1
0
Fork 0

SparkCreateSimRels:

- Create dedup blocks from the complete queue of records matching cluster key instead of truncating the results
- Clean titles once before clustering and similarity comparisons
- Added support for filtered fields in model
- Added support for sorting List fields in model
- Added new JSONListClustering and numAuthorsTitleSuffixPrefixChain clustering functions
- Added new maxLengthMatch comparator function
- Use reduced complexity Levenshtein with threshold in levensteinTitle
- Use reduced complexity AuthorsMatch with threshold early-quit
- Use incremental Connected Component to decrease comparisons in similarity match in BlockProcessor
- Use new clusterings configuration in Dedup tests

SparkWhitelistSimRels: use left semi join for clarity and performance

SparkCreateMergeRels:
- Use new connected component algorithm that converge faster than Spark GraphX provided algorithm
- Refactored to use Windowing sorting rather than groupBy to reduce memory pressure
- Use historical pivot table to generate singleton rels, merged rels and keep continuity with dedupIds used in the past
- Comparator for pivot record selection now uses "tomorrow" as filler for missing or incorrect date instead of "2000-01-01"
- Changed generation of ids of type dedup_wf_001 to avoid collisions

DedupRecordFactory: use reduceGroups instead of mapGroups to decrease memory pressure
This commit is contained in:
Giambattista Bloisi 2023-10-02 09:25:12 +02:00 committed by Giambattista Bloisi
parent 16d858fbf0
commit 02636e802c
55 changed files with 1437 additions and 533 deletions

View File

@ -14,9 +14,9 @@ import eu.dnetlib.pace.config.Config;
public abstract class AbstractClusteringFunction extends AbstractPaceFunctions implements ClusteringFunction { public abstract class AbstractClusteringFunction extends AbstractPaceFunctions implements ClusteringFunction {
protected Map<String, Integer> params; protected Map<String, Object> params;
public AbstractClusteringFunction(final Map<String, Integer> params) { public AbstractClusteringFunction(final Map<String, Object> params) {
this.params = params; this.params = params;
} }
@ -27,7 +27,7 @@ public abstract class AbstractClusteringFunction extends AbstractPaceFunctions i
return fields return fields
.stream() .stream()
.filter(f -> !f.isEmpty()) .filter(f -> !f.isEmpty())
.map(this::normalize) .map(s -> normalize(s))
.map(s -> filterAllStopWords(s)) .map(s -> filterAllStopWords(s))
.map(s -> doApply(conf, s)) .map(s -> doApply(conf, s))
.map(c -> filterBlacklisted(c, ngramBlacklist)) .map(c -> filterBlacklisted(c, ngramBlacklist))
@ -36,11 +36,24 @@ public abstract class AbstractClusteringFunction extends AbstractPaceFunctions i
.collect(Collectors.toCollection(HashSet::new)); .collect(Collectors.toCollection(HashSet::new));
} }
public Map<String, Integer> getParams() { public Map<String, Object> getParams() {
return params; return params;
} }
protected Integer param(String name) { protected Integer param(String name) {
return params.get(name); Object val = params.get(name);
if (val == null)
return null;
if (val instanceof Number) {
return ((Number) val).intValue();
}
return Integer.parseInt(val.toString());
}
protected int paramOrDefault(String name, int i) {
Integer res = param(name);
if (res == null)
res = i;
return res;
} }
} }

View File

@ -13,7 +13,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("acronyms") @ClusteringClass("acronyms")
public class Acronyms extends AbstractClusteringFunction { public class Acronyms extends AbstractClusteringFunction {
public Acronyms(Map<String, Integer> params) { public Acronyms(Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -11,6 +11,6 @@ public interface ClusteringFunction {
public Collection<String> apply(Config config, List<String> fields); public Collection<String> apply(Config config, List<String> fields);
public Map<String, Integer> getParams(); public Map<String, Object> getParams();
} }

View File

@ -12,7 +12,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("immutablefieldvalue") @ClusteringClass("immutablefieldvalue")
public class ImmutableFieldValue extends AbstractClusteringFunction { public class ImmutableFieldValue extends AbstractClusteringFunction {
public ImmutableFieldValue(final Map<String, Integer> params) { public ImmutableFieldValue(final Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -0,0 +1,69 @@
package eu.dnetlib.pace.clustering;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import org.apache.commons.lang3.StringUtils;
import com.jayway.jsonpath.Configuration;
import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;
import com.jayway.jsonpath.Option;
import eu.dnetlib.pace.common.AbstractPaceFunctions;
import eu.dnetlib.pace.config.Config;
import eu.dnetlib.pace.util.MapDocumentUtil;
@ClusteringClass("jsonlistclustering")
public class JSONListClustering extends AbstractPaceFunctions implements ClusteringFunction {
private Map<String, Object> params;
public JSONListClustering(Map<String, Object> params) {
this.params = params;
}
@Override
public Map<String, Object> getParams() {
return params;
}
@Override
public Collection<String> apply(Config conf, List<String> fields) {
return fields
.stream()
.filter(f -> !f.isEmpty())
.map(s -> doApply(conf, s))
.filter(StringUtils::isNotBlank)
.collect(Collectors.toCollection(HashSet::new));
}
private String doApply(Config conf, String json) {
StringBuilder st = new StringBuilder(); // to build the string used for comparisons basing on the jpath into
// parameters
final DocumentContext documentContext = JsonPath
.using(Configuration.defaultConfiguration().addOptions(Option.SUPPRESS_EXCEPTIONS))
.parse(json);
// for each path in the param list
for (String key : params.keySet().stream().filter(k -> k.contains("jpath")).collect(Collectors.toList())) {
String path = params.get(key).toString();
String value = MapDocumentUtil.getJPathString(path, documentContext);
if (value == null || value.isEmpty())
value = "";
st.append(value);
st.append(" ");
}
st.setLength(st.length() - 1);
if (StringUtils.isBlank(st)) {
return "1";
}
return st.toString();
}
}

View File

@ -11,7 +11,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("keywordsclustering") @ClusteringClass("keywordsclustering")
public class KeywordsClustering extends AbstractClusteringFunction { public class KeywordsClustering extends AbstractClusteringFunction {
public KeywordsClustering(Map<String, Integer> params) { public KeywordsClustering(Map<String, Object> params) {
super(params); super(params);
} }
@ -19,8 +19,8 @@ public class KeywordsClustering extends AbstractClusteringFunction {
protected Collection<String> doApply(final Config conf, String s) { protected Collection<String> doApply(final Config conf, String s) {
// takes city codes and keywords codes without duplicates // takes city codes and keywords codes without duplicates
Set<String> keywords = getKeywords(s, conf.translationMap(), params.getOrDefault("windowSize", 4)); Set<String> keywords = getKeywords(s, conf.translationMap(), paramOrDefault("windowSize", 4));
Set<String> cities = getCities(s, params.getOrDefault("windowSize", 4)); Set<String> cities = getCities(s, paramOrDefault("windowSize", 4));
// list of combination to return as result // list of combination to return as result
final Collection<String> combinations = new LinkedHashSet<String>(); final Collection<String> combinations = new LinkedHashSet<String>();
@ -28,7 +28,7 @@ public class KeywordsClustering extends AbstractClusteringFunction {
for (String keyword : keywordsToCodes(keywords, conf.translationMap())) { for (String keyword : keywordsToCodes(keywords, conf.translationMap())) {
for (String city : citiesToCodes(cities)) { for (String city : citiesToCodes(cities)) {
combinations.add(keyword + "-" + city); combinations.add(keyword + "-" + city);
if (combinations.size() >= params.getOrDefault("max", 2)) { if (combinations.size() >= paramOrDefault("max", 2)) {
return combinations; return combinations;
} }
} }
@ -42,8 +42,8 @@ public class KeywordsClustering extends AbstractClusteringFunction {
return fields return fields
.stream() .stream()
.filter(f -> !f.isEmpty()) .filter(f -> !f.isEmpty())
.map(this::cleanup) .map(KeywordsClustering::cleanup)
.map(this::normalize) .map(KeywordsClustering::normalize)
.map(s -> filterAllStopWords(s)) .map(s -> filterAllStopWords(s))
.map(s -> doApply(conf, s)) .map(s -> doApply(conf, s))
.map(c -> filterBlacklisted(c, ngramBlacklist)) .map(c -> filterBlacklisted(c, ngramBlacklist))

View File

@ -16,7 +16,7 @@ public class LastNameFirstInitial extends AbstractClusteringFunction {
private boolean DEFAULT_AGGRESSIVE = true; private boolean DEFAULT_AGGRESSIVE = true;
public LastNameFirstInitial(final Map<String, Integer> params) { public LastNameFirstInitial(final Map<String, Object> params) {
super(params); super(params);
} }
@ -25,7 +25,7 @@ public class LastNameFirstInitial extends AbstractClusteringFunction {
return fields return fields
.stream() .stream()
.filter(f -> !f.isEmpty()) .filter(f -> !f.isEmpty())
.map(this::normalize) .map(LastNameFirstInitial::normalize)
.map(s -> doApply(conf, s)) .map(s -> doApply(conf, s))
.map(c -> filterBlacklisted(c, ngramBlacklist)) .map(c -> filterBlacklisted(c, ngramBlacklist))
.flatMap(c -> c.stream()) .flatMap(c -> c.stream())
@ -33,8 +33,7 @@ public class LastNameFirstInitial extends AbstractClusteringFunction {
.collect(Collectors.toCollection(HashSet::new)); .collect(Collectors.toCollection(HashSet::new));
} }
@Override public static String normalize(final String s) {
protected String normalize(final String s) {
return fixAliases(transliterate(nfd(unicodeNormalization(s)))) return fixAliases(transliterate(nfd(unicodeNormalization(s))))
// do not compact the regexes in a single expression, would cause StackOverflowError in case of large input // do not compact the regexes in a single expression, would cause StackOverflowError in case of large input
// strings // strings

View File

@ -15,7 +15,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("lowercase") @ClusteringClass("lowercase")
public class LowercaseClustering extends AbstractClusteringFunction { public class LowercaseClustering extends AbstractClusteringFunction {
public LowercaseClustering(final Map<String, Integer> params) { public LowercaseClustering(final Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -12,11 +12,11 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("ngrampairs") @ClusteringClass("ngrampairs")
public class NgramPairs extends Ngrams { public class NgramPairs extends Ngrams {
public NgramPairs(Map<String, Integer> params) { public NgramPairs(Map<String, Object> params) {
super(params, false); super(params, false);
} }
public NgramPairs(Map<String, Integer> params, boolean sorted) { public NgramPairs(Map<String, Object> params, boolean sorted) {
super(params, sorted); super(params, sorted);
} }

View File

@ -10,11 +10,11 @@ public class Ngrams extends AbstractClusteringFunction {
private final boolean sorted; private final boolean sorted;
public Ngrams(Map<String, Integer> params) { public Ngrams(Map<String, Object> params) {
this(params, false); this(params, false);
} }
public Ngrams(Map<String, Integer> params, boolean sorted) { public Ngrams(Map<String, Object> params, boolean sorted) {
super(params); super(params);
this.sorted = sorted; this.sorted = sorted;
} }

View File

@ -0,0 +1,113 @@
package eu.dnetlib.pace.clustering;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.StreamSupport;
import com.google.common.base.Splitter;
import com.google.common.collect.Sets;
import eu.dnetlib.pace.config.Config;
@ClusteringClass("numAuthorsTitleSuffixPrefixChain")
public class NumAuthorsTitleSuffixPrefixChain extends AbstractClusteringFunction {
public NumAuthorsTitleSuffixPrefixChain(Map<String, Object> params) {
super(params);
}
@Override
public Collection<String> apply(Config conf, List<String> fields) {
try {
int num_authors = Math.min(Integer.parseInt(fields.get(0)), 21); // SIZE threshold is 20, +1
if (num_authors > 0) {
return super.apply(conf, fields.subList(1, fields.size()))
.stream()
.map(s -> num_authors + "-" + s)
.collect(Collectors.toList());
}
} catch (NumberFormatException e) {
// missing or null authors array
}
return Collections.emptyList();
}
@Override
protected Collection<String> doApply(Config conf, String s) {
return suffixPrefixChain(cleanup(s), param("mod"));
}
private Collection<String> suffixPrefixChain(String s, int mod) {
// create the list of words from the string (remove short words)
List<String> wordsList = Arrays
.stream(s.split(" "))
.filter(si -> si.length() > 3)
.collect(Collectors.toList());
final int words = wordsList.size();
final int letters = s.length();
// create the prefix: number of words + number of letters/mod
String prefix = words / mod + "-";
return doSuffixPrefixChain(wordsList, prefix);
}
private Collection<String> doSuffixPrefixChain(List<String> wordsList, String prefix) {
Set<String> set = Sets.newLinkedHashSet();
switch (wordsList.size()) {
case 0:
break;
case 1:
set.add(wordsList.get(0));
break;
case 2:
set
.add(
prefix +
suffix(wordsList.get(0), 3) +
prefix(wordsList.get(1), 3));
set
.add(
prefix +
prefix(wordsList.get(0), 3) +
suffix(wordsList.get(1), 3));
break;
default:
set
.add(
prefix +
suffix(wordsList.get(0), 3) +
prefix(wordsList.get(1), 3) +
suffix(wordsList.get(2), 3));
set
.add(
prefix +
prefix(wordsList.get(0), 3) +
suffix(wordsList.get(1), 3) +
prefix(wordsList.get(2), 3));
break;
}
return set;
}
private String suffix(String s, int len) {
return s.substring(s.length() - len);
}
private String prefix(String s, int len) {
return s.substring(0, len);
}
}

View File

@ -17,11 +17,11 @@ import eu.dnetlib.pace.model.Person;
@ClusteringClass("personClustering") @ClusteringClass("personClustering")
public class PersonClustering extends AbstractPaceFunctions implements ClusteringFunction { public class PersonClustering extends AbstractPaceFunctions implements ClusteringFunction {
private Map<String, Integer> params; private Map<String, Object> params;
private static final int MAX_TOKENS = 5; private static final int MAX_TOKENS = 5;
public PersonClustering(final Map<String, Integer> params) { public PersonClustering(final Map<String, Object> params) {
this.params = params; this.params = params;
} }
@ -77,7 +77,7 @@ public class PersonClustering extends AbstractPaceFunctions implements Clusterin
// } // }
@Override @Override
public Map<String, Integer> getParams() { public Map<String, Object> getParams() {
return params; return params;
} }

View File

@ -15,7 +15,7 @@ public class PersonHash extends AbstractClusteringFunction {
private boolean DEFAULT_AGGRESSIVE = false; private boolean DEFAULT_AGGRESSIVE = false;
public PersonHash(final Map<String, Integer> params) { public PersonHash(final Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -8,7 +8,7 @@ import eu.dnetlib.pace.config.Config;
public class RandomClusteringFunction extends AbstractClusteringFunction { public class RandomClusteringFunction extends AbstractClusteringFunction {
public RandomClusteringFunction(Map<String, Integer> params) { public RandomClusteringFunction(Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -1,7 +1,10 @@
package eu.dnetlib.pace.clustering; package eu.dnetlib.pace.clustering;
import java.util.*; import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import com.google.common.base.Joiner; import com.google.common.base.Joiner;
import com.google.common.base.Splitter; import com.google.common.base.Splitter;
@ -12,7 +15,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("sortedngrampairs") @ClusteringClass("sortedngrampairs")
public class SortedNgramPairs extends NgramPairs { public class SortedNgramPairs extends NgramPairs {
public SortedNgramPairs(Map<String, Integer> params) { public SortedNgramPairs(Map<String, Object> params) {
super(params, false); super(params, false);
} }

