1
0
Fork 0

a bit of docs doesn't hurt

This commit is contained in:
Claudio Atzori 2020-01-24 08:43:23 +01:00
parent a55f5fecc6
commit fcbc4ccd70
1 changed files with 38 additions and 2 deletions

View File

@ -18,6 +18,24 @@ import scala.Tuple2;
import java.io.Serializable;
import java.util.List;
/**
* Joins the graph nodes by resolving the links of distance = 1 to create an adjacency list of linked objects.
* The operation considers all the entity types (publication, dataset, software, ORP, project, datasource, organization,
* and all the possible relationships (similarity links produced by the Dedup process are excluded).
*
* The operation is implemented creating the union between the entity types (E), joined by the relationships (R), and again
* by E, finally grouped by E.id;
*
* Different manipulations of the E and R sets are introduced to reduce the complexity of the operation
* 1) treat the object payload as string, extracting only the necessary information beforehand using json path,
* it seems that deserializing it with jackson's object mapper has higher memory footprint.
*
* 2) only consider rels that are not virtually deleted ($.dataInfo.deletedbyinference == false)
* 3) we only need a subset of fields from the related entities, so we introduce a distinction between E_source = S
* and E_target = T. Objects in T are heavily pruned by all the unnecessary information
*
* 4) perform the join as (((T join R) union S) groupby S.id) yield S -> [ <T, R> ]
*/
public class GraphJoiner implements Serializable {
public static final int MAX_RELS = 10;
@ -26,6 +44,7 @@ public class GraphJoiner implements Serializable {
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
// read each entity
JavaPairRDD<String, TypedRow> datasource = readPathEntity(sc, inputPath, "datasource");
JavaPairRDD<String, TypedRow> organization = readPathEntity(sc, inputPath, "organization");
JavaPairRDD<String, TypedRow> project = readPathEntity(sc, inputPath, "project");
@ -34,6 +53,7 @@ public class GraphJoiner implements Serializable {
JavaPairRDD<String, TypedRow> software = readPathEntity(sc, inputPath, "software");
JavaPairRDD<String, TypedRow> publication = readPathEntity(sc, inputPath, "publication");
// create the union between all the entities
final String entitiesPath = outPath + "/entities";
datasource
.union(organization)
@ -50,8 +70,9 @@ public class GraphJoiner implements Serializable {
.map(t -> new ObjectMapper().readValue(t, EntityRelEntity.class))
.mapToPair(t -> new Tuple2<>(t.getSource().getSourceId(), t));
// reads the relationships
final JavaPairRDD<String, EntityRelEntity> relation = readPathRelation(sc, inputPath)
.filter(r -> !r.getDeleted())
.filter(r -> !r.getDeleted()) //only consider those that are not virtually deleted
.map(p -> new EntityRelEntity().setRelation(p))
.mapToPair(p -> new Tuple2<>(p.getRelation().getSourceId(), p))
.groupByKey()
@ -100,6 +121,14 @@ public class GraphJoiner implements Serializable {
.saveAsTextFile(outPath + "/linked_entities", GzipCodec.class);
}
/**
* Reads a set of eu.dnetlib.dhp.schema.oaf.OafEntity objects from a sequence file <className, entity json serialization>,
* extracts necessary information using json path, wraps the oaf object in a eu.dnetlib.dhp.graph.TypedRow
* @param sc
* @param inputPath
* @param type
* @return the JavaPairRDD<String, TypedRow> indexed by entity identifier
*/
private JavaPairRDD<String, TypedRow> readPathEntity(final JavaSparkContext sc, final String inputPath, final String type) {
return sc.sequenceFile(inputPath + "/" + type, Text.class, Text.class)
.mapToPair((PairFunction<Tuple2<Text, Text>, String, TypedRow>) item -> {
@ -114,6 +143,13 @@ public class GraphJoiner implements Serializable {
});
}
/**
* Reads a set of eu.dnetlib.dhp.schema.oaf.Relation objects from a sequence file <className, relation json serialization>,
* extracts necessary information using json path, wraps the oaf object in a eu.dnetlib.dhp.graph.TypedRow
* @param sc
* @param inputPath
* @return the JavaRDD<TypedRow> containing all the relationships
*/
private JavaRDD<TypedRow> readPathRelation(final JavaSparkContext sc, final String inputPath) {
return sc.sequenceFile(inputPath + "/relation", Text.class, Text.class)
.map(item -> {