(60.788 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_82" data-name="Rectangle 82" width="4.986" height="1.581" rx="0.723" transform="translate(66.038 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_83" data-name="Rectangle 83" width="4.986" height="1.581" rx="0.723" transform="translate(72.599 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_84" data-name="Rectangle 84" width="4.986" height="1.581" rx="0.723" transform="translate(77.847 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_85" data-name="Rectangle 85" width="4.986" height="1.581" rx="0.723" transform="translate(83.097 1.566)" fill="#d8d8d8" opacity="0.136"/>
|
||||
</g>
|
||||
<path id="Path_59" data-name="Path 59" d="M146.71,159.855a5.439,5.439,0,0,0-.7.07c-.042-.164-.081-.329-.127-.493a5.457,5.457,0,1,0-5.4-9.372q-.181-.185-.366-.367a5.454,5.454,0,1,0-9.384-5.4c-.162-.046-.325-.084-.486-.126a5.467,5.467,0,1,0-10.788,0c-.162.042-.325.08-.486.126a5.457,5.457,0,1,0-9.384,5.4,21.843,21.843,0,1,0,36.421,21.02,5.452,5.452,0,1,0,.7-10.858" transform="translate(6.275 -6.025)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_60" data-name="Path 60" d="M83,124.855h43.71V103H83Z" transform="translate(4.42 -9.271)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_61" data-name="Path 61" d="M134.855,116.765a2.732,2.732,0,1,0,0-5.464,2.811,2.811,0,0,0-.349.035c-.022-.082-.04-.164-.063-.246a2.733,2.733,0,0,0-1.052-5.253,2.7,2.7,0,0,0-1.648.566q-.09-.093-.184-.184a2.7,2.7,0,0,0,.553-1.633,2.732,2.732,0,0,0-5.245-1.07,10.928,10.928,0,1,0,0,21.031,2.732,2.732,0,0,0,5.245-1.07,2.7,2.7,0,0,0-.553-1.633q.093-.09.184-.184a2.7,2.7,0,0,0,1.648.566,2.732,2.732,0,0,0,1.052-5.253c.023-.081.042-.164.063-.246a2.811,2.811,0,0,0,.349.035" transform="translate(7.202 -9.377)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_62" data-name="Path 62" d="M143.232,42.33a2.967,2.967,0,0,1-.535-.055,2.754,2.754,0,0,1-.514-.153,2.838,2.838,0,0,1-.471-.251,4.139,4.139,0,0,1-.415-.339,3.2,3.2,0,0,1-.338-.415A2.7,2.7,0,0,1,140.5,39.6a2.968,2.968,0,0,1,.055-.535,3.152,3.152,0,0,1,.152-.514,2.874,2.874,0,0,1,.252-.47,2.633,2.633,0,0,1,.753-.754,2.837,2.837,0,0,1,.471-.251,2.753,2.753,0,0,1,.514-.153,2.527,2.527,0,0,1,1.071,0,2.654,2.654,0,0,1,.983.4,4.139,4.139,0,0,1,.415.339,4.019,4.019,0,0,1,.339.415,2.786,2.786,0,0,1,.251.47,2.864,2.864,0,0,1,.208,1.049,2.77,2.77,0,0,1-.8,1.934,4.139,4.139,0,0,1-.415.339,2.722,2.722,0,0,1-1.519.459m21.855-1.366a2.789,2.789,0,0,1-1.935-.8,4.162,4.162,0,0,1-.338-.415,2.7,2.7,0,0,1-.459-1.519,2.789,2.789,0,0,1,.8-1.934,4.139,4.139,0,0,1,.415-.339,2.838,2.838,0,0,1,.471-.251,2.752,2.752,0,0,1,.514-.153,2.527,2.527,0,0,1,1.071,0,2.654,2.654,0,0,1,.983.4,4.139,4.139,0,0,1,.415.339,2.79,2.79,0,0,1,.8,1.934,3.069,3.069,0,0,1-.055.535,2.779,2.779,0,0,1-.153.514,3.885,3.885,0,0,1-.251.47,4.02,4.02,0,0,1-.339.415,4.138,4.138,0,0,1-.415.339,2.722,2.722,0,0,1-1.519.459" transform="translate(9.753 -15.532)" fill-rule="evenodd"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 31 KiB |
|
@ -1,170 +0,0 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" width="1041.277" height="554.141" viewBox="0 0 1041.277 554.141">
|
||||
<title>Powered by React</title>
|
||||
<g id="Group_24" data-name="Group 24" transform="translate(-440 -263)">
|
||||
<g id="Group_23" data-name="Group 23" transform="translate(439.989 262.965)">
|
||||
<path id="Path_299" data-name="Path 299" d="M1040.82,611.12q-1.74,3.75-3.47,7.4-2.7,5.67-5.33,11.12c-.78,1.61-1.56,3.19-2.32,4.77-8.6,17.57-16.63,33.11-23.45,45.89A73.21,73.21,0,0,1,942.44,719l-151.65,1.65h-1.6l-13,.14-11.12.12-34.1.37h-1.38l-17.36.19h-.53l-107,1.16-95.51,1-11.11.12-69,.75H429l-44.75.48h-.48l-141.5,1.53-42.33.46a87.991,87.991,0,0,1-10.79-.54h0c-1.22-.14-2.44-.3-3.65-.49a87.38,87.38,0,0,1-51.29-27.54C116,678.37,102.75,655,93.85,629.64q-1.93-5.49-3.6-11.12C59.44,514.37,97,380,164.6,290.08q4.25-5.64,8.64-11l.07-.08c20.79-25.52,44.1-46.84,68.93-62,44-26.91,92.75-34.49,140.7-11.9,40.57,19.12,78.45,28.11,115.17,30.55,3.71.24,7.42.42,11.11.53,84.23,2.65,163.17-27.7,255.87-47.29,3.69-.78,7.39-1.55,11.12-2.28,66.13-13.16,139.49-20.1,226.73-5.51a189.089,189.089,0,0,1,26.76,6.4q5.77,1.86,11.12,4c41.64,16.94,64.35,48.24,74,87.46q1.37,5.46,2.37,11.11C1134.3,384.41,1084.19,518.23,1040.82,611.12Z" transform="translate(-79.34 -172.91)" fill="#f2f2f2"/>
|
||||