View File

@ -15,7 +15,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("spacetrimmingfieldvalue") @ClusteringClass("spacetrimmingfieldvalue")
public class SpaceTrimmingFieldValue extends AbstractClusteringFunction { public class SpaceTrimmingFieldValue extends AbstractClusteringFunction {
public SpaceTrimmingFieldValue(final Map<String, Integer> params) { public SpaceTrimmingFieldValue(final Map<String, Object> params) {
super(params); super(params);
} }
@ -25,7 +25,7 @@ public class SpaceTrimmingFieldValue extends AbstractClusteringFunction {
res res
.add( .add(
StringUtils.isBlank(s) ? RandomStringUtils.random(getParams().get("randomLength")) StringUtils.isBlank(s) ? RandomStringUtils.random(param("randomLength"))
: s.toLowerCase().replaceAll("\\s+", "")); : s.toLowerCase().replaceAll("\\s+", ""));
return res; return res;

View File

@ -12,7 +12,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("suffixprefix") @ClusteringClass("suffixprefix")
public class SuffixPrefix extends AbstractClusteringFunction { public class SuffixPrefix extends AbstractClusteringFunction {
public SuffixPrefix(Map<String, Integer> params) { public SuffixPrefix(Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -15,12 +15,17 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("urlclustering") @ClusteringClass("urlclustering")
public class UrlClustering extends AbstractPaceFunctions implements ClusteringFunction { public class UrlClustering extends AbstractPaceFunctions implements ClusteringFunction {
protected Map<String, Integer> params; protected Map<String, Object> params;
public UrlClustering(final Map<String, Integer> params) { public UrlClustering(final Map<String, Object> params) {
this.params = params; this.params = params;
} }
@Override
public Map<String, Object> getParams() {
return params;
}
@Override @Override
public Collection<String> apply(final Config conf, List<String> fields) { public Collection<String> apply(final Config conf, List<String> fields) {
try { try {
@ -35,11 +40,6 @@ public class UrlClustering extends AbstractPaceFunctions implements ClusteringFu
} }
} }
@Override
public Map<String, Integer> getParams() {
return null;
}
private URL asUrl(String value) { private URL asUrl(String value) {
try { try {
return new URL(value); return new URL(value);

View File

@ -11,7 +11,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("wordsStatsSuffixPrefixChain") @ClusteringClass("wordsStatsSuffixPrefixChain")
public class WordsStatsSuffixPrefixChain extends AbstractClusteringFunction { public class WordsStatsSuffixPrefixChain extends AbstractClusteringFunction {
public WordsStatsSuffixPrefixChain(Map<String, Integer> params) { public WordsStatsSuffixPrefixChain(Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -12,7 +12,7 @@ import eu.dnetlib.pace.config.Config;
@ClusteringClass("wordssuffixprefix") @ClusteringClass("wordssuffixprefix")
public class WordsSuffixPrefix extends AbstractClusteringFunction { public class WordsSuffixPrefix extends AbstractClusteringFunction {
public WordsSuffixPrefix(Map<String, Integer> params) { public WordsSuffixPrefix(Map<String, Object> params) {
super(params); super(params);
} }

View File

@ -16,7 +16,6 @@ import org.apache.commons.lang3.StringUtils;
import com.google.common.base.Joiner; import com.google.common.base.Joiner;
import com.google.common.base.Splitter; import com.google.common.base.Splitter;
import com.google.common.collect.Iterables; import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.common.collect.Sets; import com.google.common.collect.Sets;
import com.ibm.icu.text.Transliterator; import com.ibm.icu.text.Transliterator;
@ -27,7 +26,7 @@ import eu.dnetlib.pace.clustering.NGramUtils;
* *
* @author claudio * @author claudio
*/ */
public abstract class AbstractPaceFunctions { public class AbstractPaceFunctions {
// city map to be used when translating the city names into codes // city map to be used when translating the city names into codes
private static Map<String, String> cityMap = AbstractPaceFunctions private static Map<String, String> cityMap = AbstractPaceFunctions
@ -62,11 +61,14 @@ public abstract class AbstractPaceFunctions {
private static Pattern hexUnicodePattern = Pattern.compile("\\\\u(\\p{XDigit}{4})"); private static Pattern hexUnicodePattern = Pattern.compile("\\\\u(\\p{XDigit}{4})");
protected String concat(final List<String> l) { private static Pattern romanNumberPattern = Pattern
.compile("^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$");
protected static String concat(final List<String> l) {
return Joiner.on(" ").skipNulls().join(l); return Joiner.on(" ").skipNulls().join(l);
} }
protected String cleanup(final String s) { public static String cleanup(final String s) {
final String s1 = HTML_REGEX.matcher(s).replaceAll(""); final String s1 = HTML_REGEX.matcher(s).replaceAll("");
final String s2 = unicodeNormalization(s1.toLowerCase()); final String s2 = unicodeNormalization(s1.toLowerCase());
final String s3 = nfd(s2); final String s3 = nfd(s2);
@ -82,7 +84,7 @@ public abstract class AbstractPaceFunctions {
return s12; return s12;
} }
protected String fixXML(final String a) { protected static String fixXML(final String a) {
return a return a
.replaceAll("&ndash;", " ") .replaceAll("&ndash;", " ")
@ -91,7 +93,7 @@ public abstract class AbstractPaceFunctions {
.replaceAll("&minus;", " "); .replaceAll("&minus;", " ");
} }
protected boolean checkNumbers(final String a, final String b) { protected static boolean checkNumbers(final String a, final String b) {
final String numbersA = getNumbers(a); final String numbersA = getNumbers(a);
final String numbersB = getNumbers(b); final String numbersB = getNumbers(b);
final String romansA = getRomans(a); final String romansA = getRomans(a);
@ -99,7 +101,7 @@ public abstract class AbstractPaceFunctions {
return !numbersA.equals(numbersB) || !romansA.equals(romansB); return !numbersA.equals(numbersB) || !romansA.equals(romansB);
} }
protected String getRomans(final String s) { protected static String getRomans(final String s) {
final StringBuilder sb = new StringBuilder(); final StringBuilder sb = new StringBuilder();
for (final String t : s.split(" ")) { for (final String t : s.split(" ")) {
sb.append(isRoman(t) ? t : ""); sb.append(isRoman(t) ? t : "");
@ -107,13 +109,12 @@ public abstract class AbstractPaceFunctions {
return sb.toString(); return sb.toString();
} }
protected boolean isRoman(final String s) { protected static boolean isRoman(final String s) {
return s Matcher m = romanNumberPattern.matcher(s);
.replaceAll("^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$", "qwertyuiop") return m.matches() && m.hitEnd();
.equals("qwertyuiop");
} }
protected String getNumbers(final String s) { protected static String getNumbers(final String s) {
final StringBuilder sb = new StringBuilder(); final StringBuilder sb = new StringBuilder();
for (final String t : s.split(" ")) { for (final String t : s.split(" ")) {
sb.append(isNumber(t) ? t : ""); sb.append(isNumber(t) ? t : "");
@ -121,7 +122,7 @@ public abstract class AbstractPaceFunctions {
return sb.toString(); return sb.toString();
} }
public boolean isNumber(String strNum) { public static boolean isNumber(String strNum) {
if (strNum == null) { if (strNum == null) {
return false; return false;
} }
@ -147,7 +148,7 @@ public abstract class AbstractPaceFunctions {
} }
} }
protected String removeSymbols(final String s) { protected static String removeSymbols(final String s) {
final StringBuilder sb = new StringBuilder(); final StringBuilder sb = new StringBuilder();
s.chars().forEach(ch -> { s.chars().forEach(ch -> {
@ -157,11 +158,11 @@ public abstract class AbstractPaceFunctions {
return sb.toString().replaceAll("\\s+", " "); return sb.toString().replaceAll("\\s+", " ");
} }
protected boolean notNull(final String s) { protected static boolean notNull(final String s) {
return s != null; return s != null;
} }
protected String normalize(final String s) { public static String normalize(final String s) {
return fixAliases(transliterate(nfd(unicodeNormalization(s)))) return fixAliases(transliterate(nfd(unicodeNormalization(s))))
.toLowerCase() .toLowerCase()
// do not compact the regexes in a single expression, would cause StackOverflowError in case of large input // do not compact the regexes in a single expression, would cause StackOverflowError in case of large input
@ -174,16 +175,16 @@ public abstract class AbstractPaceFunctions {
.trim(); .trim();
} }
public String nfd(final String s) { public static String nfd(final String s) {
return Normalizer.normalize(s, Normalizer.Form.NFD); return Normalizer.normalize(s, Normalizer.Form.NFD);
} }
public String utf8(final String s) { public static String utf8(final String s) {
byte[] bytes = s.getBytes(StandardCharsets.UTF_8); byte[] bytes = s.getBytes(StandardCharsets.UTF_8);
return new String(bytes, StandardCharsets.UTF_8); return new String(bytes, StandardCharsets.UTF_8);
} }
public String unicodeNormalization(final String s) { public static String unicodeNormalization(final String s) {
Matcher m = hexUnicodePattern.matcher(s); Matcher m = hexUnicodePattern.matcher(s);
StringBuffer buf = new StringBuffer(s.length()); StringBuffer buf = new StringBuffer(s.length());
@ -195,7 +196,7 @@ public abstract class AbstractPaceFunctions {
return buf.toString(); return buf.toString();
} }
protected String filterStopWords(final String s, final Set<String> stopwords) { protected static String filterStopWords(final String s, final Set<String> stopwords) {
final StringTokenizer st = new StringTokenizer(s); final StringTokenizer st = new StringTokenizer(s);
final StringBuilder sb = new StringBuilder(); final StringBuilder sb = new StringBuilder();
while (st.hasMoreTokens()) { while (st.hasMoreTokens()) {
@ -208,7 +209,7 @@ public abstract class AbstractPaceFunctions {
return sb.toString().trim(); return sb.toString().trim();
} }
public String filterAllStopWords(String s) { public static String filterAllStopWords(String s) {
s = filterStopWords(s, stopwords_en); s = filterStopWords(s, stopwords_en);
s = filterStopWords(s, stopwords_de); s = filterStopWords(s, stopwords_de);
@ -221,7 +222,8 @@ public abstract class AbstractPaceFunctions {
return s; return s;
} }
protected Collection<String> filterBlacklisted(final Collection<String> set, final Set<String> ngramBlacklist) { protected static Collection<String> filterBlacklisted(final Collection<String> set,
final Set<String> ngramBlacklist) {
final Set<String> newset = Sets.newLinkedHashSet(); final Set<String> newset = Sets.newLinkedHashSet();
for (final String s : set) { for (final String s : set) {
if (!ngramBlacklist.contains(s)) { if (!ngramBlacklist.contains(s)) {
@ -268,7 +270,7 @@ public abstract class AbstractPaceFunctions {
return m; return m;
} }
public String removeKeywords(String s, Set<String> keywords) { public static String removeKeywords(String s, Set<String> keywords) {
s = " " + s + " "; s = " " + s + " ";
for (String k : keywords) { for (String k : keywords) {
@ -278,39 +280,39 @@ public abstract class AbstractPaceFunctions {
return s.trim(); return s.trim();
} }
public double commonElementsPercentage(Set<String> s1, Set<String> s2) { public static double commonElementsPercentage(Set<String> s1, Set<String> s2) {
double longer = Math.max(s1.size(), s2.size()); double longer = Math.max(s1.size(), s2.size());
return (double) s1.stream().filter(s2::contains).count() / longer; return (double) s1.stream().filter(s2::contains).count() / longer;
} }
// convert the set of keywords to codes // convert the set of keywords to codes
public Set<String> toCodes(Set<String> keywords, Map<String, String> translationMap) { public static Set<String> toCodes(Set<String> keywords, Map<String, String> translationMap) {
return keywords.stream().map(s -> translationMap.get(s)).collect(Collectors.toSet()); return keywords.stream().map(s -> translationMap.get(s)).collect(Collectors.toSet());
} }
public Set<String> keywordsToCodes(Set<String> keywords, Map<String, String> translationMap) { public static Set<String> keywordsToCodes(Set<String> keywords, Map<String, String> translationMap) {
return toCodes(keywords, translationMap); return toCodes(keywords, translationMap);
} }
public Set<String> citiesToCodes(Set<String> keywords) { public static Set<String> citiesToCodes(Set<String> keywords) {
return toCodes(keywords, cityMap); return toCodes(keywords, cityMap);
} }
protected String firstLC(final String s) { protected static String firstLC(final String s) {
return StringUtils.substring(s, 0, 1).toLowerCase(); return StringUtils.substring(s, 0, 1).toLowerCase();
} }
protected Iterable<String> tokens(final String s, final int maxTokens) { protected static Iterable<String> tokens(final String s, final int maxTokens) {
return Iterables.limit(Splitter.on(" ").omitEmptyStrings().trimResults().split(s), maxTokens); return Iterables.limit(Splitter.on(" ").omitEmptyStrings().trimResults().split(s), maxTokens);
} }
public String normalizePid(String pid) { public static String normalizePid(String pid) {
return DOI_PREFIX.matcher(pid.toLowerCase()).replaceAll(""); return DOI_PREFIX.matcher(pid.toLowerCase()).replaceAll("");
} }
// get the list of keywords into the input string // get the list of keywords into the input string
public Set<String> getKeywords(String s1, Map<String, String> translationMap, int windowSize) { public static Set<String> getKeywords(String s1, Map<String, String> translationMap, int windowSize) {
String s = s1; String s = s1;
@ -340,7 +342,7 @@ public abstract class AbstractPaceFunctions {
return codes; return codes;
} }
public Set<String> getCities(String s1, int windowSize) { public static Set<String> getCities(String s1, int windowSize) {
return getKeywords(s1, cityMap, windowSize); return getKeywords(s1, cityMap, windowSize);
} }

View File

@ -18,7 +18,7 @@ public class ClusteringDef implements Serializable {
private List<String> fields; private List<String> fields;
private Map<String, Integer> params; private Map<String, Object> params;
public ClusteringDef() { public ClusteringDef() {
} }
@ -43,11 +43,11 @@ public class ClusteringDef implements Serializable {
this.fields = fields; this.fields = fields;
} }
public Map<String, Integer> getParams() { public Map<String, Object> getParams() {
return params; return params;
} }
public void setParams(final Map<String, Integer> params) { public void setParams(final Map<String, Object> params) {
this.params = params; this.params = params;
} }

