1
0
Fork 0

update resolve relation to use the same format of openaire graph

This commit is contained in:
Sandro La Bruzzo 2021-07-23 11:25:18 +02:00
parent 058b636d4d
commit 43e9380cd3
1 changed files with 62 additions and 15 deletions

View File

@ -4,7 +4,12 @@ import eu.dnetlib.dhp.application.ArgumentApplicationParser
import eu.dnetlib.dhp.schema.oaf.{Relation, Result}
import org.apache.commons.io.IOUtils
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.json4s
import org.json4s.DefaultFormats
import org.json4s.JsonAST.{JField, JObject, JString}
import org.json4s.jackson.JsonMethods.parse
import org.slf4j.{Logger, LoggerFactory}
import scala.collection.JavaConverters._
@ -29,23 +34,11 @@ object SparkResolveRelation {
val workingPath = parser.get("workingPath")
log.info(s"workingPath -> $workingPath")
implicit val oafEncoder: Encoder[Result] = Encoders.kryo(classOf[Result])
implicit val relEncoder: Encoder[Relation] = Encoders.kryo(classOf[Relation])
import spark.implicits._
val entities:Dataset[Result] = spark.read.load(s"$entityPath/*").as[Result]
entities.flatMap(e => e.getPid.asScala
.map(p =>
convertPidToDNETIdentifier(p.getValue, p.getQualifier.getClassid))
.filter(s => s!= null)
.map(s => (s,e.getId))
).groupByKey(_._1)
.reduceGroups((x,y) => if (x._2.startsWith("50|doi") || x._2.startsWith("50|pmid")) x else y)
.map(s =>s._2)
.write
.mode(SaveMode.Overwrite)
.save(s"$workingPath/resolvedPid")
extractPidResolvedTableFromJsonRDD(spark, entityPath, workingPath)
val rPid:Dataset[(String,String)] = spark.read.load(s"$workingPath/resolvedPid").as[(String,String)]
@ -74,11 +67,65 @@ object SparkResolveRelation {
}.filter(r => r.getSource.startsWith("50")&& r.getTarget.startsWith("50"))
.write
.mode(SaveMode.Overwrite)
.save(s"$workingPath/resolvedRelation")
.save(s"$workingPath/relation")
}
private def extractPidsFromRecord(input:String):(String,List[(String,String)]) = {
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
lazy val json: json4s.JValue = parse(input)
val id:String = (json \ "id").extract[String]
val result: List[(String,String)] = for {
JObject(pids) <- json \ "pid"
JField("value", JString(pidValue)) <- pids
JField("qualifier", JObject(qualifier)) <- pids
JField("classname", JString(pidType)) <- qualifier
} yield (pidValue, pidType)
(id,result)
}
private def extractPidResolvedTableFromJsonRDD(spark: SparkSession, entityPath: String, workingPath: String) = {
import spark.implicits._
val d: RDD[(String,String)] = spark.sparkContext.textFile(s"$entityPath/*")
.map(i => extractPidsFromRecord(i))
.filter(s => s != null && s._2!=null && s._2.nonEmpty)
.flatMap{ p =>
p._2.map(pid =>
(p._1,convertPidToDNETIdentifier(pid._1, pid._2))
)
}
spark.createDataset(d)
.groupByKey(_._1)
.reduceGroups((x, y) => if (x._2.startsWith("50|doi") || x._2.startsWith("50|pmid")) x else y)
.map(s => s._2)
.write
.mode(SaveMode.Overwrite)
.save(s"$workingPath/resolvedPid")
}
/*
This method should be used once we finally convert everythings in Kryo dataset
instead of using rdd of json
*/
private def extractPidResolvedTableFromKryo(spark: SparkSession, entityPath: String, workingPath: String) = {
import spark.implicits._
implicit val oafEncoder: Encoder[Result] = Encoders.kryo(classOf[Result])
val entities: Dataset[Result] = spark.read.load(s"$entityPath/*").as[Result]
entities.flatMap(e => e.getPid.asScala
.map(p =>
convertPidToDNETIdentifier(p.getValue, p.getQualifier.getClassid))
.filter(s => s != null)
.map(s => (s, e.getId))
).groupByKey(_._1)
.reduceGroups((x, y) => if (x._2.startsWith("50|doi") || x._2.startsWith("50|pmid")) x else y)
.map(s => s._2)
.write
.mode(SaveMode.Overwrite)
.save(s"$workingPath/resolvedPid")
}
def convertPidToDNETIdentifier(pid:String, pidType: String):String = {
if (pid==null || pid.isEmpty || pidType== null || pidType.isEmpty)