<path id="Path_300" data-name="Path 300" d="M576.36,618.52a95.21,95.21,0,0,1-1.87,11.12h93.7V618.52Zm-78.25,62.81,11.11-.09V653.77c-3.81-.17-7.52-.34-11.11-.52ZM265.19,618.52v11.12h198.5V618.52ZM1114.87,279h-74V191.51q-5.35-2.17-11.12-4V279H776.21V186.58c-3.73.73-7.43,1.5-11.12,2.28V279H509.22V236.15c-3.69-.11-7.4-.29-11.11-.53V279H242.24V217c-24.83,15.16-48.14,36.48-68.93,62h-.07v.08q-4.4,5.4-8.64,11h8.64V618.52h-83q1.66,5.63,3.6,11.12h79.39v93.62a87,87,0,0,0,12.2,2.79c1.21.19,2.43.35,3.65.49h0a87.991,87.991,0,0,0,10.79.54l42.33-.46v-97H498.11v94.21l11.11-.12V629.64H765.09V721l11.12-.12V629.64H1029.7v4.77c.76-1.58,1.54-3.16,2.32-4.77q2.63-5.45,5.33-11.12,1.73-3.64,3.47-7.4v-321h76.42Q1116.23,284.43,1114.87,279ZM242.24,618.52V290.08H498.11V618.52Zm267,0V290.08H765.09V618.52Zm520.48,0H776.21V290.08H1029.7Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_301" data-name="Path 301" d="M863.09,533.65v13l-151.92,1.4-1.62.03-57.74.53-1.38.02-17.55.15h-.52l-106.98.99L349.77,551.4h-.15l-44.65.42-.48.01-198.4,1.82v-15l46.65-28,93.6-.78,2-.01.66-.01,2-.03,44.94-.37,2.01-.01.64-.01,2-.01L315,509.3l.38-.01,35.55-.3h.29l277.4-2.34,6.79-.05h.68l5.18-.05,37.65-.31,2-.03,1.85-.02h.96l11.71-.09,2.32-.03,3.11-.02,9.75-.09,15.47-.13,2-.02,3.48-.02h.65l74.71-.64Z" fill="#65617d"/>
|
||||
<path id="Path_302" data-name="Path 302" d="M863.09,533.65v13l-151.92,1.4-1.62.03-57.74.53-1.38.02-17.55.15h-.52l-106.98.99L349.77,551.4h-.15l-44.65.42-.48.01-198.4,1.82v-15l46.65-28,93.6-.78,2-.01.66-.01,2-.03,44.94-.37,2.01-.01.64-.01,2-.01L315,509.3l.38-.01,35.55-.3h.29l277.4-2.34,6.79-.05h.68l5.18-.05,37.65-.31,2-.03,1.85-.02h.96l11.71-.09,2.32-.03,3.11-.02,9.75-.09,15.47-.13,2-.02,3.48-.02h.65l74.71-.64Z" opacity="0.2"/>
|
||||
<path id="Path_303" data-name="Path 303" d="M375.44,656.57v24.49a6.13,6.13,0,0,1-3.5,5.54,6,6,0,0,1-2.5.6l-34.9.74a6,6,0,0,1-2.7-.57,6.12,6.12,0,0,1-3.57-5.57V656.57Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
|
||||
<path id="Path_304" data-name="Path 304" d="M375.44,656.57v24.49a6.13,6.13,0,0,1-3.5,5.54,6,6,0,0,1-2.5.6l-34.9.74a6,6,0,0,1-2.7-.57,6.12,6.12,0,0,1-3.57-5.57V656.57Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_305" data-name="Path 305" d="M377.44,656.57v24.49a6.13,6.13,0,0,1-3.5,5.54,6,6,0,0,1-2.5.6l-34.9.74a6,6,0,0,1-2.7-.57,6.12,6.12,0,0,1-3.57-5.57V656.57Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
|
||||
<rect id="Rectangle_137" data-name="Rectangle 137" width="47.17" height="31.5" transform="translate(680.92 483.65)" fill="#3f3d56"/>
|
||||
<rect id="Rectangle_138" data-name="Rectangle 138" width="47.17" height="31.5" transform="translate(680.92 483.65)" opacity="0.1"/>
|
||||
<rect id="Rectangle_139" data-name="Rectangle 139" width="47.17" height="31.5" transform="translate(678.92 483.65)" fill="#3f3d56"/>
|
||||
<path id="Path_306" data-name="Path 306" d="M298.09,483.65v4.97l-47.17,1.26v-6.23Z" opacity="0.1"/>
|
||||
<path id="Path_307" data-name="Path 307" d="M460.69,485.27v168.2a4,4,0,0,1-3.85,3.95l-191.65,5.1h-.05a4,4,0,0,1-3.95-3.95V485.27a4,4,0,0,1,3.95-3.95h191.6a4,4,0,0,1,3.95,3.95Z" transform="translate(-79.34 -172.91)" fill="#65617d"/>
|
||||
<path id="Path_308" data-name="Path 308" d="M265.19,481.32v181.2h-.05a4,4,0,0,1-3.95-3.95V485.27a4,4,0,0,1,3.95-3.95Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_309" data-name="Path 309" d="M194.59,319.15h177.5V467.4l-177.5,4Z" fill="#39374d"/>
|
||||
<path id="Path_310" data-name="Path 310" d="M726.09,483.65v6.41l-47.17-1.26v-5.15Z" opacity="0.1"/>
|
||||
<path id="Path_311" data-name="Path 311" d="M867.69,485.27v173.3a4,4,0,0,1-4,3.95h0L672,657.42a4,4,0,0,1-3.85-3.95V485.27a4,4,0,0,1,3.95-3.95H863.7a4,4,0,0,1,3.99,3.95Z" transform="translate(-79.34 -172.91)" fill="#65617d"/>
|
||||
<path id="Path_312" data-name="Path 312" d="M867.69,485.27v173.3a4,4,0,0,1-4,3.95h0V481.32h0a4,4,0,0,1,4,3.95Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_313" data-name="Path 313" d="M775.59,319.15H598.09V467.4l177.5,4Z" fill="#39374d"/>
|
||||
<path id="Path_314" data-name="Path 314" d="M663.19,485.27v168.2a4,4,0,0,1-3.85,3.95l-191.65,5.1h0a4,4,0,0,1-4-3.95V485.27a4,4,0,0,1,3.95-3.95h191.6A4,4,0,0,1,663.19,485.27Z" transform="translate(-79.34 -172.91)" fill="#65617d"/>
|
||||
<path id="Path_315" data-name="Path 315" d="M397.09,319.15h177.5V467.4l-177.5,4Z" fill="#4267b2"/>
|
||||
<path id="Path_316" data-name="Path 316" d="M863.09,533.65v13l-151.92,1.4-1.62.03-57.74.53-1.38.02-17.55.15h-.52l-106.98.99L349.77,551.4h-.15l-44.65.42-.48.01-198.4,1.82v-15l202.51-1.33h.48l40.99-.28h.19l283.08-1.87h.29l.17-.01h.47l4.79-.03h1.46l74.49-.5,4.4-.02.98-.01Z" opacity="0.1"/>
|
||||
<circle id="Ellipse_111" data-name="Ellipse 111" cx="51.33" cy="51.33" r="51.33" transform="translate(435.93 246.82)" fill="#fbbebe"/>
|
||||
<path id="Path_317" data-name="Path 317" d="M617.94,550.07s-99.5,12-90,0c3.44-4.34,4.39-17.2,4.2-31.85-.06-4.45-.22-9.06-.45-13.65-1.1-22-3.75-43.5-3.75-43.5s87-41,77-8.5c-4,13.13-2.69,31.57.35,48.88.89,5.05,1.92,10,3,14.7a344.66,344.66,0,0,0,9.65,33.92Z" transform="translate(-79.34 -172.91)" fill="#fbbebe"/>
|
||||