View File

@ -2,6 +2,7 @@
package eu.dnetlib.pace.model; package eu.dnetlib.pace.model;
import java.io.Serializable; import java.io.Serializable;
import java.util.HashSet;
import java.util.List; import java.util.List;
import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.core.JsonProcessingException;
@ -36,6 +37,16 @@ public class FieldDef implements Serializable {
*/ */
private int length = -1; private int length = -1;
private HashSet<String> filter;
private boolean sorted;
public boolean isSorted() {
return sorted;
}
private String clean;
public FieldDef() { public FieldDef() {
} }
@ -91,6 +102,30 @@ public class FieldDef implements Serializable {
this.path = path; this.path = path;
} }
public HashSet<String> getFilter() {
return filter;
}
public void setFilter(HashSet<String> filter) {
this.filter = filter;
}
public boolean getSorted() {
return sorted;
}
public void setSorted(boolean sorted) {
this.sorted = sorted;
}
public String getClean() {
return clean;
}
public void setClean(String clean) {
this.clean = clean;
}
@Override @Override
public String toString() { public String toString() {
try { try {

View File

@ -5,9 +5,9 @@ import eu.dnetlib.pace.util.{BlockProcessor, SparkReporter}
import org.apache.spark.SparkContext import org.apache.spark.SparkContext
import org.apache.spark.sql.catalyst.expressions.Literal import org.apache.spark.sql.catalyst.expressions.Literal
import org.apache.spark.sql.expressions._ import org.apache.spark.sql.expressions._
import org.apache.spark.sql.functions.{col, lit, udf} import org.apache.spark.sql.functions.{col, desc, expr, lit, udf}
import org.apache.spark.sql.types._ import org.apache.spark.sql.types._
import org.apache.spark.sql.{Column, Dataset, Row, functions} import org.apache.spark.sql.{Column, Dataset, Row, SaveMode, functions}
import java.util.function.Predicate import java.util.function.Predicate
import java.util.stream.Collectors import java.util.stream.Collectors
@ -80,6 +80,8 @@ case class SparkDeduper(conf: DedupConfig) extends Serializable {
.withColumn("key", functions.explode(clusterValuesUDF(cd).apply(functions.array(inputColumns: _*)))) .withColumn("key", functions.explode(clusterValuesUDF(cd).apply(functions.array(inputColumns: _*))))
// Add position column having the position of the row within the set of rows having the same key value ordered by the sorting value // Add position column having the position of the row within the set of rows having the same key value ordered by the sorting value
.withColumn("position", functions.row_number().over(Window.partitionBy("key").orderBy(col(model.orderingFieldName), col(model.identifierFieldName)))) .withColumn("position", functions.row_number().over(Window.partitionBy("key").orderBy(col(model.orderingFieldName), col(model.identifierFieldName))))
// .withColumn("count", functions.max("position").over(Window.partitionBy("key").orderBy(col(model.orderingFieldName), col(model.identifierFieldName)).rowsBetween(Window.unboundedPreceding,Window.unboundedFollowing) ))
// .filter("count > 1")
if (df_with_clustering_keys == null) if (df_with_clustering_keys == null)
df_with_clustering_keys = ds df_with_clustering_keys = ds
@ -88,20 +90,44 @@ case class SparkDeduper(conf: DedupConfig) extends Serializable {
} }
//TODO: analytics //TODO: analytics
/*df_with_clustering_keys.groupBy(col("clustering"), col("key"))
.agg(expr("max(count) AS size"))
.orderBy(desc("size"))
.show*/
val df_with_blocks = df_with_clustering_keys val df_with_blocks = df_with_clustering_keys
// filter out rows with position exceeding the maxqueuesize parameter // split the clustering block into smaller blocks of queuemaxsize
.filter(col("position").leq(conf.getWf.getQueueMaxSize)) .groupBy(col("clustering"), col("key"), functions.floor(col("position").divide(lit(conf.getWf.getQueueMaxSize))))
.groupBy("clustering", "key")
.agg(functions.collect_set(functions.struct(model.schema.fieldNames.map(col): _*)).as("block")) .agg(functions.collect_set(functions.struct(model.schema.fieldNames.map(col): _*)).as("block"))
.filter(functions.size(new Column("block")).gt(1)) .filter(functions.size(new Column("block")).gt(1))
.union(
//adjacency blocks
df_with_clustering_keys
// filter out leading and trailing elements
.filter(col("position").gt(conf.getWf.getSlidingWindowSize/2))
//.filter(col("position").lt(col("count").minus(conf.getWf.getSlidingWindowSize/2)))
// create small blocks of records on "the border" of maxqueuesize: getSlidingWindowSize/2 elements before and after
.filter(
col("position").mod(conf.getWf.getQueueMaxSize).lt(conf.getWf.getSlidingWindowSize/2) // slice of the start of block
|| col("position").mod(conf.getWf.getQueueMaxSize).gt(conf.getWf.getQueueMaxSize - (conf.getWf.getSlidingWindowSize/2)) //slice of the end of the block
)
.groupBy(col("clustering"), col("key"), functions.floor((col("position") + lit(conf.getWf.getSlidingWindowSize/2)).divide(lit(conf.getWf.getQueueMaxSize))))
.agg(functions.collect_set(functions.struct(model.schema.fieldNames.map(col): _*)).as("block"))
.filter(functions.size(new Column("block")).gt(1))
)
df_with_blocks df_with_blocks
} }
def clusterValuesUDF(cd: ClusteringDef) = { def clusterValuesUDF(cd: ClusteringDef) = {
udf[mutable.WrappedArray[String], mutable.WrappedArray[Any]](values => { udf[mutable.WrappedArray[String], mutable.WrappedArray[Any]](values => {
values.flatMap(f => cd.clusteringFunction().apply(conf, Seq(f.toString).asJava).asScala) val valueList = values.flatMap {
case a: mutable.WrappedArray[Any] => a.map(_.toString)
case s: Any => Seq(s.toString)
}.asJava;
mutable.WrappedArray.make(cd.clusteringFunction().apply(conf, valueList).toArray())
}) })
} }

View File

@ -1,13 +1,16 @@
package eu.dnetlib.pace.model package eu.dnetlib.pace.model
import com.jayway.jsonpath.{Configuration, JsonPath} import com.jayway.jsonpath.{Configuration, JsonPath}
import eu.dnetlib.pace.common.AbstractPaceFunctions
import eu.dnetlib.pace.config.{DedupConfig, Type} import eu.dnetlib.pace.config.{DedupConfig, Type}
import eu.dnetlib.pace.util.MapDocumentUtil import eu.dnetlib.pace.util.MapDocumentUtil
import org.apache.commons.lang3.StringUtils
import org.apache.spark.sql.catalyst.encoders.RowEncoder import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
import org.apache.spark.sql.types.{DataTypes, Metadata, StructField, StructType} import org.apache.spark.sql.types.{DataTypes, Metadata, StructField, StructType}
import org.apache.spark.sql.{Dataset, Row} import org.apache.spark.sql.{Dataset, Row}
import java.util.Locale
import java.util.regex.Pattern import java.util.regex.Pattern
import scala.collection.JavaConverters._ import scala.collection.JavaConverters._
@ -60,7 +63,7 @@ case class SparkModel(conf: DedupConfig) {
values(identityFieldPosition) = MapDocumentUtil.getJPathString(conf.getWf.getIdPath, documentContext) values(identityFieldPosition) = MapDocumentUtil.getJPathString(conf.getWf.getIdPath, documentContext)
schema.fieldNames.zipWithIndex.foldLeft(values) { schema.fieldNames.zipWithIndex.foldLeft(values) {
case ((res, (fname, index))) => { case ((res, (fname, index))) =>
val fdef = conf.getPace.getModelMap.get(fname) val fdef = conf.getPace.getModelMap.get(fname)
if (fdef != null) { if (fdef != null) {
@ -96,13 +99,52 @@ case class SparkModel(conf: DedupConfig) {
case Type.DoubleArray => case Type.DoubleArray =>
MapDocumentUtil.getJPathArray(fdef.getPath, json) MapDocumentUtil.getJPathArray(fdef.getPath, json)
} }
val filter = fdef.getFilter
if (StringUtils.isNotBlank(fdef.getClean)) {
res(index) = res(index) match {
case x: Seq[String] => x.map(clean(_, fdef.getClean)).toSeq
case _ => clean(res(index).toString, fdef.getClean)
}
}
if (filter != null && !filter.isEmpty) {
res(index) = res(index) match {
case x: String if filter.contains(x.toLowerCase(Locale.ROOT)) => null
case x: Seq[String] => x.filter(s => !filter.contains(s.toLowerCase(Locale.ROOT))).toSeq
case _ => res(index)
}
}
if (fdef.getSorted) {
res(index) = res(index) match {
case x: Seq[String] => x.sorted.toSeq
case _ => res(index)
}
}
} }
res res
} }
}
new GenericRowWithSchema(values, schema) new GenericRowWithSchema(values, schema)
} }
def clean(value: String, cleantype: String) : String = {
val res = cleantype match {
case "title" => AbstractPaceFunctions.cleanup(value)
case _ => value
}
// if (!res.equals(AbstractPaceFunctions.normalize(value))) {
// println(res)
// println(AbstractPaceFunctions.normalize(value))
// println()
// }
res
}
} }

View File

@ -23,7 +23,6 @@ public class AuthorsMatch extends AbstractListComparator {
private String MODE; // full or surname private String MODE; // full or surname
private int SIZE_THRESHOLD; private int SIZE_THRESHOLD;
private String TYPE; // count or percentage private String TYPE; // count or percentage
private int common;
public AuthorsMatch(Map<String, String> params) { public AuthorsMatch(Map<String, String> params) {
super(params, new com.wcohen.ss.JaroWinkler()); super(params, new com.wcohen.ss.JaroWinkler());
@ -35,7 +34,6 @@ public class AuthorsMatch extends AbstractListComparator {
FULLNAME_THRESHOLD = Double.parseDouble(params.getOrDefault("fullname_th", "0.9")); FULLNAME_THRESHOLD = Double.parseDouble(params.getOrDefault("fullname_th", "0.9"));
SIZE_THRESHOLD = Integer.parseInt(params.getOrDefault("size_th", "20")); SIZE_THRESHOLD = Integer.parseInt(params.getOrDefault("size_th", "20"));
TYPE = params.getOrDefault("type", "percentage"); TYPE = params.getOrDefault("type", "percentage");
common = 0;
} }
protected AuthorsMatch(double w, AbstractStringDistance ssalgo) { protected AuthorsMatch(double w, AbstractStringDistance ssalgo) {
@ -44,22 +42,27 @@ public class AuthorsMatch extends AbstractListComparator {
@Override @Override
public double compare(final List<String> a, final List<String> b, final Config conf) { public double compare(final List<String> a, final List<String> b, final Config conf) {
if (a.isEmpty() || b.isEmpty()) if (a.isEmpty() || b.isEmpty())
return -1; return -1;
if (a.size() > SIZE_THRESHOLD || b.size() > SIZE_THRESHOLD) if (a.size() > SIZE_THRESHOLD || b.size() > SIZE_THRESHOLD)
return 1.0; return 1.0;
List<Person> aList = a.stream().map(author -> new Person(author, false)).collect(Collectors.toList()); int maxMiss = Integer.MAX_VALUE;
List<Person> bList = b.stream().map(author -> new Person(author, false)).collect(Collectors.toList()); List<Person> bList = b.stream().map(author -> new Person(author, false)).collect(Collectors.toList());
common = 0; Double threshold = getDoubleParam("threshold");
if (threshold != null && threshold >= 0.0 && threshold <= 1.0 && a.size() == b.size()) {
maxMiss = (int) Math.floor((1 - threshold) * Math.max(a.size(), b.size()));
}
int common = 0;
// compare each element of List1 with each element of List2 // compare each element of List1 with each element of List2
for (Person p1 : aList) for (int i = 0; i < a.size(); i++) {
Person p1 = new Person(a.get(i), false);
for (Person p2 : bList) { for (Person p2 : bList) {
// both persons are inaccurate // both persons are inaccurate
if (!p1.isAccurate() && !p2.isAccurate()) { if (!p1.isAccurate() && !p2.isAccurate()) {
// compare just normalized fullnames // compare just normalized fullnames
@ -118,11 +121,15 @@ public class AuthorsMatch extends AbstractListComparator {
} }
} }
}
if (i - common > maxMiss) {
return 0.0;
}
} }
// normalization factor to compute the score // normalization factor to compute the score
int normFactor = aList.size() == bList.size() ? aList.size() : (aList.size() + bList.size() - common); int normFactor = a.size() == b.size() ? a.size() : (a.size() + b.size() - common);
if (TYPE.equals("percentage")) { if (TYPE.equals("percentage")) {
return (double) common / normFactor; return (double) common / normFactor;

View File

@ -25,6 +25,7 @@ public class InstanceTypeMatch extends AbstractListComparator {
translationMap.put("Conference object", "*"); translationMap.put("Conference object", "*");
translationMap.put("Other literature type", "*"); translationMap.put("Other literature type", "*");
translationMap.put("Unknown", "*"); translationMap.put("Unknown", "*");
translationMap.put("UNKNOWN", "*");
// article types // article types
translationMap.put("Article", "Article"); translationMap.put("Article", "Article");
@ -76,5 +77,4 @@ public class InstanceTypeMatch extends AbstractListComparator {
protected double normalize(final double d) { protected double normalize(final double d) {
return d; return d;
} }
} }

View File

@ -3,6 +3,7 @@ package eu.dnetlib.pace.tree;
import java.util.Map; import java.util.Map;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.logging.Log; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory; import org.apache.commons.logging.LogFactory;
@ -30,16 +31,25 @@ public class LevensteinTitle extends AbstractStringComparator {
} }
@Override @Override
public double distance(final String a, final String b, final Config conf) { public double distance(final String ca, final String cb, final Config conf) {
final String ca = cleanup(a);
final String cb = cleanup(b);
final boolean check = checkNumbers(ca, cb); final boolean check = checkNumbers(ca, cb);
if (check) if (check)
return 0.5; return 0.5;
return normalize(ssalgo.score(ca, cb), ca.length(), cb.length()); Double threshold = getDoubleParam("threshold");
// reduce Levenshtein algo complexity when target threshold is known
if (threshold != null && threshold >= 0.0 && threshold <= 1.0) {
int maxdistance = (int) Math.floor((1 - threshold) * Math.max(ca.length(), cb.length()));
int score = StringUtils.getLevenshteinDistance(ca, cb, maxdistance);
if (score == -1) {
return 0;
}
return normalize(score, ca.length(), cb.length());
} else {
return normalize(StringUtils.getLevenshteinDistance(ca, cb), ca.length(), cb.length());
}
} }
private double normalize(final double score, final int la, final int lb) { private double normalize(final double score, final int la, final int lb) {

