1
0
Fork 0

Hosted By Map - modification in the code to prepare the info needed to apply the HostedByMap. There is no need to join datasources with the hbm: all the information needed is in the hosted by map already

This commit is contained in:
Miriam Baglioni 2021-08-02 19:32:59 +02:00
parent 1695d45bd4
commit ff1ce75e33
1 changed files with 55 additions and 49 deletions

View File

@ -3,7 +3,8 @@ package eu.dnetlib.dhp.oa.graph.hostedbymap
import com.fasterxml.jackson.databind.ObjectMapper import com.fasterxml.jackson.databind.ObjectMapper
import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.application.ArgumentApplicationParser
import eu.dnetlib.dhp.oa.graph.hostedbymap.model.{DatasourceInfo, EntityInfo} import eu.dnetlib.dhp.oa.graph.hostedbymap.model.{DatasourceInfo, EntityInfo}
import eu.dnetlib.dhp.schema.oaf.{Datasource, Journal, Publication}
import eu.dnetlib.dhp.schema.oaf.{Journal, Publication}
import org.apache.commons.io.IOUtils import org.apache.commons.io.IOUtils
import org.apache.spark.SparkConf import org.apache.spark.SparkConf
import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession}
@ -12,11 +13,13 @@ import org.json4s.DefaultFormats
import org.json4s.jackson.JsonMethods.parse import org.json4s.jackson.JsonMethods.parse
import org.slf4j.{Logger, LoggerFactory} import org.slf4j.{Logger, LoggerFactory}
object SparkPrepareHostedByInfoToApply { object SparkPrepareHostedByInfoToApply {
implicit val mapEncoderDSInfo: Encoder[DatasourceInfo] = Encoders.kryo[DatasourceInfo] implicit val mapEncoderDSInfo: Encoder[DatasourceInfo] = Encoders.bean(classOf[DatasourceInfo])
implicit val mapEncoderPInfo: Encoder[EntityInfo] = Encoders.kryo[EntityInfo] implicit val mapEncoderPInfo: Encoder[EntityInfo] = Encoders.bean(classOf[EntityInfo])
def getList(id: String, j: Journal, name: String ) : List[EntityInfo] = { def getList(id: String, j: Journal, name: String ) : List[EntityInfo] = {
var lst:List[EntityInfo] = List() var lst:List[EntityInfo] = List()
@ -47,25 +50,12 @@ object SparkPrepareHostedByInfoToApply {
} }
def toEntityInfo(input:String): EntityInfo = {
def prepareDatasourceInfo(spark:SparkSession, datasourcePath:String) : Dataset[DatasourceInfo] = {
implicit val mapEncoderDats: Encoder[Datasource] = Encoders.bean(classOf[Datasource])
val mapper = new ObjectMapper()
val dd : Dataset[Datasource] = spark.read.textFile(datasourcePath)
.map(r => mapper.readValue(r, classOf[Datasource]))
dd.filter(d => d.getJournal != null ).map(d => DatasourceInfo.newInstance(d.getId, d.getOfficialname.getValue,
d.getJournal.getIssnPrinted, d.getJournal.getIssnOnline, d.getJournal.getIssnLinking))
}
def toHostedByItem(input:String): HostedByItemType = {
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
lazy val json: json4s.JValue = parse(input) lazy val json: json4s.JValue = parse(input)
val c :Map[String,HostedByItemType] = json.extract[Map[String, HostedByItemType]] val c :Map[String,HostedByItemType] = json.extract[Map[String, HostedByItemType]]
c.values.head toEntityItem(c.keys.head, c.values.head)
} }
def explodeJournalInfo(input: DatasourceInfo): List[EntityInfo] = { def explodeJournalInfo(input: DatasourceInfo): List[EntityInfo] = {
@ -73,10 +63,49 @@ object SparkPrepareHostedByInfoToApply {
if (input.getEissn != null && !input.getEissn.equals("")){ if (input.getEissn != null && !input.getEissn.equals("")){
lst = EntityInfo.newInstance(input.getId, input.getEissn, input.getOfficialname, input.getOpenAccess) :: lst lst = EntityInfo.newInstance(input.getId, input.getEissn, input.getOfficialname, input.getOpenAccess) :: lst
} }