<path id="Path_318" data-name="Path 318" d="M585.47,546c11.51-2.13,23.7-6,34.53-1.54,2.85,1.17,5.47,2.88,8.39,3.86s6.12,1.22,9.16,1.91c10.68,2.42,19.34,10.55,24.9,20s8.44,20.14,11.26,30.72l6.9,25.83c6,22.45,12,45.09,13.39,68.3a2437.506,2437.506,0,0,1-250.84,1.43c5.44-10.34,11-21.31,10.54-33s-7.19-23.22-4.76-34.74c1.55-7.34,6.57-13.39,9.64-20.22,8.75-19.52,1.94-45.79,17.32-60.65,6.92-6.68,17-9.21,26.63-8.89,12.28.41,24.85,4.24,37,6.11C555.09,547.48,569.79,548.88,585.47,546Z" transform="translate(-79.34 -172.91)" fill="#ff6584"/>
|
||||
<path id="Path_319" data-name="Path 319" d="M716.37,657.17l-.1,1.43v.1l-.17,2.3-1.33,18.51-1.61,22.3-.46,6.28-1,13.44v.17l-107,1-175.59,1.9v.84h-.14v-1.12l.45-14.36.86-28.06.74-23.79.07-2.37a10.53,10.53,0,0,1,11.42-10.17c4.72.4,10.85.89,18.18,1.41l3,.22c42.33,2.94,120.56,6.74,199.5,2,1.66-.09,3.33-.19,5-.31,12.24-.77,24.47-1.76,36.58-3a10.53,10.53,0,0,1,11.6,11.23Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_320" data-name="Path 320" d="M429.08,725.44v-.84l175.62-1.91,107-1h.3v-.17l1-13.44.43-6,1.64-22.61,1.29-17.9v-.44a10.617,10.617,0,0,0-.11-2.47.3.3,0,0,0,0-.1,10.391,10.391,0,0,0-2-4.64,10.54,10.54,0,0,0-9.42-4c-12.11,1.24-24.34,2.23-36.58,3-1.67.12-3.34.22-5,.31-78.94,4.69-157.17.89-199.5-2l-3-.22c-7.33-.52-13.46-1-18.18-1.41a10.54,10.54,0,0,0-11.24,8.53,11,11,0,0,0-.18,1.64l-.68,22.16L429.54,710l-.44,14.36v1.12Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
|
||||
<path id="Path_321" data-name="Path 321" d="M716.67,664.18l-1.23,15.33-1.83,22.85-.46,5.72-1,12.81-.06.64v.17h0l-.15,1.48.11-1.48h-.29l-107,1-175.65,1.9v-.28l.49-14.36,1-28.06.64-18.65A6.36,6.36,0,0,1,434.3,658a6.25,6.25,0,0,1,3.78-.9c2.1.17,4.68.37,7.69.59,4.89.36,10.92.78,17.94,1.22,13,.82,29.31,1.7,48,2.42,52,2,122.2,2.67,188.88-3.17,3-.26,6.1-.55,9.13-.84a6.26,6.26,0,0,1,3.48.66,5.159,5.159,0,0,1,.86.54,6.14,6.14,0,0,1,2,2.46,3.564,3.564,0,0,1,.25.61A6.279,6.279,0,0,1,716.67,664.18Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_322" data-name="Path 322" d="M377.44,677.87v3.19a6.13,6.13,0,0,1-3.5,5.54l-40.1.77a6.12,6.12,0,0,1-3.57-5.57v-3Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_323" data-name="Path 323" d="M298.59,515.57l-52.25,1V507.9l52.25-1Z" fill="#3f3d56"/>
|
||||
<path id="Path_324" data-name="Path 324" d="M298.59,515.57l-52.25,1V507.9l52.25-1Z" opacity="0.1"/>
|
||||
<path id="Path_325" data-name="Path 325" d="M300.59,515.57l-52.25,1V507.9l52.25-1Z" fill="#3f3d56"/>
|
||||
<path id="Path_326" data-name="Path 326" d="M758.56,679.87v3.19a6.13,6.13,0,0,0,3.5,5.54l40.1.77a6.12,6.12,0,0,0,3.57-5.57v-3Z" transform="translate(-79.34 -172.91)" opacity="0.1"/>
|
||||
<path id="Path_327" data-name="Path 327" d="M678.72,517.57l52.25,1V509.9l-52.25-1Z" opacity="0.1"/>
|
||||
<path id="Path_328" data-name="Path 328" d="M676.72,517.57l52.25,1V509.9l-52.25-1Z" fill="#3f3d56"/>
|
||||
<path id="Path_329" data-name="Path 329" d="M534.13,486.79c.08,7-3.16,13.6-5.91,20.07a163.491,163.491,0,0,0-12.66,74.71c.73,11,2.58,22,.73,32.9s-8.43,21.77-19,24.9c17.53,10.45,41.26,9.35,57.76-2.66,8.79-6.4,15.34-15.33,21.75-24.11a97.86,97.86,0,0,1-13.31,44.75A103.43,103.43,0,0,0,637,616.53c4.31-5.81,8.06-12.19,9.72-19.23,3.09-13-1.22-26.51-4.51-39.5a266.055,266.055,0,0,1-6.17-33c-.43-3.56-.78-7.22.1-10.7,1-4.07,3.67-7.51,5.64-11.22,5.6-10.54,5.73-23.3,2.86-34.88s-8.49-22.26-14.06-32.81c-4.46-8.46-9.3-17.31-17.46-22.28-5.1-3.1-11-4.39-16.88-5.64l-25.37-5.43c-5.55-1.19-11.26-2.38-16.87-1.51-9.47,1.48-16.14,8.32-22,15.34-4.59,5.46-15.81,15.71-16.6,22.86-.72,6.59,5.1,17.63,6.09,24.58,1.3,9,2.22,6,7.3,11.52C532,478.05,534.07,482,534.13,486.79Z" transform="translate(-79.34 -172.91)" fill="#3f3d56"/>
|
||||
</g>
|
||||
<g id="docusaurus_keytar" transform="translate(670.271 615.768)">
|
||||
<path id="Path_40" data-name="Path 40" d="M99,52h43.635V69.662H99Z" transform="translate(-49.132 -33.936)" fill="#fff" fill-rule="evenodd"/>
|
||||
<path id="Path_41" data-name="Path 41" d="M13.389,158.195A10.377,10.377,0,0,1,4.4,153a10.377,10.377,0,0,0,8.988,15.584H23.779V158.195Z" transform="translate(-3 -82.47)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_42" data-name="Path 42" d="M66.967,38.083l36.373-2.273V30.615A10.389,10.389,0,0,0,92.95,20.226H46.2l-1.3-2.249a1.5,1.5,0,0,0-2.6,0L41,20.226l-1.3-2.249a1.5,1.5,0,0,0-2.6,0l-1.3,2.249-1.3-2.249a1.5,1.5,0,0,0-2.6,0l-1.3,2.249-.034,0-2.152-2.151a1.5,1.5,0,0,0-2.508.672L25.21,21.4l-2.7-.723a1.5,1.5,0,0,0-1.836,1.837l.722,2.7-2.65.71a1.5,1.5,0,0,0-.673,2.509l2.152,2.152c0,.011,0,.022,0,.033l-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6L20.226,41l-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3-2.249,1.3a1.5,1.5,0,0,0,0,2.6l2.249,1.3A10.389,10.389,0,0,0,30.615,103.34H92.95A10.389,10.389,0,0,0,103.34,92.95V51.393L66.967,49.12a5.53,5.53,0,0,1,0-11.038" transform="translate(-9.836 -17.226)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_43" data-name="Path 