View File

@ -0,0 +1,29 @@
package eu.dnetlib.pace.tree;
import java.util.Map;
import eu.dnetlib.pace.config.Config;
import eu.dnetlib.pace.tree.support.AbstractStringComparator;
import eu.dnetlib.pace.tree.support.ComparatorClass;
@ComparatorClass("maxLengthMatch")
public class MaxLengthMatch extends AbstractStringComparator {
private final int limit;
public MaxLengthMatch(Map<String, String> params) {
super(params);
limit = Integer.parseInt(params.getOrDefault("limit", "200"));
}
@Override
public double compare(String a, String b, final Config conf) {
return a.length() < limit && b.length() < limit ? 1.0 : -1.0;
}
protected String toString(final Object object) {
return toFirstString(object);
}
}

View File

@ -127,4 +127,14 @@ public abstract class AbstractComparator<T> extends AbstractPaceFunctions implem
return this.weight; return this.weight;
} }
public Double getDoubleParam(String name) {
String svalue = params.get(name);
try {
return Double.parseDouble(svalue);
} catch (Throwable t) {
}
return null;
}
} }

View File

@ -67,8 +67,10 @@ public class BlockProcessor {
private void processRows(final List<Row> queue, final Reporter context) { private void processRows(final List<Row> queue, final Reporter context) {
for (int pivotPos = 0; pivotPos < queue.size(); pivotPos++) { IncrementalConnectedComponents icc = new IncrementalConnectedComponents(queue.size());
final Row pivot = queue.get(pivotPos);
for (int i = 0; i < queue.size(); i++) {
final Row pivot = queue.get(i);
final String idPivot = pivot.getString(identifierFieldPos); // identifier final String idPivot = pivot.getString(identifierFieldPos); // identifier
final Object fieldsPivot = getJavaValue(pivot, orderFieldPos); final Object fieldsPivot = getJavaValue(pivot, orderFieldPos);
@ -76,9 +78,9 @@ public class BlockProcessor {
final WfConfig wf = dedupConf.getWf(); final WfConfig wf = dedupConf.getWf();
if (fieldPivot != null) { if (fieldPivot != null) {
int i = 0; for (int j = icc.nextUnconnected(i, i + 1); j >= 0
for (int windowPos = pivotPos + 1; windowPos < queue.size(); windowPos++) { && j < queue.size(); j = icc.nextUnconnected(i, j + 1)) {
final Row curr = queue.get(windowPos); final Row curr = queue.get(j);
final String idCurr = curr.getString(identifierFieldPos); // identifier final String idCurr = curr.getString(identifierFieldPos); // identifier
if (mustSkip(idCurr)) { if (mustSkip(idCurr)) {
@ -86,7 +88,7 @@ public class BlockProcessor {
break; break;
} }
if (++i > wf.getSlidingWindowSize()) { if (wf.getSlidingWindowSize() > 0 && (j - i) > wf.getSlidingWindowSize()) {
break; break;
} }
@ -97,7 +99,9 @@ public class BlockProcessor {
final TreeProcessor treeProcessor = new TreeProcessor(dedupConf); final TreeProcessor treeProcessor = new TreeProcessor(dedupConf);
emitOutput(treeProcessor.compare(pivot, curr), idPivot, idCurr, context); if (emitOutput(treeProcessor.compare(pivot, curr), idPivot, idCurr, context)) {
icc.connect(i, j);
}
} }
} }
} }
@ -115,7 +119,8 @@ public class BlockProcessor {
return null; return null;
} }
private void emitOutput(final boolean result, final String idPivot, final String idCurr, final Reporter context) { private boolean emitOutput(final boolean result, final String idPivot, final String idCurr,
final Reporter context) {
if (result) { if (result) {
if (idPivot.compareTo(idCurr) <= 0) { if (idPivot.compareTo(idCurr) <= 0) {
@ -127,6 +132,8 @@ public class BlockProcessor {
} else { } else {
context.incrementCounter(dedupConf.getWf().getEntityType(), "d < " + dedupConf.getWf().getThreshold(), 1); context.incrementCounter(dedupConf.getWf().getEntityType(), "d < " + dedupConf.getWf().getThreshold(), 1);
} }
return result;
} }
private boolean mustSkip(final String idPivot) { private boolean mustSkip(final String idPivot) {
@ -142,5 +149,4 @@ public class BlockProcessor {
context.emit(type, from, to); context.emit(type, from, to);
} }
} }

View File

@ -0,0 +1,50 @@
package eu.dnetlib.pace.util;
import java.util.BitSet;
public class IncrementalConnectedComponents {
final private int size;
final private BitSet[] indexes;
IncrementalConnectedComponents(int size) {
this.size = size;
this.indexes = new BitSet[size];
}
public void connect(int i, int j) {
if (indexes[i] == null) {
if (indexes[j] == null) {
indexes[i] = new BitSet(size);
} else {
indexes[i] = indexes[j];
}
} else {
if (indexes[j] != null && indexes[i] != indexes[j]) {
// merge adjacency lists for i and j
indexes[i].or(indexes[j]);
}
}
indexes[i].set(i);
indexes[i].set(j);
indexes[j] = indexes[i];
}
public int nextUnconnected(int i, int j) {
if (indexes[i] == null) {
return j;
}
int result = indexes[i].nextClearBit(j);
return (result >= size) ? -1 : result;
}
public BitSet getConnections(int i) {
if (indexes[i] == null) {
return null;
}
return indexes[i];
}
}

View File

@ -97,6 +97,8 @@ public class MapDocumentUtil {
Object o = json.read(jsonPath); Object o = json.read(jsonPath);
if (o instanceof String) if (o instanceof String)
return (String) o; return (String) o;
if (o instanceof Number)
return (String) o.toString();
if (o instanceof JSONArray && ((JSONArray) o).size() > 0) if (o instanceof JSONArray && ((JSONArray) o).size() > 0)
return (String) ((JSONArray) o).get(0); return (String) ((JSONArray) o).get(0);
return ""; return "";

View File

@ -40,7 +40,7 @@ public class PaceResolver implements Serializable {
Collectors.toMap(cl -> cl.getAnnotation(ComparatorClass.class).value(), cl -> (Class<Comparator>) cl)); Collectors.toMap(cl -> cl.getAnnotation(ComparatorClass.class).value(), cl -> (Class<Comparator>) cl));
} }
public ClusteringFunction getClusteringFunction(String name, Map<String, Integer> params) throws PaceException { public ClusteringFunction getClusteringFunction(String name, Map<String, Object> params) throws PaceException {
try { try {
return clusteringFunctions.get(name).getDeclaredConstructor(Map.class).newInstance(params); return clusteringFunctions.get(name).getDeclaredConstructor(Map.class).newInstance(params);
} catch (InstantiationException | IllegalAccessException | InvocationTargetException } catch (InstantiationException | IllegalAccessException | InvocationTargetException

View File

@ -15,7 +15,7 @@ import eu.dnetlib.pace.config.DedupConfig;
public class ClusteringFunctionTest extends AbstractPaceTest { public class ClusteringFunctionTest extends AbstractPaceTest {
private static Map<String, Integer> params; private static Map<String, Object> params;
private static DedupConfig conf; private static DedupConfig conf;
@BeforeAll @BeforeAll
@ -40,10 +40,10 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testNgram() { public void testNgram() {
params.put("ngramLen", 3); params.put("ngramLen", "3");
params.put("max", 8); params.put("max", "8");
params.put("maxPerToken", 2); params.put("maxPerToken", "2");
params.put("minNgramLen", 1); params.put("minNgramLen", "1");
final ClusteringFunction ngram = new Ngrams(params); final ClusteringFunction ngram = new Ngrams(params);
@ -54,8 +54,8 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testNgramPairs() { public void testNgramPairs() {
params.put("ngramLen", 3); params.put("ngramLen", "3");
params.put("max", 2); params.put("max", "2");
final ClusteringFunction np = new NgramPairs(params); final ClusteringFunction np = new NgramPairs(params);
@ -66,8 +66,8 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testSortedNgramPairs() { public void testSortedNgramPairs() {
params.put("ngramLen", 3); params.put("ngramLen", "3");
params.put("max", 2); params.put("max", "2");
final ClusteringFunction np = new SortedNgramPairs(params); final ClusteringFunction np = new SortedNgramPairs(params);
@ -87,9 +87,9 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testAcronym() { public void testAcronym() {
params.put("max", 4); params.put("max", "4");
params.put("minLen", 1); params.put("minLen", "1");
params.put("maxLen", 3); params.put("maxLen", "3");
final ClusteringFunction acro = new Acronyms(params); final ClusteringFunction acro = new Acronyms(params);
@ -100,8 +100,8 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testSuffixPrefix() { public void testSuffixPrefix() {
params.put("len", 3); params.put("len", "3");
params.put("max", 4); params.put("max", "4");
final ClusteringFunction sp = new SuffixPrefix(params); final ClusteringFunction sp = new SuffixPrefix(params);
@ -109,8 +109,8 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
System.out.println(s); System.out.println(s);
System.out.println(sp.apply(conf, Lists.newArrayList(s))); System.out.println(sp.apply(conf, Lists.newArrayList(s)));
params.put("len", 3); params.put("len", "3");
params.put("max", 1); params.put("max", "1");
System.out.println(sp.apply(conf, Lists.newArrayList("Framework for general-purpose deduplication"))); System.out.println(sp.apply(conf, Lists.newArrayList("Framework for general-purpose deduplication")));
} }
@ -118,8 +118,8 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testWordsSuffixPrefix() { public void testWordsSuffixPrefix() {
params.put("len", 3); params.put("len", "3");
params.put("max", 4); params.put("max", "4");
final ClusteringFunction sp = new WordsSuffixPrefix(params); final ClusteringFunction sp = new WordsSuffixPrefix(params);
@ -130,7 +130,7 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testWordsStatsSuffixPrefix() { public void testWordsStatsSuffixPrefix() {
params.put("mod", 10); params.put("mod", "10");
final ClusteringFunction sp = new WordsStatsSuffixPrefixChain(params); final ClusteringFunction sp = new WordsStatsSuffixPrefixChain(params);
@ -167,7 +167,7 @@ public class ClusteringFunctionTest extends AbstractPaceTest {
@Test @Test
public void testFieldValue() { public void testFieldValue() {
params.put("randomLength", 5); params.put("randomLength", "5");
final ClusteringFunction sp = new SpaceTrimmingFieldValue(params); final ClusteringFunction sp = new SpaceTrimmingFieldValue(params);

View File

@ -0,0 +1,40 @@
package eu.dnetlib.pace.util;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNull;
import org.junit.jupiter.api.Test;
public class IncrementalConnectedComponentsTest {
@Test
public void transitiveClosureTest() {
IncrementalConnectedComponents icc = new IncrementalConnectedComponents(10);
icc.connect(0, 1);
icc.connect(0, 2);
icc.connect(0, 3);
icc.connect(1, 2);
icc.connect(1, 4);
icc.connect(1, 5);
icc.connect(6, 7);
icc.connect(6, 9);
assertEquals(icc.getConnections(0).toString(), "{0, 1, 2, 3, 4, 5}");
assertEquals(icc.getConnections(1).toString(), "{0, 1, 2, 3, 4, 5}");
assertEquals(icc.getConnections(2).toString(), "{0, 1, 2, 3, 4, 5}");
assertEquals(icc.getConnections(3).toString(), "{0, 1, 2, 3, 4, 5}");
assertEquals(icc.getConnections(4).toString(), "{0, 1, 2, 3, 4, 5}");
assertEquals(icc.getConnections(5).toString(), "{0, 1, 2, 3, 4, 5}");
assertEquals(icc.getConnections(6).toString(), "{6, 7, 9}");
assertEquals(icc.getConnections(7).toString(), "{6, 7, 9}");
assertEquals(icc.getConnections(9).toString(), "{6, 7, 9}");
assertNull(icc.getConnections(8));
}
}

View File

@ -101,6 +101,10 @@ abstract class AbstractSparkAction implements Serializable {
return SparkSession.builder().config(conf).getOrCreate(); return SparkSession.builder().config(conf).getOrCreate();
} }
protected static SparkSession getSparkWithHiveSession(SparkConf conf) {
return SparkSession.builder().enableHiveSupport().config(conf).getOrCreate();
}
protected static <T> void save(Dataset<T> dataset, String outPath, SaveMode mode) { protected static <T> void save(Dataset<T> dataset, String outPath, SaveMode mode) {
dataset.write().option("compression", "gzip").mode(mode).json(outPath); dataset.write().option("compression", "gzip").mode(mode).json(outPath);
} }