if (input.getLissn != null && !input.getLissn.equals("")){
lst = EntityInfo.newInstance(input.getId, input.getLissn, input.getOfficialname, input.getOpenAccess) :: lst
}
if (input.getIssn != null && !input.getIssn.equals("")){
lst = EntityInfo.newInstance(input.getId, input.getIssn, input.getOfficialname, input.getOpenAccess) :: lst
}
lst lst
} }
def joinDsandHBM(left:Dataset[DatasourceInfo], right:Dataset[HostedByItemType]): Dataset[EntityInfo] = {
left.joinWith(right,
left.col("id").equalTo(right.col("id")), "left")
.map(t2 => {
val dsi : DatasourceInfo = t2._1
if(t2._2 != null){
val hbi : HostedByItemType = t2._2
dsi.setOpenAccess(hbi.openAccess)
}
dsi
}).flatMap(explodeJournalInfo)
}
def toEntityItem(journal_id: String , hbi: HostedByItemType): EntityInfo = {
EntityInfo.newInstance(hbi.id, journal_id, hbi.officialname, hbi.openAccess)
}
def joinResHBM(res: Dataset[EntityInfo], hbm: Dataset[EntityInfo]): Dataset[EntityInfo] = {
Aggregators.resultToSingleId(res.joinWith(hbm, res.col("journal_id").equalTo(hbm.col("journal_id")), "left")
.map(t2 => {
val res: EntityInfo = t2._1
if(t2._2 != null ){
val ds = t2._2
res.setHb_id(ds.getId)
res.setOpenaccess(ds.getOpenaccess)
res.setName(ds.getName)
}
res
}))
}
def main(args: Array[String]): Unit = { def main(args: Array[String]): Unit = {
@ -105,43 +134,20 @@ object SparkPrepareHostedByInfoToApply {
import spark.implicits._ import spark.implicits._
//STEP1: leggere le DS e creare le entries {dsid, dsofficialname, issn, eissn, lissn, openaccess}
val datasourceInfoDataset: Dataset[DatasourceInfo] = prepareDatasourceInfo(spark, "$graphPath/datasource")
//STEP2: leggere la hostedbymap e raggruppare per datasource id //STEP1: leggere la hostedbymap e trasformarla in entity info
val hostedByDataset = Aggregators.hostedByToSingleDSId(spark.createDataset(spark.sparkContext.textFile(hostedByMapPath).map(toHostedByItem))) val hostedByInfo:Dataset[EntityInfo] = spark.createDataset(spark.sparkContext.textFile(hostedByMapPath)).map(toEntityInfo)
//STEP3: eseguire una join fra le datasource e la hostedby map (left) per settare se la datasource e' open access o no //STEP2: creare la mappa publication id issn, eissn, lissn esplosa
//ed esplodere l'info della datasource per ogni journal id diverso da nullo
val join : Dataset[EntityInfo] = datasourceInfoDataset.joinWith(hostedByDataset,
datasourceInfoDataset.col("id").equalTo(hostedByDataset.col("id"), "left"))
.map(t2 => {
val dsi : DatasourceInfo = t2._1
if(t2._2 != null){
dsi.setOpenAccess(t2._2.openAccess)
}
dsi
}).flatMap(explodeJournalInfo)
//STEP4: creare la mappa publication id issn, eissn, lissn esplosa
val resultInfoDataset:Dataset[EntityInfo] = prepareResultInfo(spark, "$graphPath/publication") val resultInfoDataset:Dataset[EntityInfo] = prepareResultInfo(spark, "$graphPath/publication")
//STEP5: join di join con resultInfo sul journal_id dal result con left //STEP3: join resultInfo con hostedByInfo sul journal_id dal result con left
// e riduzione di tutti i result con lo stesso id in una unica entry // e riduzione di tutti i result con lo stesso id in una unica entry con aggiunto l'id della datasource
Aggregators.resultToSingleId(resultInfoDataset.joinWith(join, resultInfoDataset.col("journal_id").equalTo(join.col("journal_id")), "left") joinResHBM(resultInfoDataset, hostedByInfo)
.map(t2 => { .write.mode(SaveMode.Overwrite).option("compression", "gzip").json(outputPath)
val res: EntityInfo = t2._1
if(t2._2 != null ){
val ds = t2._2
res.setHb_id(ds.getId)
res.setOpenaccess(ds.getOpenaccess)
res.setName(ds.getName)
}
res
})).write.mode(SaveMode.Overwrite).option("compression", "gzip").json(outputPath)
} }
} }