43" d="M143,163.779h15.584V143H143Z" transform="translate(-70.275 -77.665)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_44" data-name="Path 44" d="M173.779,148.389a2.582,2.582,0,0,0-.332.033c-.02-.078-.038-.156-.06-.234a2.594,2.594,0,1,0-2.567-4.455q-.086-.088-.174-.175a2.593,2.593,0,1,0-4.461-2.569c-.077-.022-.154-.04-.231-.06a2.6,2.6,0,1,0-5.128,0c-.077.02-.154.038-.231.06a2.594,2.594,0,1,0-4.461,2.569,10.384,10.384,0,1,0,17.314,9.992,2.592,2.592,0,1,0,.332-5.161" transform="translate(-75.08 -75.262)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_45" data-name="Path 45" d="M153,113.389h15.584V103H153Z" transform="translate(-75.08 -58.444)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_46" data-name="Path 46" d="M183.389,108.944a1.3,1.3,0,1,0,0-2.6,1.336,1.336,0,0,0-.166.017c-.01-.039-.019-.078-.03-.117a1.3,1.3,0,0,0-.5-2.5,1.285,1.285,0,0,0-.783.269q-.043-.044-.087-.087a1.285,1.285,0,0,0,.263-.776,1.3,1.3,0,0,0-2.493-.509,5.195,5.195,0,1,0,0,10,1.3,1.3,0,0,0,2.493-.509,1.285,1.285,0,0,0-.263-.776q.044-.043.087-.087a1.285,1.285,0,0,0,.783.269,1.3,1.3,0,0,0,.5-2.5c.011-.038.02-.078.03-.117a1.337,1.337,0,0,0,.166.017" transform="translate(-84.691 -57.894)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_47" data-name="Path 47" d="M52.188,48.292a1.3,1.3,0,0,1-1.3-1.3,3.9,3.9,0,0,0-7.792,0,1.3,1.3,0,1,1-2.6,0,6.493,6.493,0,0,1,12.987,0,1.3,1.3,0,0,1-1.3,1.3" transform="translate(-21.02 -28.41)" fill-rule="evenodd"/>
|
||||
<path id="Path_48" data-name="Path 48" d="M103,139.752h31.168a10.389,10.389,0,0,0,10.389-10.389V93H113.389A10.389,10.389,0,0,0,103,103.389Z" transform="translate(-51.054 -53.638)" fill="#ffff50" fill-rule="evenodd"/>
|
||||
<path id="Path_49" data-name="Path 49" d="M141.1,94.017H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.389H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.389H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0-25.877H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.293H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m0,10.389H115.106a.519.519,0,1,1,0-1.039H141.1a.519.519,0,0,1,0,1.039m7.782-47.993c-.006,0-.011,0-.018,0-1.605.055-2.365,1.66-3.035,3.077-.7,1.48-1.24,2.443-2.126,2.414-.981-.035-1.542-1.144-2.137-2.317-.683-1.347-1.462-2.876-3.1-2.819-1.582.054-2.344,1.451-3.017,2.684-.715,1.313-1.2,2.112-2.141,2.075-1-.036-1.533-.938-2.149-1.981-.686-1.162-1.479-2.467-3.084-2.423-1.555.053-2.319,1.239-2.994,2.286-.713,1.106-1.213,1.781-2.164,1.741-1.025-.036-1.554-.784-2.167-1.65-.688-.973-1.463-2.074-3.062-2.021a3.815,3.815,0,0,0-2.959,1.879c-.64.812-1.14,1.456-2.2,1.415a.52.52,0,0,0-.037,1.039,3.588,3.588,0,0,0,3.05-1.811c.611-.777,1.139-1.448,2.178-1.483,1-.043,1.47.579,2.179,1.582.674.953,1.438,2.033,2.977,2.089,1.612.054,2.387-1.151,3.074-2.217.614-.953,1.144-1.775,2.156-1.81.931-.035,1.438.7,2.153,1.912.674,1.141,1.437,2.434,3.006,2.491,1.623.056,2.407-1.361,3.09-2.616.592-1.085,1.15-2.109,2.14-2.143.931-.022,1.417.829,2.135,2.249.671,1.326,1.432,2.828,3.026,2.886l.088,0c1.592,0,2.347-1.6,3.015-3.01.592-1.252,1.152-2.431,2.113-2.479Z" transform="translate(-55.378 -38.552)" fill-rule="evenodd"/>
|
||||
<path id="Path_50" data-name="Path 50" d="M83,163.779h20.779V143H83Z" transform="translate(-41.443 -77.665)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<g id="Group_8" data-name="Group 8" transform="matrix(0.966, -0.259, 0.259, 0.966, 51.971, 43.3)">
|
||||
<rect id="Rectangle_3" data-name="Rectangle 3" width="43.906" height="17.333" rx="2" transform="translate(0 0)" fill="#d8d8d8"/>
|
||||
<g id="Group_2" data-name="Group 2" transform="translate(0.728 10.948)">
|
||||
<rect id="Rectangle_4" data-name="Rectangle 4" width="2.537" height="2.537" rx="1" transform="translate(7.985 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_5" data-name="Rectangle 5" width="2.537" height="2.537" rx="1" transform="translate(10.991 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_6" data-name="Rectangle 6" width="2.537" height="2.537" rx="1" transform="translate(13.997 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_7" data-name="Rectangle 7" width="2.537" height="2.537" rx="1" transform="translate(17.003 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_8" data-name="Rectangle 8" width="2.537" height="2.537" rx="1" transform="translate(20.009 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_9" data-name="Rectangle 9" width="2.537" height="2.537" rx="1" transform="translate(23.015 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_10" data-name="Rectangle 10" width="2.537" height="2.537" rx="1" transform="translate(26.021 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_11" data-name="Rectangle 11" width="2.537" height="2.537" rx="1" transform="translate(29.028 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_12" data-name="Rectangle 12" width="2.537" height="2.537" rx="1" transform="translate(32.034 0)" fill="#4a4a4a"/>