View File

@ -2,20 +2,19 @@
package eu.dnetlib.dhp.oa.dedup; package eu.dnetlib.dhp.oa.dedup;
import java.lang.reflect.InvocationTargetException; import java.lang.reflect.InvocationTargetException;
import java.util.*; import java.util.ArrayList;
import java.util.stream.Collectors; import java.util.Iterator;
import java.util.List;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.spark.api.java.function.MapFunction; import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.api.java.function.MapGroupsFunction; import org.apache.spark.api.java.function.ReduceFunction;
import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.SparkSession;
import com.fasterxml.jackson.databind.DeserializationFeature; import com.fasterxml.jackson.databind.DeserializationFeature;
import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.databind.ObjectMapper;
import com.google.common.collect.Lists;
import eu.dnetlib.dhp.oa.dedup.model.Identifier; import eu.dnetlib.dhp.oa.dedup.model.Identifier;
import eu.dnetlib.dhp.oa.merge.AuthorMerger; import eu.dnetlib.dhp.oa.merge.AuthorMerger;
@ -41,88 +40,91 @@ public class DedupRecordFactory {
long ts = System.currentTimeMillis(); long ts = System.currentTimeMillis();
// <id, json_entity> // <id, json_entity>
Dataset<Tuple2<String, T>> entities = spark Dataset<Row> entities = spark
.read() .read()
.textFile(entitiesInputPath) .schema(Encoders.bean(clazz).schema())
.json(entitiesInputPath)
.as(Encoders.bean(clazz))
.map( .map(
(MapFunction<String, Tuple2<String, T>>) it -> { (MapFunction<T, Tuple2<String, T>>) entity -> {
T entity = OBJECT_MAPPER.readValue(it, clazz);
return new Tuple2<>(entity.getId(), entity); return new Tuple2<>(entity.getId(), entity);
}, },
Encoders.tuple(Encoders.STRING(), Encoders.kryo(clazz))); Encoders.tuple(Encoders.STRING(), Encoders.kryo(clazz)))
.selectExpr("_1 AS id", "_2 AS kryoObject");
// <source, target>: source is the dedup_id, target is the id of the mergedIn // <source, target>: source is the dedup_id, target is the id of the mergedIn
Dataset<Tuple2<String, String>> mergeRels = spark Dataset<Row> mergeRels = spark
.read() .read()
.load(mergeRelsInputPath) .load(mergeRelsInputPath)
.as(Encoders.bean(Relation.class))
.where("relClass == 'merges'") .where("relClass == 'merges'")
.map( .selectExpr("source as dedupId", "target as id");
(MapFunction<Relation, Tuple2<String, String>>) r -> new Tuple2<>(r.getSource(), r.getTarget()),
Encoders.tuple(Encoders.STRING(), Encoders.STRING()));
return mergeRels return mergeRels
.joinWith(entities, mergeRels.col("_2").equalTo(entities.col("_1")), "inner") .join(entities, "id")
.select("dedupId", "kryoObject")
.as(Encoders.tuple(Encoders.STRING(), Encoders.kryo(clazz)))
.groupByKey((MapFunction<Tuple2<String, T>, String>) Tuple2::_1, Encoders.STRING())
.reduceGroups(
(ReduceFunction<Tuple2<String, T>>) (t1, t2) -> new Tuple2<>(t1._1(),
reduceEntity(t1._1(), t1._2(), t2._2(), clazz)))
.map( .map(
(MapFunction<Tuple2<Tuple2<String, String>, Tuple2<String, T>>, Tuple2<String, T>>) value -> new Tuple2<>( (MapFunction<Tuple2<String, Tuple2<String, T>>, T>) t -> {
value._1()._1(), value._2()._2()), T res = t._2()._2();
Encoders.tuple(Encoders.STRING(), Encoders.kryo(clazz))) res.setDataInfo(dataInfo);
.groupByKey( res.setLastupdatetimestamp(ts);
(MapFunction<Tuple2<String, T>, String>) Tuple2::_1, Encoders.STRING()) return res;
.mapGroups( },
(MapGroupsFunction<String, Tuple2<String, T>, T>) (key,
values) -> entityMerger(key, values, ts, dataInfo, clazz),
Encoders.bean(clazz)); Encoders.bean(clazz));
} }
public static <T extends OafEntity> T reduceEntity(
String id, T entity, T duplicate, Class<T> clazz) {
int compare = new IdentifierComparator()
.compare(Identifier.newInstance(entity), Identifier.newInstance(duplicate));
if (compare > 0) {
T swap = duplicate;
duplicate = entity;
entity = swap;
}
entity.mergeFrom(duplicate);
entity.setId(id);
if (ModelSupport.isSubClass(duplicate, Result.class)) {
Result re = (Result) entity;
Result rd = (Result) duplicate;
List<List<Author>> authors = new ArrayList<>();
if (re.getAuthor() != null) {
authors.add(re.getAuthor());
}
if (rd.getAuthor() != null) {
authors.add(rd.getAuthor());
}
re.setAuthor(AuthorMerger.merge(authors));
}
return entity;
}
public static <T extends OafEntity> T entityMerger( public static <T extends OafEntity> T entityMerger(
String id, Iterator<Tuple2<String, T>> entities, long ts, DataInfo dataInfo, Class<T> clazz) String id, Iterator<Tuple2<String, T>> entities, long ts, DataInfo dataInfo, Class<T> clazz)
throws IllegalAccessException, InstantiationException, InvocationTargetException { throws IllegalAccessException, InstantiationException, InvocationTargetException {
T base = entities.next()._2();
final Comparator<Identifier<T>> idComparator = new IdentifierComparator<>(); while (entities.hasNext()) {
T duplicate = entities.next()._2();
final LinkedList<T> entityList = Lists if (duplicate != null)
.newArrayList(entities) base = reduceEntity(id, base, duplicate, clazz);
.stream()
.map(t -> Identifier.newInstance(t._2()))
.sorted(idComparator)
.map(Identifier::getEntity)
.collect(Collectors.toCollection(LinkedList::new));
final T entity = clazz.newInstance();
final T first = entityList.removeFirst();
BeanUtils.copyProperties(entity, first);
final List<List<Author>> authors = Lists.newArrayList();
entityList
.forEach(
duplicate -> {
entity.mergeFrom(duplicate);
if (ModelSupport.isSubClass(duplicate, Result.class)) {
Result r1 = (Result) duplicate;
Optional
.ofNullable(r1.getAuthor())
.ifPresent(a -> authors.add(a));
}
});
// set authors and date
if (ModelSupport.isSubClass(entity, Result.class)) {
Optional
.ofNullable(((Result) entity).getAuthor())
.ifPresent(a -> authors.add(a));
((Result) entity).setAuthor(AuthorMerger.merge(authors));
} }
entity.setId(id); base.setDataInfo(dataInfo);
base.setLastupdatetimestamp(ts);
entity.setLastupdatetimestamp(ts); return base;
entity.setDataInfo(dataInfo);
return entity;
} }
} }

View File

@ -1,6 +1,7 @@
package eu.dnetlib.dhp.oa.dedup; package eu.dnetlib.dhp.oa.dedup;
import static eu.dnetlib.dhp.utils.DHPUtils.md5;
import static org.apache.commons.lang3.StringUtils.substringAfter; import static org.apache.commons.lang3.StringUtils.substringAfter;
import static org.apache.commons.lang3.StringUtils.substringBefore; import static org.apache.commons.lang3.StringUtils.substringBefore;
@ -14,33 +15,36 @@ import eu.dnetlib.dhp.schema.oaf.utils.PidType;
public class IdGenerator implements Serializable { public class IdGenerator implements Serializable {
// pick the best pid from the list (consider date and pidtype) // pick the best pid from the list (consider date and pidtype)
public static <T extends OafEntity> String generate(List<Identifier<T>> pids, String defaultID) { public static <T extends OafEntity> String generate(List<? extends Identifier> pids, String defaultID) {
if (pids == null || pids.isEmpty()) if (pids == null || pids.isEmpty())
return defaultID; return defaultID;
return generateId(pids); return generateId(pids);
} }
private static <T extends OafEntity> String generateId(List<Identifier<T>> pids) { private static String generateId(List<? extends Identifier> pids) {
Identifier<T> bp = pids Identifier bp = pids
.stream() .stream()
.min(Identifier::compareTo) .min(Identifier::compareTo)
.orElseThrow(() -> new IllegalStateException("unable to generate id")); .orElseThrow(() -> new IllegalStateException("unable to generate id"));
String prefix = substringBefore(bp.getOriginalID(), "|"); return generate(bp.getOriginalID());
String ns = substringBefore(substringAfter(bp.getOriginalID(), "|"), "::"); }
String suffix = substringAfter(bp.getOriginalID(), "::");
public static String generate(String originalId) {
String prefix = substringBefore(originalId, "|");
String ns = substringBefore(substringAfter(originalId, "|"), "::");
String suffix = substringAfter(originalId, "::");
final String pidType = substringBefore(ns, "_"); final String pidType = substringBefore(ns, "_");
if (PidType.isValid(pidType)) { if (PidType.isValid(pidType)) {
return prefix + "|" + dedupify(ns) + "::" + suffix; return prefix + "|" + dedupify(ns) + "::" + suffix;
} else { } else {
return prefix + "|dedup_wf_001::" + suffix; return prefix + "|dedup_wf_001::" + md5(originalId); // hash the whole originalId to avoid collisions
} }
} }
private static String dedupify(String ns) { private static String dedupify(String ns) {
StringBuilder prefix; StringBuilder prefix;
if (PidType.valueOf(substringBefore(ns, "_")) == PidType.openorgs) { if (PidType.valueOf(substringBefore(ns, "_")) == PidType.openorgs) {
prefix = new StringBuilder(substringBefore(ns, "_")); prefix = new StringBuilder(substringBefore(ns, "_"));
@ -53,5 +57,4 @@ public class IdGenerator implements Serializable {
} }
return prefix.substring(0, 12); return prefix.substring(0, 12);
} }
} }