|
||||
<path id="Path_51" data-name="Path 51" d="M.519,0H6.9A.519.519,0,0,1,7.421.52v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.519A.519.519,0,0,1,.519,0ZM35.653,0h6.383a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H35.652a.519.519,0,0,1-.519-.519V.519A.519.519,0,0,1,35.652,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
</g>
|
||||
<g id="Group_3" data-name="Group 3" transform="translate(0.728 4.878)">
|
||||
<path id="Path_52" data-name="Path 52" d="M.519,0H2.956a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.519A.519.519,0,0,1,.519,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<rect id="Rectangle_13" data-name="Rectangle 13" width="2.537" height="2.537" rx="1" transform="translate(3.945 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_14" data-name="Rectangle 14" width="2.537" height="2.537" rx="1" transform="translate(6.951 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_15" data-name="Rectangle 15" width="2.537" height="2.537" rx="1" transform="translate(9.958 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_16" data-name="Rectangle 16" width="2.537" height="2.537" rx="1" transform="translate(12.964 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_17" data-name="Rectangle 17" width="2.537" height="2.537" rx="1" transform="translate(15.97 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_18" data-name="Rectangle 18" width="2.537" height="2.537" rx="1" transform="translate(18.976 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_19" data-name="Rectangle 19" width="2.537" height="2.537" rx="1" transform="translate(21.982 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_20" data-name="Rectangle 20" width="2.537" height="2.537" rx="1" transform="translate(24.988 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_21" data-name="Rectangle 21" width="2.537" height="2.537" rx="1" transform="translate(27.994 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_22" data-name="Rectangle 22" width="2.537" height="2.537" rx="1" transform="translate(31 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_23" data-name="Rectangle 23" width="2.537" height="2.537" rx="1" transform="translate(34.006 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_24" data-name="Rectangle 24" width="2.537" height="2.537" rx="1" transform="translate(37.012 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_25" data-name="Rectangle 25" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<g id="Group_4" data-name="Group 4" transform="translate(43.283 4.538) rotate(180)">
|
||||
<path id="Path_53" data-name="Path 53" d="M.519,0H2.956a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.519A.519.519,0,0,1,.519,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<rect id="Rectangle_26" data-name="Rectangle 26" width="2.537" height="2.537" rx="1" transform="translate(3.945 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_27" data-name="Rectangle 27" width="2.537" height="2.537" rx="1" transform="translate(6.951 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_28" data-name="Rectangle 28" width="2.537" height="2.537" rx="1" transform="translate(9.958 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_29" data-name="Rectangle 29" width="2.537" height="2.537" rx="1" transform="translate(12.964 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_30" data-name="Rectangle 30" width="2.537" height="2.537" rx="1" transform="translate(15.97 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_31" data-name="Rectangle 31" width="2.537" height="2.537" rx="1" transform="translate(18.976 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_32" data-name="Rectangle 32" width="2.537" height="2.537" rx="1" transform="translate(21.982 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_33" data-name="Rectangle 33" width="2.537" height="2.537" rx="1" transform="translate(24.988 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_34" data-name="Rectangle 34" width="2.537" height="2.537" rx="1" transform="translate(27.994 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_35" data-name="Rectangle 35" width="2.537" height="2.537" rx="1" transform="translate(31.001 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_36" data-name="Rectangle 36" width="2.537" height="2.537" rx="1" transform="translate(34.007 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_37" data-name="Rectangle 37" width="2.537" height="2.537" rx="1" transform="translate(37.013 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_38" data-name="Rectangle 38" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_39" data-name="Rectangle 39" width="2.537" height="2.537" rx="1" transform="translate(3.945 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_40" data-name="Rectangle 40" width="2.537" height="2.537" rx="1" transform="translate(6.951 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_41" data-name="Rectangle 41" width="2.537" height="2.537" rx="1" transform="translate(9.958 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_42" data-name="Rectangle 42" width="2.537" height="2.537" rx="1" transform="translate(12.964 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_43" data-name="Rectangle 43" width="2.537" height="2.537" rx="1" transform="translate(15.97 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_44" data-name="Rectangle 44" width="2.537" height="2.537" rx="1" transform="translate(18.976 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_45" data-name="Rectangle 45" width="2.537" height="2.537" rx="1" transform="translate(21.982 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_46" data-name="Rectangle 46" width="2.537" height="2.537" rx="1" transform="translate(24.988 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_47" data-name="Rectangle 47" width="2.537" height="2.537" rx="1" transform="translate(27.994 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_48" data-name="Rectangle 48" width="2.537" height="2.537" rx="1" transform="translate(31.001 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_49" data-name="Rectangle 49" width="2.537" height="2.537" rx="1" transform="translate(34.007 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_50" data-name="Rectangle 50" width="2.537" height="2.537" rx="1" transform="translate(37.013 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_51" data-name="Rectangle 51" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<g id="Group_6" data-name="Group 6" transform="translate(0.728 7.883)">
|
||||
<path id="Path_54" data-name="Path 54" d="M.519,0h3.47a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.52A.519.519,0,0,1,.519,0Z" transform="translate(0 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<g id="Group_5" data-name="Group 5" transform="translate(5.073 0)">
|
||||
<rect id="Rectangle_52" data-name="Rectangle 52" width="2.537" height="2.537" rx="1" transform="translate(0 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_53" data-name="Rectangle 53" width="2.537" height="2.537" rx="1" transform="translate(3.006 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_54" data-name="Rectangle 54" width="2.537" height="2.537" rx="1" transform="translate(6.012 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_55" data-name="Rectangle 55" width="2.537" height="2.537" rx="1" transform="translate(9.018 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_56" data-name="Rectangle 56" width="2.537" height="2.537" rx="1" transform="translate(12.025 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_57" data-name="Rectangle 57" width="2.537" height="2.537" rx="1" transform="translate(15.031 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_58" data-name="Rectangle 58" width="2.537" height="2.537" rx="1" transform="translate(18.037 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_59" data-name="Rectangle 59" width="2.537" height="2.537" rx="1" transform="translate(21.042 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_60" data-name="Rectangle 60" width="2.537" height="2.537" rx="1" transform="translate(24.049 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_61" data-name="Rectangle 61" width="2.537" height="2.537" rx="1" transform="translate(27.055 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_62" data-name="Rectangle 62" width="2.537" height="2.537" rx="1" transform="translate(30.061 0)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<path id="Path_55" data-name="Path 55" d="M.52,0H3.8a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.017V.52A.519.519,0,0,1,.519,0Z" transform="translate(38.234 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
</g>
|
||||
<g id="Group_7" data-name="Group 7" transform="translate(0.728 14.084)">
|
||||
<rect id="Rectangle_63" data-name="Rectangle 63" width="2.537" height="2.537" rx="1" transform="translate(0 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_64" data-name="Rectangle 64" width="2.537" height="2.537" rx="1" transform="translate(3.006 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_65" data-name="Rectangle 65" width="2.537" height="2.537" rx="1" transform="translate(6.012 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_66" data-name="Rectangle 66" width="2.537" height="2.537" rx="1" transform="translate(9.018 0)" fill="#4a4a4a"/>
|
||||