View File

@ -1,51 +1,47 @@
package eu.dnetlib.dhp.oa.dedup; package eu.dnetlib.dhp.oa.dedup;
import static eu.dnetlib.dhp.schema.common.ModelConstants.DNET_PROVENANCE_ACTIONS;
import static eu.dnetlib.dhp.schema.common.ModelConstants.PROVENANCE_DEDUP;
import java.io.IOException;
import java.util.*;
import java.util.stream.Collectors;
import org.apache.commons.io.IOUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.api.java.function.MapGroupsFunction;
import org.apache.spark.graphx.Edge;
import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;
import org.dom4j.DocumentException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.xml.sax.SAXException;
import com.google.common.collect.Lists;
import com.google.common.hash.Hashing; import com.google.common.hash.Hashing;
import com.kwartile.lib.cc.ConnectedComponent;
import eu.dnetlib.dhp.application.ArgumentApplicationParser; import eu.dnetlib.dhp.application.ArgumentApplicationParser;
import eu.dnetlib.dhp.oa.dedup.graph.ConnectedComponent;
import eu.dnetlib.dhp.oa.dedup.graph.GraphProcessor;
import eu.dnetlib.dhp.oa.dedup.model.Identifier;
import eu.dnetlib.dhp.schema.common.EntityType; import eu.dnetlib.dhp.schema.common.EntityType;
import eu.dnetlib.dhp.schema.common.ModelConstants; import eu.dnetlib.dhp.schema.common.ModelConstants;
import eu.dnetlib.dhp.schema.common.ModelSupport; import eu.dnetlib.dhp.schema.common.ModelSupport;
import eu.dnetlib.dhp.schema.oaf.DataInfo; import eu.dnetlib.dhp.schema.oaf.*;
import eu.dnetlib.dhp.schema.oaf.OafEntity; import eu.dnetlib.dhp.schema.oaf.utils.PidType;
import eu.dnetlib.dhp.schema.oaf.Qualifier;
import eu.dnetlib.dhp.schema.oaf.Relation;
import eu.dnetlib.dhp.utils.ISLookupClientFactory; import eu.dnetlib.dhp.utils.ISLookupClientFactory;
import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpException; import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpException;
import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpService; import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpService;
import eu.dnetlib.pace.config.DedupConfig; import eu.dnetlib.pace.config.DedupConfig;
import eu.dnetlib.pace.util.MapDocumentUtil; import org.apache.commons.io.IOUtils;
import scala.Tuple2; import org.apache.commons.lang3.StringUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.*;
import org.apache.spark.sql.catalyst.encoders.RowEncoder;
import org.apache.spark.sql.expressions.UserDefinedFunction;
import org.apache.spark.sql.expressions.Window;
import org.apache.spark.sql.expressions.WindowSpec;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.dom4j.DocumentException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.xml.sax.SAXException;
import scala.Tuple3;
import scala.collection.JavaConversions;
import java.io.IOException;
import java.time.LocalDate;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Optional;
import static eu.dnetlib.dhp.schema.common.ModelConstants.DNET_PROVENANCE_ACTIONS;
import static eu.dnetlib.dhp.schema.common.ModelConstants.PROVENANCE_DEDUP;
import static org.apache.spark.sql.functions.*;
public class SparkCreateMergeRels extends AbstractSparkAction { public class SparkCreateMergeRels extends AbstractSparkAction {
@ -68,10 +64,12 @@ public class SparkCreateMergeRels extends AbstractSparkAction {
log.info("isLookupUrl {}", isLookUpUrl); log.info("isLookupUrl {}", isLookUpUrl);
SparkConf conf = new SparkConf(); SparkConf conf = new SparkConf();
conf.set("hive.metastore.uris", parser.get("hiveMetastoreUris"));
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
conf.registerKryoClasses(ModelSupport.getOafModelClasses()); conf.registerKryoClasses(ModelSupport.getOafModelClasses());
new SparkCreateMergeRels(parser, getSparkSession(conf)) new SparkCreateMergeRels(parser, getSparkWithHiveSession(conf))
.run(ISLookupClientFactory.getLookUpService(isLookUpUrl)); .run(ISLookupClientFactory.getLookUpService(isLookUpUrl));
} }
@ -87,14 +85,15 @@ public class SparkCreateMergeRels extends AbstractSparkAction {
.ofNullable(parser.get("cutConnectedComponent")) .ofNullable(parser.get("cutConnectedComponent"))
.map(Integer::valueOf) .map(Integer::valueOf)
.orElse(0); .orElse(0);
final String pivotHistoryDatabase = parser.get("pivotHistoryDatabase");
log.info("connected component cut: '{}'", cut); log.info("connected component cut: '{}'", cut);
log.info("graphBasePath: '{}'", graphBasePath); log.info("graphBasePath: '{}'", graphBasePath);
log.info("isLookUpUrl: '{}'", isLookUpUrl); log.info("isLookUpUrl: '{}'", isLookUpUrl);
log.info("actionSetId: '{}'", actionSetId); log.info("actionSetId: '{}'", actionSetId);
log.info("workingPath: '{}'", workingPath); log.info("workingPath: '{}'", workingPath);
final JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
for (DedupConfig dedupConf : getConfigurations(isLookUpService, actionSetId)) { for (DedupConfig dedupConf : getConfigurations(isLookUpService, actionSetId)) {
final String subEntity = dedupConf.getWf().getSubEntityValue(); final String subEntity = dedupConf.getWf().getSubEntityValue();
final Class<OafEntity> clazz = ModelSupport.entityTypes.get(EntityType.valueOf(subEntity)); final Class<OafEntity> clazz = ModelSupport.entityTypes.get(EntityType.valueOf(subEntity));
@ -106,113 +105,170 @@ public class SparkCreateMergeRels extends AbstractSparkAction {
final String mergeRelPath = DedupUtility.createMergeRelPath(workingPath, actionSetId, subEntity); final String mergeRelPath = DedupUtility.createMergeRelPath(workingPath, actionSetId, subEntity);
// <hash(id), id> final Dataset<Row> simRels = spark
JavaPairRDD<Object, String> vertexes = createVertexes(sc, graphBasePath, subEntity, dedupConf);
final RDD<Edge<String>> edgeRdd = spark
.read() .read()
.load(DedupUtility.createSimRelPath(workingPath, actionSetId, subEntity)) .load(DedupUtility.createSimRelPath(workingPath, actionSetId, subEntity))
.as(Encoders.bean(Relation.class)) .select("source", "target");
.javaRDD()
.map(it -> new Edge<>(hash(it.getSource()), hash(it.getTarget()), it.getRelClass()))
.rdd();
Dataset<Tuple2<String, String>> rawMergeRels = spark UserDefinedFunction hashUDF = functions
.createDataset( .udf(
GraphProcessor (String s) -> hash(s), DataTypes.LongType);
.findCCs(vertexes.rdd(), edgeRdd, maxIterations, cut)
.toJavaRDD()
.filter(k -> k.getIds().size() > 1)
.flatMap(this::ccToRels)
.rdd(),
Encoders.tuple(Encoders.STRING(), Encoders.STRING()));
Dataset<Tuple2<String, OafEntity>> entities = spark // <hash(id), id>
Dataset<Row> vertexIdMap = simRels
.selectExpr("source as id")
.union(simRels.selectExpr("target as id"))
.distinct()
.withColumn("vertexId", hashUDF.apply(functions.col("id")));
final Dataset<Row> edges = spark
.read() .read()
.textFile(DedupUtility.createEntityPath(graphBasePath, subEntity)) .load(DedupUtility.createSimRelPath(workingPath, actionSetId, subEntity))
.map( .select("source", "target")
(MapFunction<String, Tuple2<String, OafEntity>>) it -> { .withColumn("source", hashUDF.apply(functions.col("source")))
OafEntity entity = OBJECT_MAPPER.readValue(it, clazz); .withColumn("target", hashUDF.apply(functions.col("target")));
return new Tuple2<>(entity.getId(), entity);
},
Encoders.tuple(Encoders.STRING(), Encoders.kryo(clazz)));
Dataset<Relation> mergeRels = rawMergeRels Dataset<Row> cliques = ConnectedComponent
.joinWith(entities, rawMergeRels.col("_2").equalTo(entities.col("_1")), "inner") .runOnPairs(edges, 50, spark);
// <tmp_source,target>,<target,entity>
.map( Dataset<Row> rawMergeRels = cliques
(MapFunction<Tuple2<Tuple2<String, String>, Tuple2<String, OafEntity>>, Tuple2<String, OafEntity>>) value -> new Tuple2<>( .join(vertexIdMap, JavaConversions.asScalaBuffer(Collections.singletonList("vertexId")), "inner")
value._1()._1(), value._2()._2()), .drop("vertexId")
Encoders.tuple(Encoders.STRING(), Encoders.kryo(clazz))) .distinct();
// <tmp_source,entity>
.groupByKey( Dataset<Row> pivotHistory = spark
(MapFunction<Tuple2<String, OafEntity>, String>) Tuple2::_1, Encoders.STRING()) .createDataset(
.mapGroups( Collections.emptyList(),
(MapGroupsFunction<String, Tuple2<String, OafEntity>, ConnectedComponent>) this::generateID, RowEncoder
Encoders.bean(ConnectedComponent.class)) .apply(StructType.fromDDL("id STRING, firstUsage STRING, lastUsage STRING, dedupId STRING")));
// <root_id, list(target)>
if (StringUtils.isNotBlank(pivotHistoryDatabase)) {
pivotHistory = spark
.read()
.table(pivotHistoryDatabase + "." + subEntity)
.selectExpr("id", "lastUsage", "dedupId");
}
String collectedfromExpr = "false AS collectedfrom";
String dateExpr = "'' AS date";
if (Result.class.isAssignableFrom(clazz)) {
if (Publication.class.isAssignableFrom(clazz)) {
collectedfromExpr = "array_contains(collectedfrom.key, '" + ModelConstants.CROSSREF_ID
+ "') AS collectedfrom";
} else if (eu.dnetlib.dhp.schema.oaf.Dataset.class.isAssignableFrom(clazz)) {
collectedfromExpr = "array_contains(collectedfrom.key, '" + ModelConstants.DATACITE_ID
+ "') AS collectedfrom";
}
dateExpr = "dateofacceptance.value AS date";
}
UserDefinedFunction mapPid = udf(
(String s) -> Math.min(PidType.tryValueOf(s).ordinal(), PidType.w3id.ordinal()), DataTypes.IntegerType);
UserDefinedFunction validDate = udf((String date) -> {
if (StringUtils.isNotBlank(date)
&& date.matches(DatePicker.DATE_PATTERN) && DatePicker.inRange(date)) {
return date;
}
return LocalDate.now().plusWeeks(1).toString();
}, DataTypes.StringType);
Dataset<Row> pivotingData = spark
.read()
.schema(Encoders.bean(clazz).schema())
.json(DedupUtility.createEntityPath(graphBasePath, subEntity))
.selectExpr(
"id",
"regexp_extract(id, '^\\\\d+\\\\|([^_]+).*::', 1) AS pidType",
collectedfromExpr,
dateExpr)
.withColumn("pidType", mapPid.apply(col("pidType"))) // ordinal of pid type
.withColumn("date", validDate.apply(col("date")));
UserDefinedFunction generateDedupId = udf((String s) -> IdGenerator.generate(s), DataTypes.StringType);
// ordering to selected pivot id
WindowSpec w = Window
.partitionBy("groupId")
.orderBy(
col("lastUsage").desc_nulls_last(),
col("pidType").asc_nulls_last(),
col("collectedfrom").desc_nulls_last(),
col("date").asc_nulls_last(),
col("id").asc_nulls_last());
Dataset<Relation> output = rawMergeRels
.join(pivotHistory, JavaConversions.asScalaBuffer(Collections.singletonList("id")), "full")
.join(pivotingData, JavaConversions.asScalaBuffer(Collections.singletonList("id")), "left")
.withColumn("pivot", functions.first("id").over(w))
.withColumn("pivotDedupId", functions.first("dedupId").over(w))
.withColumn("position", functions.row_number().over(w))
.filter(cut > 0 ? col("position").lt(lit(cut)) : lit(true))
// .select("id", "groupId", "collectedfrom", "pivot", "dedupId", "pivotDedupId")
// .distinct()
.flatMap( .flatMap(
(FlatMapFunction<ConnectedComponent, Relation>) cc -> ccToMergeRel(cc, dedupConf), (FlatMapFunction<Row, Tuple3<String, String, String>>) (Row r) -> {
Encoders.bean(Relation.class)); String id = r.getAs("id");
String pivot = r.getAs("pivot");
String pivotDedupId = r.getAs("pivotDedupId"); // dedupId associated with the pivot
String dedupId = r.getAs("dedupId"); // dedupId associated with this id if it was a pivot
saveParquet(mergeRels, mergeRelPath, SaveMode.Overwrite); // filter out id == pivotDedupId
// those are caused by claim expressed on pivotDedupId
} // information will be merged after creating deduprecord
if (id.equals(pivotDedupId)) {
return Collections.emptyIterator();
} }
private <T extends OafEntity> ConnectedComponent generateID(String key, Iterator<Tuple2<String, T>> values) { ArrayList<Tuple3<String, String, String>> res = new ArrayList<>();
List<Identifier<T>> identifiers = Lists // singleton pivots have null groupId as they do not match rawMergeRels
.newArrayList(values) if (r.isNullAt(r.fieldIndex("groupId"))) {
.stream() // the record is existing if it matches pivotingData
.map(v -> Identifier.newInstance(v._2())) if (!r.isNullAt(r.fieldIndex("collectedfrom"))) {
.collect(Collectors.toList()); // create relation with old dedup id
res.add(new Tuple3<>(id, dedupId, null));
String rootID = IdGenerator.generate(identifiers, key); }
return res.iterator();
if (Objects.equals(rootID, key))
throw new IllegalStateException("generated default ID: " + rootID);
return new ConnectedComponent(rootID,
identifiers.stream().map(i -> i.getEntity().getId()).collect(Collectors.toSet()));
} }
private JavaPairRDD<Object, String> createVertexes(JavaSparkContext sc, String graphBasePath, String subEntity, // new pivot, assign pivotDedupId with current IdGenerator
DedupConfig dedupConf) { if (StringUtils.isBlank(pivotDedupId)) {
pivotDedupId = IdGenerator.generate(pivot);
return sc
.textFile(DedupUtility.createEntityPath(graphBasePath, subEntity))
.mapToPair(json -> {
String id = MapDocumentUtil.getJPathString(dedupConf.getWf().getIdPath(), json);
return new Tuple2<>(hash(id), id);
});
} }
private Iterator<Tuple2<String, String>> ccToRels(ConnectedComponent cc) { // this was a pivot in a preceding graph but it has been merged into a new group with different
return cc // pivot
.getIds() if (StringUtils.isNotBlank(dedupId) && !pivot.equals(id) && !dedupId.equals(pivotDedupId)) {
.stream() // materialize the previous dedup record as a merge relation with the new one
.map(id -> new Tuple2<>(cc.getCcId(), id)) res.add(new Tuple3<>(dedupId, pivotDedupId, null));
.iterator();
} }
private Iterator<Relation> ccToMergeRel(ConnectedComponent cc, DedupConfig dedupConf) { // add merge relations
return cc res.add(new Tuple3<>(id, pivotDedupId, pivot));
.getIds()
.stream() return res.iterator();
}, Encoders.tuple(Encoders.STRING(), Encoders.STRING(), Encoders.STRING()))
.distinct()
.flatMap( .flatMap(
id -> { (FlatMapFunction<Tuple3<String, String, String>, Relation>) (Tuple3<String, String, String> r) -> {
List<Relation> tmp = new ArrayList<>(); String id = r._1();
String dedupId = r._2();
String pivot = r._3();
tmp.add(rel(cc.getCcId(), id, ModelConstants.MERGES, dedupConf)); ArrayList<Relation> res = new ArrayList<>();
tmp.add(rel(id, cc.getCcId(), ModelConstants.IS_MERGED_IN, dedupConf)); res.add(rel(pivot, dedupId, id, ModelConstants.MERGES, dedupConf));
res.add(rel(pivot, id, dedupId, ModelConstants.IS_MERGED_IN, dedupConf));
return tmp.stream(); return res.iterator();
}) }, Encoders.bean(Relation.class));
.iterator();
saveParquet(output, mergeRelPath, SaveMode.Overwrite);
}
} }
private Relation rel(String source, String target, String relClass, DedupConfig dedupConf) { private static Relation rel(String pivot, String source, String target, String relClass, DedupConfig dedupConf) {
String entityType = dedupConf.getWf().getEntityType(); String entityType = dedupConf.getWf().getEntityType();
@ -238,6 +294,14 @@ public class SparkCreateMergeRels extends AbstractSparkAction {
// TODO calculate the trust value based on the similarity score of the elements in the CC // TODO calculate the trust value based on the similarity score of the elements in the CC
r.setDataInfo(info); r.setDataInfo(info);
if (pivot != null) {
KeyValue pivotKV = new KeyValue();
pivotKV.setKey("pivot");
pivotKV.setValue(pivot);
r.setProperties(Arrays.asList(pivotKV));
}
return r; return r;
} }

View File

@ -91,18 +91,12 @@ public class SparkWhitelistSimRels extends AbstractSparkAction {
Dataset<Row> entities = spark Dataset<Row> entities = spark
.read() .read()
.textFile(DedupUtility.createEntityPath(graphBasePath, subEntity)) .textFile(DedupUtility.createEntityPath(graphBasePath, subEntity))
.repartition(numPartitions) .select(functions.get_json_object(new Column("value"), dedupConf.getWf().getIdPath()).as("id"))
.withColumn("id", functions.get_json_object(new Column("value"), dedupConf.getWf().getIdPath())); .distinct();
Dataset<Row> whiteListRels1 = whiteListRels Dataset<Relation> whiteListSimRels = whiteListRels
.join(entities, entities.col("id").equalTo(whiteListRels.col("from")), "inner") .join(entities, entities.col("id").equalTo(whiteListRels.col("from")), "leftsemi")
.select("from", "to"); .join(entities, functions.col("to").equalTo(entities.col("id")), "leftsemi")
Dataset<Row> whiteListRels2 = whiteListRels1
.join(entities, whiteListRels1.col("to").equalTo(entities.col("id")), "inner")
.select("from", "to");
Dataset<Relation> whiteListSimRels = whiteListRels2
.map( .map(
(MapFunction<Row, Relation>) r -> DedupUtility (MapFunction<Row, Relation>) r -> DedupUtility
.createSimRel(r.getString(0), r.getString(1), entity), .createSimRel(r.getString(0), r.getString(1), entity),

View File

@ -1,100 +0,0 @@
package eu.dnetlib.dhp.oa.dedup.graph;
import java.io.IOException;
import java.io.Serializable;
import java.util.Set;
import java.util.stream.Collectors;
import org.apache.commons.lang3.StringUtils;
import org.codehaus.jackson.annotate.JsonIgnore;
import com.fasterxml.jackson.databind.ObjectMapper;
import eu.dnetlib.dhp.utils.DHPUtils;
import eu.dnetlib.pace.util.PaceException;
public class ConnectedComponent implements Serializable {
private String ccId;
private Set<String> ids;
private static final String CONNECTED_COMPONENT_ID_PREFIX = "connect_comp";
public ConnectedComponent(Set<String> ids, final int cut) {
this.ids = ids;
this.ccId = createDefaultID();
if (cut > 0 && ids.size() > cut) {
this.ids = ids
.stream()
.filter(id -> !ccId.equalsIgnoreCase(id))
.limit(cut - 1)
.collect(Collectors.toSet());
// this.ids.add(ccId); ??
}
}
public ConnectedComponent(String ccId, Set<String> ids) {
this.ccId = ccId;
this.ids = ids;
}
public String createDefaultID() {
if (ids.size() > 1) {
final String s = getMin();
String prefix = s.split("\\|")[0];
ccId = prefix + "|" + CONNECTED_COMPONENT_ID_PREFIX + "::" + DHPUtils.md5(s);
return ccId;
} else {
return ids.iterator().next();
}
}
@JsonIgnore
public String getMin() {
final StringBuilder min = new StringBuilder();
ids
.forEach(
id -> {
if (StringUtils.isBlank(min.toString())) {
min.append(id);
} else {
if (min.toString().compareTo(id) > 0) {
min.setLength(0);
min.append(id);
}
}
});
return min.toString();
}
@Override
public String toString() {
ObjectMapper mapper = new ObjectMapper();
try {
return mapper.writeValueAsString(this);
} catch (IOException e) {
throw new PaceException("Failed to create Json: ", e);
}
}
public Set<String> getIds() {
return ids;
}
public void setIds(Set<String> ids) {
this.ids = ids;
}
public String getCcId() {
return ccId;
}
public void setCcId(String ccId) {
this.ccId = ccId;
}
}

View File

@ -1,37 +0,0 @@
package eu.dnetlib.dhp.oa.dedup.graph
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
import scala.collection.JavaConversions;
object GraphProcessor {
def findCCs(vertexes: RDD[(VertexId, String)], edges: RDD[Edge[String]], maxIterations: Int, cut:Int): RDD[ConnectedComponent] = {
val graph: Graph[String, String] = Graph(vertexes, edges).partitionBy(PartitionStrategy.RandomVertexCut) //TODO remember to remove partitionby
val cc = graph.connectedComponents(maxIterations).vertices
val joinResult = vertexes.leftOuterJoin(cc).map {
case (id, (openaireId, cc)) => {
if (cc.isEmpty) {
(id, openaireId)
}
else {
(cc.get, openaireId)
}
}
}
val connectedComponents = joinResult.groupByKey()
.map[ConnectedComponent](cc => asConnectedComponent(cc, cut))
connectedComponents
}
def asConnectedComponent(group: (VertexId, Iterable[String]), cut:Int): ConnectedComponent = {
val docs = group._2.toSet[String]
val connectedComponent = new ConnectedComponent(JavaConversions.setAsJavaSet[String](docs), cut);
connectedComponent
}
}