<path id="Path_56" data-name="Path 56" d="M.519,0H14.981A.519.519,0,0,1,15.5.519v1.5a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,2.018V.519A.519.519,0,0,1,.519,0Zm15.97,0h1.874a.519.519,0,0,1,.519.519v1.5a.519.519,0,0,1-.519.519H16.489a.519.519,0,0,1-.519-.519V.519A.519.519,0,0,1,16.489,0Z" transform="translate(12.024 0)" fill="#4a4a4a" fill-rule="evenodd"/>
|
||||
<rect id="Rectangle_67" data-name="Rectangle 67" width="2.537" height="2.537" rx="1" transform="translate(31.376 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_68" data-name="Rectangle 68" width="2.537" height="2.537" rx="1" transform="translate(34.382 0)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_69" data-name="Rectangle 69" width="2.537" height="2.537" rx="1" transform="translate(40.018 0)" fill="#4a4a4a"/>
|
||||
<path id="Path_57" data-name="Path 57" d="M2.537,0V.561a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,.561V0Z" transform="translate(39.736 1.08) rotate(180)" fill="#4a4a4a"/>
|
||||
<path id="Path_58" data-name="Path 58" d="M2.537,0V.561a.519.519,0,0,1-.519.519H.519A.519.519,0,0,1,0,.561V0Z" transform="translate(37.2 1.456)" fill="#4a4a4a"/>
|
||||
</g>
|
||||
<rect id="Rectangle_70" data-name="Rectangle 70" width="42.273" height="1.127" rx="0.564" transform="translate(0.915 0.556)" fill="#4a4a4a"/>
|
||||
<rect id="Rectangle_71" data-name="Rectangle 71" width="2.37" height="0.752" rx="0.376" transform="translate(1.949 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_72" data-name="Rectangle 72" width="2.37" height="0.752" rx="0.376" transform="translate(5.193 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_73" data-name="Rectangle 73" width="2.37" height="0.752" rx="0.376" transform="translate(7.688 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_74" data-name="Rectangle 74" width="2.37" height="0.752" rx="0.376" transform="translate(10.183 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_75" data-name="Rectangle 75" width="2.37" height="0.752" rx="0.376" transform="translate(12.679 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_76" data-name="Rectangle 76" width="2.37" height="0.752" rx="0.376" transform="translate(15.797 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_77" data-name="Rectangle 77" width="2.37" height="0.752" rx="0.376" transform="translate(18.292 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_78" data-name="Rectangle 78" width="2.37" height="0.752" rx="0.376" transform="translate(20.788 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_79" data-name="Rectangle 79" width="2.37" height="0.752" rx="0.376" transform="translate(23.283 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_80" data-name="Rectangle 80" width="2.37" height="0.752" rx="0.376" transform="translate(26.402 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_81" data-name="Rectangle 81" width="2.37" height="0.752" rx="0.376" transform="translate(28.897 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_82" data-name="Rectangle 82" width="2.37" height="0.752" rx="0.376" transform="translate(31.393 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_83" data-name="Rectangle 83" width="2.37" height="0.752" rx="0.376" transform="translate(34.512 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_84" data-name="Rectangle 84" width="2.37" height="0.752" rx="0.376" transform="translate(37.007 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
<rect id="Rectangle_85" data-name="Rectangle 85" width="2.37" height="0.752" rx="0.376" transform="translate(39.502 0.744)" fill="#d8d8d8" opacity="0.136"/>
|
||||
</g>
|
||||
<path id="Path_59" data-name="Path 59" d="M123.779,148.389a2.583,2.583,0,0,0-.332.033c-.02-.078-.038-.156-.06-.234a2.594,2.594,0,1,0-2.567-4.455q-.086-.088-.174-.175a2.593,2.593,0,1,0-4.461-2.569c-.077-.022-.154-.04-.231-.06a2.6,2.6,0,1,0-5.128,0c-.077.02-.154.038-.231.06a2.594,2.594,0,1,0-4.461,2.569,10.384,10.384,0,1,0,17.314,9.992,2.592,2.592,0,1,0,.332-5.161" transform="translate(-51.054 -75.262)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_60" data-name="Path 60" d="M83,113.389h20.779V103H83Z" transform="translate(-41.443 -58.444)" fill="#3ecc5f" fill-rule="evenodd"/>
|
||||
<path id="Path_61" data-name="Path 61" d="M123.389,108.944a1.3,1.3,0,1,0,0-2.6,1.338,1.338,0,0,0-.166.017c-.01-.039-.019-.078-.03-.117a1.3,1.3,0,0,0-.5-2.5,1.285,1.285,0,0,0-.783.269q-.043-.044-.087-.087a1.285,1.285,0,0,0,.263-.776,1.3,1.3,0,0,0-2.493-.509,5.195,5.195,0,1,0,0,10,1.3,1.3,0,0,0,2.493-.509,1.285,1.285,0,0,0-.263-.776q.044-.043.087-.087a1.285,1.285,0,0,0,.783.269,1.3,1.3,0,0,0,.5-2.5c.011-.038.02-.078.03-.117a1.335,1.335,0,0,0,.166.017" transform="translate(-55.859 -57.894)" fill="#44d860" fill-rule="evenodd"/>
|
||||
<path id="Path_62" data-name="Path 62" d="M141.8,38.745a1.41,1.41,0,0,1-.255-.026,1.309,1.309,0,0,1-.244-.073,1.349,1.349,0,0,1-.224-.119,1.967,1.967,0,0,1-.2-.161,1.52,1.52,0,0,1-.161-.2,1.282,1.282,0,0,1-.218-.722,1.41,1.41,0,0,1,.026-.255,1.5,1.5,0,0,1,.072-.244,1.364,1.364,0,0,1,.12-.223,1.252,1.252,0,0,1,.358-.358,1.349,1.349,0,0,1,.224-.119,1.309,1.309,0,0,1,.244-.073,1.2,1.2,0,0,1,.509,0,1.262,1.262,0,0,1,.468.192,1.968,1.968,0,0,1,.2.161,1.908,1.908,0,0,1,.161.2,1.322,1.322,0,0,1,.12.223,1.361,1.361,0,0,1,.1.5,1.317,1.317,0,0,1-.379.919,1.968,1.968,0,0,1-.2.161,1.346,1.346,0,0,1-.223.119,1.332,1.332,0,0,1-.5.1m10.389-.649a1.326,1.326,0,0,1-.92-.379,1.979,1.979,0,0,1-.161-.2,1.282,1.282,0,0,1-.218-.722,1.326,1.326,0,0,1,.379-.919,1.967,1.967,0,0,1,.2-.161,1.351,1.351,0,0,1,.224-.119,1.308,1.308,0,0,1,.244-.073,1.2,1.2,0,0,1,.509,0,1.262,1.262,0,0,1,.468.192,1.967,1.967,0,0,1,.2.161,1.326,1.326,0,0,1,.379.919,1.461,1.461,0,0,1-.026.255,1.323,1.323,0,0,1-.073.244,1.847,1.847,0,0,1-.119.223,1.911,1.911,0,0,1-.161.2,1.967,1.967,0,0,1-.2.161,1.294,1.294,0,0,1-.722.218" transform="translate(-69.074 -26.006)" fill-rule="evenodd"/>
|
||||
</g>
|
||||
<g id="React-icon" transform="translate(906.3 541.56)">
|
||||
<path id="Path_330" data-name="Path 330" d="M263.668,117.179c0-5.827-7.3-11.35-18.487-14.775,2.582-11.4,1.434-20.477-3.622-23.382a7.861,7.861,0,0,0-4.016-1v4a4.152,4.152,0,0,1,2.044.466c2.439,1.4,3.5,6.724,2.672,13.574-.2,1.685-.52,3.461-.914,5.272a86.9,86.9,0,0,0-11.386-1.954,87.469,87.469,0,0,0-7.459-8.965c5.845-5.433,11.332-8.41,15.062-8.41V78h0c-4.931,0-11.386,3.514-17.913,9.611-6.527-6.061-12.982-9.539-17.913-9.539v4c3.712,0,9.216,2.959,15.062,8.356a84.687,84.687,0,0,0-7.405,8.947,83.732,83.732,0,0,0-11.4,1.972c-.412-1.793-.717-3.532-.932-5.2-.843-6.85.2-12.175,2.618-13.592a3.991,3.991,0,0,1,2.062-.466v-4h0a8,8,0,0,0-4.052,1c-5.039,2.9-6.168,11.96-3.568,23.328-11.153,3.443-18.415,8.947-18.415,14.757,0,5.828,7.3,11.35,18.487,14.775-2.582,11.4-1.434,20.477,3.622,23.382a7.882,7.882,0,0,0,4.034,1c4.931,0,11.386-3.514,17.913-9.611,6.527,6.061,12.982,9.539,17.913,9.539a8,8,0,0,0,4.052-1c5.039-2.9,6.168-11.96,3.568-23.328C256.406,128.511,263.668,122.988,263.668,117.179Zm-23.346-11.96c-.663,2.313-1.488,4.7-2.421,7.083-.735-1.434-1.506-2.869-2.349-4.3-.825-1.434-1.7-2.833-2.582-4.2C235.517,104.179,237.974,104.645,240.323,105.219Zm-8.212,19.1c-1.4,2.421-2.833,4.716-4.321,6.85-2.672.233-5.379.359-8.1.359-2.708,0-5.415-.126-8.069-.341q-2.232-3.2-4.339-6.814-2.044-3.523-3.73-7.136c1.112-2.4,2.367-4.805,3.712-7.154,1.4-2.421,2.833-4.716,4.321-6.85,2.672-.233,5.379-.359,8.1-.359,2.708,0,5.415.126,8.069.341q2.232,3.2,4.339,6.814,2.044,3.523,3.73,7.136C234.692,119.564,233.455,121.966,232.11,124.315Zm5.792-2.331c.968,2.4,1.793,4.805,2.474,7.136-2.349.574-4.823,1.058-7.387,1.434.879-1.381,1.757-2.8,2.582-4.25C236.4,124.871,237.167,123.419,237.9,121.984ZM219.72,141.116a73.921,73.921,0,0,1-4.985-5.738c1.614.072,3.263.126,4.931.126,1.685,0,3.353-.036,4.985-.126A69.993,69.993,0,0,1,219.72,141.116ZM206.38,130.555c-2.546-.377-5-.843-7.352-1.417.663-2.313,1.488-4.7,2.421-7.083.735,1.434,1.506,2.869,2.349,4.3S205.5,129.192,206.38,130.555ZM219.63,93.241a73.924,73.924,0,0,1,4.985,5.738c-1.614-.072-3.263-.126-4.931-.126-1.686,0-3.353.036-4.985.126A69.993,69.993,0,0,1,219.63,93.241ZM206.362,103.8c-.879,1.381-1.757,2.8-2.582,4.25-.825,1.434-1.6,2.869-2.331,4.3-.968-2.4-1.793-4.805-2.474-7.136C201.323,104.663,203.8,104.179,206.362,103.8Zm-16.227,22.449c-6.348-2.708-10.454-6.258-10.454-9.073s4.106-6.383,10.454-9.073c1.542-.663,3.228-1.255,4.967-1.811a86.122,86.122,0,0,0,4.034,10.92,84.9,84.9,0,0,0-3.981,10.866C193.38,127.525,191.694,126.915,190.134,126.252Zm9.647,25.623c-2.439-1.4-3.5-6.724-2.672-13.574.2-1.686.52-3.461.914-5.272a86.9,86.9,0,0,0,11.386,1.954,87.465,87.465,0,0,0,7.459,8.965c-5.845,5.433-11.332,8.41-15.062,8.41A4.279,4.279,0,0,1,199.781,151.875Zm42.532-13.663c.843,6.85-.2,12.175-2.618,13.592a3.99,3.99,0,0,1-2.062.466c-3.712,0-9.216-2.959-15.062-8.356a84.689,84.689,0,0,0,7.405-8.947,83.731,83.731,0,0,0,11.4-1.972A50.194,50.194,0,0,1,242.313,138.212Zm6.9-11.96c-1.542.663-3.228,1.255-4.967,1.811a86.12,86.12,0,0,0-4.034-10.92,84.9,84.9,0,0,0,3.981-10.866c1.775.556,3.461,1.165,5.039,1.829,6.348,2.708,10.454,6.258,10.454,9.073C259.67,119.994,255.564,123.562,249.216,126.252Z" fill="#61dafb"/>
|
||||
<path id="Path_331" data-name="Path 331" d="M320.8,78.4Z" transform="translate(-119.082 -0.328)" fill="#61dafb"/>
|
||||
<circle id="Ellipse_112" data-name="Ellipse 112" cx="8.194" cy="8.194" r="8.194" transform="translate(211.472 108.984)" fill="#61dafb"/>
|
||||
<path id="Path_332" data-name="Path 332" d="M520.5,78.1Z" transform="translate(-282.975 -0.082)" fill="#61dafb"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 35 KiB |