View File

@ -3,21 +3,21 @@ package eu.dnetlib.dhp.oa.dedup.model;
import java.io.Serializable; import java.io.Serializable;
import java.text.SimpleDateFormat; import java.text.SimpleDateFormat;
import java.util.*; import java.time.LocalDate;
import java.util.stream.Collectors; import java.util.Date;
import java.util.List;
import java.util.Objects;
import org.apache.commons.lang3.StringUtils; import org.apache.commons.lang3.StringUtils;
import com.google.common.collect.Sets;
import eu.dnetlib.dhp.oa.dedup.DatePicker; import eu.dnetlib.dhp.oa.dedup.DatePicker;
import eu.dnetlib.dhp.oa.dedup.IdentifierComparator; import eu.dnetlib.dhp.oa.dedup.IdentifierComparator;
import eu.dnetlib.dhp.schema.common.EntityType; import eu.dnetlib.dhp.schema.common.EntityType;
import eu.dnetlib.dhp.schema.common.ModelConstants;
import eu.dnetlib.dhp.schema.common.ModelSupport; import eu.dnetlib.dhp.schema.common.ModelSupport;
import eu.dnetlib.dhp.schema.oaf.*; import eu.dnetlib.dhp.schema.oaf.Field;
import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils; import eu.dnetlib.dhp.schema.oaf.KeyValue;
import eu.dnetlib.dhp.schema.oaf.utils.PidComparator; import eu.dnetlib.dhp.schema.oaf.OafEntity;
import eu.dnetlib.dhp.schema.oaf.Result;
import eu.dnetlib.dhp.schema.oaf.utils.PidType; import eu.dnetlib.dhp.schema.oaf.utils.PidType;
public class Identifier<T extends OafEntity> implements Serializable, Comparable<Identifier<T>> { public class Identifier<T extends OafEntity> implements Serializable, Comparable<Identifier<T>> {
@ -50,7 +50,7 @@ public class Identifier<T extends OafEntity> implements Serializable, Comparable
if (Objects.nonNull(date)) { if (Objects.nonNull(date)) {
return date; return date;
} else { } else {
String sDate = BASE_DATE; String sDate = LocalDate.now().plusDays(1).toString();
if (ModelSupport.isSubClass(getEntity(), Result.class)) { if (ModelSupport.isSubClass(getEntity(), Result.class)) {
Result result = (Result) getEntity(); Result result = (Result) getEntity();
if (isWellformed(result.getDateofacceptance())) { if (isWellformed(result.getDateofacceptance())) {

View File

@ -28,5 +28,17 @@
"paramLongName": "workingPath", "paramLongName": "workingPath",
"paramDescription": "path for the working directory", "paramDescription": "path for the working directory",
"paramRequired": true "paramRequired": true
},
{
"paramName":"h",
"paramLongName":"hiveMetastoreUris",
"paramDescription": "the hive metastore uris",
"paramRequired": true
},
{
"paramName": "p",
"paramLongName": "pivotHistoryDatabase",
"paramDescription": "Pivot history database",
"paramRequired": false
} }
] ]

View File

@ -15,4 +15,8 @@
<name>oozie.action.sharelib.for.spark</name> <name>oozie.action.sharelib.for.spark</name>
<value>spark2</value> <value>spark2</value>
</property> </property>
<property>
<name>hiveMetastoreUris</name>
<value>thrift://iis-cdh5-test-m3.ocean.icm.edu.pl:9083</value>
</property>
</configuration> </configuration>

View File

@ -188,6 +188,8 @@
<arg>--isLookUpUrl</arg><arg>${isLookUpUrl}</arg> <arg>--isLookUpUrl</arg><arg>${isLookUpUrl}</arg>
<arg>--actionSetId</arg><arg>${actionSetId}</arg> <arg>--actionSetId</arg><arg>${actionSetId}</arg>
<arg>--cutConnectedComponent</arg><arg>${cutConnectedComponent}</arg> <arg>--cutConnectedComponent</arg><arg>${cutConnectedComponent}</arg>
<arg>--hiveMetastoreUris</arg><arg>${hiveMetastoreUris}</arg>
<arg>--pivotHistoryDatabase</arg><arg>${pivotHistoryDatabase}</arg>
</spark> </spark>
<ok to="CreateDedupRecord"/> <ok to="CreateDedupRecord"/>
<error to="Kill"/> <error to="Kill"/>

View File

@ -0,0 +1,335 @@
/** Copyright (c) 2017 Kwartile, Inc., http://www.kwartile.com
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/** Map-reduce implementation of Connected Component
* Given lists of subgraphs, returns all the nodes that are connected.
*/
package com.kwartile.lib.cc
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Dataset, Row, SparkSession}
import org.apache.spark.storage.StorageLevel
import scala.annotation.tailrec
import scala.collection.mutable
object ConnectedComponent extends Serializable {
/** Applies Small Star operation on RDD of nodePairs
*
* @param nodePairs on which to apply Small Star operations
* @return new nodePairs after the operation and conncectivy change count
*/
private def smallStar(nodePairs: RDD[(Long, Long)]): (RDD[(Long, Long)], Long) = {
/** generate RDD of (self, List(neighbors)) where self > neighbors
* E.g.: nodePairs (1, 4), (6, 1), (3, 2), (6, 5)
* will result into (4, List(1)), (6, List(1)), (3, List(2)), (6, List(5))
*/
val neighbors = nodePairs.map(x => {
val (self, neighbor) = (x._1, x._2)
if (self > neighbor)
(self, neighbor)
else
(neighbor, self)
})
/** reduce on self to get list of all its neighbors.
* E.g: (4, List(1)), (6, List(1)), (3, List(2)), (6, List(5))
* will result into (4, List(1)), (6, List(1, 5)), (3, List(2))
* Note:
* (1) you may need to tweak number of partitions.
* (2) also, watch out for data skew. In that case, consider using rangePartitioner
*/
val empty = mutable.HashSet[Long]()
val allNeighbors = neighbors.aggregateByKey(empty)(
(lb, v) => lb += v,
(lb1, lb2) => lb1 ++ lb2
)
/** Apply Small Star operation on (self, List(neighbor)) to get newNodePairs and count the change in connectivity
*/
val newNodePairsWithChangeCount = allNeighbors
.map(x => {
val self = x._1
val neighbors = x._2.toList
val minNode = argMin(self :: neighbors)
val newNodePairs = (self :: neighbors)
.map(neighbor => {
(neighbor, minNode)
})
.filter(x => {
val neighbor = x._1
val minNode = x._2
(neighbor <= self && neighbor != minNode) || (self == neighbor)
})
val uniqueNewNodePairs = newNodePairs.toSet.toList
/** We count the change by taking a diff of the new node pairs with the old node pairs
*/
val connectivityChangeCount = (uniqueNewNodePairs diff neighbors.map((self, _))).length
(uniqueNewNodePairs, connectivityChangeCount)
})
.persist(StorageLevel.MEMORY_AND_DISK_SER)
/** Sum all the changeCounts
*/
val totalConnectivityCountChange = newNodePairsWithChangeCount
.mapPartitions(iter => {
val (v, l) = iter.toSeq.unzip
val sum = l.sum
Iterator(sum)
})
.sum
.toLong
val newNodePairs = newNodePairsWithChangeCount.map(x => x._1).flatMap(x => x)
newNodePairsWithChangeCount.unpersist(false)
(newNodePairs, totalConnectivityCountChange)
}
/** Apply Large Star operation on a RDD of nodePairs
*
* @param nodePairs on which to apply Large Star operations
* @return new nodePairs after the operation and conncectivy change count
*/
private def largeStar(nodePairs: RDD[(Long, Long)]): (RDD[(Long, Long)], Long) = {
/** generate RDD of (self, List(neighbors))
* E.g.: nodePairs (1, 4), (6, 1), (3, 2), (6, 5)
* will result into (4, List(1)), (1, List(4)), (6, List(1)), (1, List(6)), (3, List(2)), (2, List(3)), (6, List(5)), (5, List(6))
*/
val neighbors = nodePairs.flatMap(x => {
val (self, neighbor) = (x._1, x._2)
if (self == neighbor)
List((self, neighbor))
else
List((self, neighbor), (neighbor, self))
})
/** reduce on self to get list of all its neighbors.
* E.g: (4, List(1)), (1, List(4)), (6, List(1)), (1, List(6)), (3, List(2)), (2, List(3)), (6, List(5)), (5, List(6))
* will result into (4, List(1)), (1, List(4, 6)), (6, List(1, 5)), (3, List(2)), (2, List(3)), (5, List(6))
* Note:
* (1) you may need to tweak number of partitions.
* (2) also, watch out for data skew. In that case, consider using rangePartitioner
*/
val localAdd = (s: mutable.HashSet[Long], v: Long) => s += v
val partitionAdd = (s1: mutable.HashSet[Long], s2: mutable.HashSet[Long]) => s1 ++= s2
val allNeighbors =
neighbors.aggregateByKey(mutable.HashSet.empty[Long] /*, rangePartitioner*/ )(localAdd, partitionAdd)
/** Apply Large Star operation on (self, List(neighbor)) to get newNodePairs and count the change in connectivity
*/
val newNodePairsWithChangeCount = allNeighbors
.map(x => {
val self = x._1
val neighbors = x._2.toList
val minNode = argMin(self :: neighbors)
val newNodePairs = (self :: neighbors)
.map(neighbor => {
(neighbor, minNode)
})
.filter(x => {
val neighbor = x._1
val minNode = x._2
neighbor > self || neighbor == minNode
})
val uniqueNewNodePairs = newNodePairs.toSet.toList
val connectivityChangeCount = (uniqueNewNodePairs diff neighbors.map((self, _))).length
(uniqueNewNodePairs, connectivityChangeCount)
})
.persist(StorageLevel.MEMORY_AND_DISK_SER)
val totalConnectivityCountChange = newNodePairsWithChangeCount
.mapPartitions(iter => {
val (v, l) = iter.toSeq.unzip
val sum = l.sum
Iterator(sum)
})
.sum
.toLong
/** Sum all the changeCounts
*/
val newNodePairs = newNodePairsWithChangeCount.map(x => x._1).flatMap(x => x)
newNodePairsWithChangeCount.unpersist(false)
(newNodePairs, totalConnectivityCountChange)
}
private def argMin(nodes: List[Long]): Long = {
nodes.min(Ordering.by((node: Long) => node))
}
/** Build nodePairs given a list of nodes. A list of nodes represents a subgraph.
*
* @param nodes that are part of a subgraph
* @return nodePairs for a subgraph
*/
private def buildPairs(nodes: List[Long]): List[(Long, Long)] = {
buildPairs(nodes.head, nodes.tail, null.asInstanceOf[List[(Long, Long)]])
}
@tailrec
private def buildPairs(node: Long, neighbors: List[Long], partialPairs: List[(Long, Long)]): List[(Long, Long)] = {
if (neighbors.isEmpty) {
if (partialPairs != null)
List((node, node)) ::: partialPairs
else
List((node, node))
} else if (neighbors.length == 1) {
val neighbor = neighbors(0)
if (node > neighbor)
if (partialPairs != null) List((node, neighbor)) ::: partialPairs else List((node, neighbor))
else if (partialPairs != null) List((neighbor, node)) ::: partialPairs
else List((neighbor, node))
} else {
val newPartialPairs = neighbors
.map(neighbor => {
if (node > neighbor)
List((node, neighbor))
else
List((neighbor, node))
})
.flatMap(x => x)
if (partialPairs != null)
buildPairs(neighbors.head, neighbors.tail, newPartialPairs ::: partialPairs)
else
buildPairs(neighbors.head, neighbors.tail, newPartialPairs)
}
}
/** Implements alternatingAlgo. Converges when the changeCount is either 0 or does not change from the previous iteration
*
* @param nodePairs for a graph
* @param largeStarConnectivityChangeCount change count that resulted from the previous iteration
* @param smallStarConnectivityChangeCount change count that resulted from the previous iteration
* @param didConverge flag to indicate the alorigth converged
* @param currIterationCount counter to capture number of iterations
* @param maxIterationCount maximum number iterations to try before giving up
* @return RDD of nodePairs
*/
@tailrec
private def alternatingAlgo(
nodePairs: RDD[(Long, Long)],
largeStarConnectivityChangeCount: Long,
smallStarConnectivityChangeCount: Long,
didConverge: Boolean,
currIterationCount: Int,
maxIterationCount: Int
): (RDD[(Long, Long)], Boolean, Long) = {
val iterationCount = currIterationCount + 1
if (didConverge)
(nodePairs, true, currIterationCount)
else if (currIterationCount >= maxIterationCount) {
(nodePairs, false, currIterationCount)
} else {
val (nodePairsLargeStar, currLargeStarConnectivityChangeCount) = largeStar(nodePairs)
val (nodePairsSmallStar, currSmallStarConnectivityChangeCount) = smallStar(nodePairsLargeStar)
if (
(currLargeStarConnectivityChangeCount == largeStarConnectivityChangeCount &&
currSmallStarConnectivityChangeCount == smallStarConnectivityChangeCount) ||
(currSmallStarConnectivityChangeCount == 0 && currLargeStarConnectivityChangeCount == 0)
) {
alternatingAlgo(
nodePairsSmallStar,
currLargeStarConnectivityChangeCount,
currSmallStarConnectivityChangeCount,
true,
iterationCount,
maxIterationCount
)
} else {
alternatingAlgo(
nodePairsSmallStar,
currLargeStarConnectivityChangeCount,
currSmallStarConnectivityChangeCount,
false,
iterationCount,
maxIterationCount
)
}
}
}
/** Driver function
*
* @param cliques list of nodes representing subgraphs (or cliques)
* @param maxIterationCount maximum number iterations to try before giving up
* @return Connected Components as nodePairs where second member of the nodePair is the minimum node in the component
*/
def run(cliques: RDD[List[Long]], maxIterationCount: Int): (RDD[(Long, Long)], Boolean, Long) = {
val nodePairs = cliques
.map(aClique => {
buildPairs(aClique)
})
.flatMap(x => x)
val (cc, didConverge, iterCount) = alternatingAlgo(nodePairs, 9999999L, 9999999L, false, 0, maxIterationCount)
if (didConverge) {
(cc, didConverge, iterCount)
} else {
(null.asInstanceOf[RDD[(Long, Long)]], didConverge, iterCount)
}
}
def runOnPairs(nodePairs: RDD[(Long, Long)], maxIterationCount: Int): (RDD[(Long, Long)], Boolean, Long) = {
val (cc, didConverge, iterCount) = alternatingAlgo(nodePairs, 9999999L, 9999999L, false, 0, maxIterationCount)
if (didConverge) {
(cc, didConverge, iterCount)
} else {
(null.asInstanceOf[RDD[(Long, Long)]], didConverge, iterCount)
}
}
def runOnPairs(nodePairs: Dataset[Row], maxIterationCount: Int)(implicit spark: SparkSession): Dataset[Row] = {
import spark.implicits._
val (cc, didConverge, iterCount) = alternatingAlgo(
nodePairs.map(e => (e.getLong(0), e.getLong(1))).rdd,
9999999L,
9999999L,
false,
0,
maxIterationCount
)
if (didConverge) {
cc.toDF("vertexId", "groupId")
} else {
null.asInstanceOf[Dataset[Row]]
}
}
}

View File

@ -41,9 +41,13 @@ import com.google.common.collect.Sets;
import eu.dnetlib.dhp.application.ArgumentApplicationParser; import eu.dnetlib.dhp.application.ArgumentApplicationParser;
import eu.dnetlib.dhp.schema.common.ModelConstants; import eu.dnetlib.dhp.schema.common.ModelConstants;
import eu.dnetlib.dhp.schema.common.ModelSupport;
import eu.dnetlib.dhp.schema.oaf.*; import eu.dnetlib.dhp.schema.oaf.*;
import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils;
import eu.dnetlib.dhp.schema.sx.OafUtils;
import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpException; import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpException;
import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpService; import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpService;
import scala.Tuple2;
@ExtendWith(MockitoExtension.class) @ExtendWith(MockitoExtension.class)
@TestMethodOrder(MethodOrderer.OrderAnnotation.class) @TestMethodOrder(MethodOrderer.OrderAnnotation.class)
@ -97,6 +101,7 @@ public class SparkDedupTest implements Serializable {
final SparkConf conf = new SparkConf(); final SparkConf conf = new SparkConf();
conf.set("spark.sql.shuffle.partitions", "200"); conf.set("spark.sql.shuffle.partitions", "200");
conf.set("spark.sql.warehouse.dir", testOutputBasePath + "/spark-warehouse");
spark = SparkSession spark = SparkSession
.builder() .builder()
.appName(SparkDedupTest.class.getSimpleName()) .appName(SparkDedupTest.class.getSimpleName())
@ -186,11 +191,11 @@ public class SparkDedupTest implements Serializable {
System.out.println("ds_simrel = " + ds_simrel); System.out.println("ds_simrel = " + ds_simrel);
System.out.println("orp_simrel = " + orp_simrel); System.out.println("orp_simrel = " + orp_simrel);
assertEquals(1538, orgs_simrel); assertEquals(751, orgs_simrel);
assertEquals(3523, pubs_simrel); assertEquals(546, pubs_simrel);
assertEquals(168, sw_simrel); assertEquals(113, sw_simrel);
assertEquals(221, ds_simrel); assertEquals(148, ds_simrel);
assertEquals(3392, orp_simrel); assertEquals(280, orp_simrel);
} }
@ -235,10 +240,10 @@ public class SparkDedupTest implements Serializable {
.count(); .count();
// entities simrels supposed to be equal to the number of previous step (no rels in whitelist) // entities simrels supposed to be equal to the number of previous step (no rels in whitelist)
assertEquals(1538, orgs_simrel); assertEquals(751, orgs_simrel);
assertEquals(3523, pubs_simrel); assertEquals(546, pubs_simrel);
assertEquals(221, ds_simrel); assertEquals(148, ds_simrel);
assertEquals(3392, orp_simrel); assertEquals(280, orp_simrel);
// System.out.println("orgs_simrel = " + orgs_simrel); // System.out.println("orgs_simrel = " + orgs_simrel);
// System.out.println("pubs_simrel = " + pubs_simrel); // System.out.println("pubs_simrel = " + pubs_simrel);
// System.out.println("ds_simrel = " + ds_simrel); // System.out.println("ds_simrel = " + ds_simrel);
@ -268,7 +273,7 @@ public class SparkDedupTest implements Serializable {
&& rel.getTarget().equalsIgnoreCase(whiteList.get(1).split(WHITELIST_SEPARATOR)[1])) && rel.getTarget().equalsIgnoreCase(whiteList.get(1).split(WHITELIST_SEPARATOR)[1]))
.count() > 0); .count() > 0);
assertEquals(170, sw_simrel.count()); assertEquals(115, sw_simrel.count());
// System.out.println("sw_simrel = " + sw_simrel.count()); // System.out.println("sw_simrel = " + sw_simrel.count());
} }
@ -292,7 +297,9 @@ public class SparkDedupTest implements Serializable {
"-w", "-w",
testOutputBasePath, testOutputBasePath,
"-cc", "-cc",
"3" "3",
"-h",
""
}); });
new SparkCreateMergeRels(parser, spark).run(isLookUpService); new SparkCreateMergeRels(parser, spark).run(isLookUpService);
@ -365,6 +372,113 @@ public class SparkDedupTest implements Serializable {
.deleteDirectory(new File(testOutputBasePath + "/" + testActionSetId + "/otherresearchproduct_mergerel")); .deleteDirectory(new File(testOutputBasePath + "/" + testActionSetId + "/otherresearchproduct_mergerel"));
} }
@Test
@Order(3)
void createMergeRelsWithPivotHistoryTest() throws Exception {
ArgumentApplicationParser parser = new ArgumentApplicationParser(
classPathResourceAsString("/eu/dnetlib/dhp/oa/dedup/createCC_parameters.json"));
spark.sql("CREATE DATABASE IF NOT EXISTS pivot_history_test");
ModelSupport.oafTypes.keySet().forEach(entityType -> {
try {
spark
.read()
.json(
Paths
.get(SparkDedupTest.class.getResource("/eu/dnetlib/dhp/dedup/pivot_history").toURI())
.toFile()
.getAbsolutePath())
.write()
.mode("overwrite")
.saveAsTable("pivot_history_test." + entityType);
} catch (URISyntaxException e) {
throw new RuntimeException(e);
}
});
parser
.parseArgument(
new String[] {
"-i",
testGraphBasePath,
"-asi",
testActionSetId,
"-la",
"lookupurl",
"-w",
testOutputBasePath,
"-h",
"",
"-pivotHistoryDatabase",
"pivot_history_test"
});
new SparkCreateMergeRels(parser, spark).run(isLookUpService);
long orgs_mergerel = spark
.read()
.load(testOutputBasePath + "/" + testActionSetId + "/organization_mergerel")
.count();
final Dataset<Relation> pubs = spark
.read()
.load(testOutputBasePath + "/" + testActionSetId + "/publication_mergerel")
.as(Encoders.bean(Relation.class));
long sw_mergerel = spark
.read()
.load(testOutputBasePath + "/" + testActionSetId + "/software_mergerel")
.count();
long ds_mergerel = spark
.read()
.load(testOutputBasePath + "/" + testActionSetId + "/dataset_mergerel")
.count();
long orp_mergerel = spark
.read()
.load(testOutputBasePath + "/" + testActionSetId + "/otherresearchproduct_mergerel")
.count();
final List<Relation> merges = pubs
.filter("source == '50|arXiv_dedup_::c93aeb433eb90ed7a86e29be00791b7c'")
.collectAsList();
assertEquals(3, merges.size());
Set<String> dups = Sets
.newHashSet(
"50|doi_________::3b1d0d8e8f930826665df9d6b82fbb73",
"50|doi_________::d5021b53204e4fdeab6ff5d5bc468032",
"50|arXiv_______::c93aeb433eb90ed7a86e29be00791b7c");
merges.forEach(r -> {
assertEquals(ModelConstants.RESULT_RESULT, r.getRelType());
assertEquals(ModelConstants.DEDUP, r.getSubRelType());
assertEquals(ModelConstants.MERGES, r.getRelClass());
assertTrue(dups.contains(r.getTarget()));
});
final List<Relation> mergedIn = pubs
.filter("target == '50|arXiv_dedup_::c93aeb433eb90ed7a86e29be00791b7c'")
.collectAsList();
assertEquals(3, mergedIn.size());
mergedIn.forEach(r -> {
assertEquals(ModelConstants.RESULT_RESULT, r.getRelType());
assertEquals(ModelConstants.DEDUP, r.getSubRelType());
assertEquals(ModelConstants.IS_MERGED_IN, r.getRelClass());
assertTrue(dups.contains(r.getSource()));
});
assertEquals(1268, orgs_mergerel);
assertEquals(1112, pubs.count());
assertEquals(292, sw_mergerel);
assertEquals(476, ds_mergerel);
assertEquals(742, orp_mergerel);
// System.out.println("orgs_mergerel = " + orgs_mergerel);
// System.out.println("pubs_mergerel = " + pubs_mergerel);
// System.out.println("sw_mergerel = " + sw_mergerel);
// System.out.println("ds_mergerel = " + ds_mergerel);
// System.out.println("orp_mergerel = " + orp_mergerel);
}
@Test @Test
@Order(4) @Order(4)
void createMergeRelsTest() throws Exception { void createMergeRelsTest() throws Exception {
@ -382,7 +496,9 @@ public class SparkDedupTest implements Serializable {
"-la", "-la",
"lookupurl", "lookupurl",
"-w", "-w",
testOutputBasePath testOutputBasePath,
"-h",
""
}); });
new SparkCreateMergeRels(parser, spark).run(isLookUpService); new SparkCreateMergeRels(parser, spark).run(isLookUpService);
@ -437,10 +553,10 @@ public class SparkDedupTest implements Serializable {
}); });
assertEquals(1268, orgs_mergerel); assertEquals(1268, orgs_mergerel);
assertEquals(1450, pubs.count()); assertEquals(1112, pubs.count());
assertEquals(286, sw_mergerel); assertEquals(292, sw_mergerel);
assertEquals(472, ds_mergerel); assertEquals(476, ds_mergerel);
assertEquals(738, orp_mergerel); assertEquals(742, orp_mergerel);
// System.out.println("orgs_mergerel = " + orgs_mergerel); // System.out.println("orgs_mergerel = " + orgs_mergerel);
// System.out.println("pubs_mergerel = " + pubs_mergerel); // System.out.println("pubs_mergerel = " + pubs_mergerel);
// System.out.println("sw_mergerel = " + sw_mergerel); // System.out.println("sw_mergerel = " + sw_mergerel);
@ -492,10 +608,10 @@ public class SparkDedupTest implements Serializable {
.count(); .count();
assertEquals(86, orgs_deduprecord); assertEquals(86, orgs_deduprecord);
assertEquals(68, pubs.count()); assertEquals(91, pubs.count());
assertEquals(49, sw_deduprecord); assertEquals(47, sw_deduprecord);
assertEquals(97, ds_deduprecord); assertEquals(97, ds_deduprecord);
assertEquals(92, orp_deduprecord); assertEquals(93, orp_deduprecord);
verifyRoot_1(mapper, pubs); verifyRoot_1(mapper, pubs);
@ -629,13 +745,13 @@ public class SparkDedupTest implements Serializable {
.distinct() .distinct()
.count(); .count();
assertEquals(902, publications); assertEquals(925, publications);
assertEquals(839, organizations); assertEquals(839, organizations);
assertEquals(100, projects); assertEquals(100, projects);
assertEquals(100, datasource); assertEquals(100, datasource);
assertEquals(198, softwares); assertEquals(196, softwares);
assertEquals(389, dataset); assertEquals(389, dataset);
assertEquals(520, otherresearchproduct); assertEquals(521, otherresearchproduct);
// System.out.println("publications = " + publications); // System.out.println("publications = " + publications);
// System.out.println("organizations = " + organizations); // System.out.println("organizations = " + organizations);

View File

@ -101,7 +101,8 @@
"type" : "String", "type" : "String",
"path" : "$.title[?(@.qualifier.classid == 'main title')].value", "path" : "$.title[?(@.qualifier.classid == 'main title')].value",
"length" : 250, "length" : 250,
"size" : 5 "size" : 5,
"clean": "title"
}, },
{ {
"name" : "authors", "name" : "authors",

View File

@ -101,7 +101,8 @@
"type" : "String", "type" : "String",
"path" : "$.title[?(@.qualifier.classid == 'main title')].value", "path" : "$.title[?(@.qualifier.classid == 'main title')].value",
"length" : 250, "length" : 250,
"size" : 5 "size" : 5,
"clean": "title"
}, },
{ {
"name" : "authors", "name" : "authors",

View File

@ -29,9 +29,8 @@
}, },
"pace": { "pace": {
"clustering" : [ "clustering" : [
{ "name" : "ngrampairs", "fields" : [ "title" ], "params" : { "max" : "1", "ngramLen" : "3"} }, { "name" : "numAuthorsTitleSuffixPrefixChain", "fields" : [ "num_authors", "title" ], "params" : { "mod" : "10" } },
{ "name" : "suffixprefix", "fields" : [ "title" ], "params" : { "max" : "1", "len" : "3" } }, { "name" : "jsonlistclustering", "fields" : [ "pid" ], "params" : { "jpath_value": "$.value", "jpath_classid": "$.qualifier.classid"} }
{ "name" : "lowercase", "fields" : [ "doi" ], "params" : { } }
], ],
"decisionTree": { "decisionTree": {
"start": { "start": {
@ -79,13 +78,37 @@
"ignoreUndefined": "false" "ignoreUndefined": "false"
}, },
"layer3": { "layer3": {
"fields": [
{
"field": "authors",
"comparator": "authorsMatch",
"weight": 1.0,
"countIfUndefined": "false",
"params": {
"surname_th": 0.75,
"fullname_th": 0.75,
"threshold": 0.6,
"mode": "full"
}
}
],
"threshold": 0.6,
"aggregation": "MAX",
"positive": "layer4",
"negative": "NO_MATCH",
"undefined": "MATCH",
"ignoreUndefined": "true"
},
"layer4": {
"fields": [ "fields": [
{ {
"field": "title", "field": "title",
"comparator": "levensteinTitle", "comparator": "levensteinTitle",
"weight": 1.0, "weight": 1.0,
"countIfUndefined": "true", "countIfUndefined": "true",
"params": {} "params": {
"threshold": "0.99"
}
} }
], ],
"threshold": 0.99, "threshold": 0.99,
@ -97,23 +120,25 @@
} }
}, },
"model": [ "model": [
{
"name": "doi",
"type": "String",
"path": "$.pid[?(@.qualifier.classid == 'doi')].value"
},
{ {
"name": "pid", "name": "pid",
"type": "JSON", "type": "JSON",
"path": "$.pid", "path": "$.pid",
"overrideMatch": "true" "overrideMatch": "true"
}, },
{
"name": "alternateid",
"type": "JSON",
"path": "$.instance[*].alternateIdentifier[*]",
"overrideMatch": "true"
},
{ {
"name": "title", "name": "title",
"type": "String", "type": "String",
"path": "$.title[?(@.qualifier.classid == 'main title')].value", "path": "$.title[?(@.qualifier.classid == 'main title')].value",
"length": 250, "length": 250,
"size": 5 "size": 5,
"clean": "title"
}, },
{ {
"name": "authors", "name": "authors",
@ -122,9 +147,9 @@
"size": 200 "size": 200
}, },
{ {
"name": "resulttype", "name": "num_authors",
"type": "String", "type": "String",
"path": "$.resulttype.classid" "path": "$.author.length()"
} }
], ],
"blacklists": { "blacklists": {

View File

@ -75,7 +75,8 @@
"type" : "String", "type" : "String",
"path" : "$.title[?(@.qualifier.classid == 'main title')].value", "path" : "$.title[?(@.qualifier.classid == 'main title')].value",
"length" : 250, "length" : 250,
"size" : 5 "size" : 5,
"clean": "title"
}, },
{ {
"name" : "url", "name" : "url",

View File

@ -0,0 +1 @@
{"id": "50|arXiv_______::c93aeb433eb90ed7a86e29be00791b7c", "firstUsage": "2022-01-01", "lastUsage": "2022-01-01", "dedupId": "50|arXiv_dedup_::c93aeb433eb90ed7a86e29be00791b7c" }

20
pom.xml
View File

@ -931,5 +931,25 @@
--> -->
</properties> </properties>
</profile> </profile>
<!-- Activate ARM-compatible snappy dependency on new Silicon Macs -->
<profile>
<id>arm-silicon-mac</id>
<activation>
<os>
<arch>aarch64</arch>
<family>mac</family>
</os>
</activation>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
<version>1.1.8.4</version>
</dependency>
</dependencies>
</dependencyManagement>
</profile>
</profiles> </profiles>
</project> </project>