forked from D-Net/dnet-hadoop
serialise records in the OAF-store-graph mdstores in json format. Read them again in the graph construction phase using a tolerant parser to support backward compatible changes in the evolution of the schema
This commit is contained in:
parent
fe7e5f4748
commit
a6977197b3
|
@ -1,7 +1,9 @@
|
|||
package eu.dnetlib.dhp.collection
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.schema.common.ModelSupport
|
||||
import eu.dnetlib.dhp.schema.oaf.{Oaf, OafEntity, Relation}
|
||||
import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode}
|
||||
|
||||
object CollectionUtils {
|
||||
|
||||
|
@ -46,4 +48,15 @@ object CollectionUtils {
|
|||
List()
|
||||
}
|
||||
|
||||
def saveDataset(d: Dataset[Oaf], targetPath: String):Unit = {
|
||||
implicit val resultEncoder: Encoder[Oaf] = Encoders.kryo(classOf[Oaf])
|
||||
val mapper = new ObjectMapper
|
||||
|
||||
d
|
||||
.flatMap(i => CollectionUtils.fixRelations(i))
|
||||
.filter(i => i != null)
|
||||
.map(r => mapper.writeValueAsString(r))(Encoders.STRING)
|
||||
.write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -2,14 +2,14 @@ package eu.dnetlib.dhp.datacite
|
|||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.AbstractScalaApplication
|
||||
import eu.dnetlib.dhp.collection.CollectionUtils.fixRelations
|
||||
import eu.dnetlib.dhp.collection.CollectionUtils
|
||||
import eu.dnetlib.dhp.common.Constants.{MDSTORE_DATA_PATH, MDSTORE_SIZE_PATH}
|
||||
import eu.dnetlib.dhp.common.vocabulary.VocabularyGroup
|
||||
import eu.dnetlib.dhp.schema.mdstore.{MDStoreVersion, MetadataRecord}
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf
|
||||
import eu.dnetlib.dhp.utils.DHPUtils.writeHdfsFile
|
||||
import eu.dnetlib.dhp.utils.ISLookupClientFactory
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
|
||||
|
@ -73,12 +73,12 @@ class GenerateDataciteDatasetSpark (propertyPath:String, args:Array[String], log
|
|||
implicit val mrEncoder: Encoder[MetadataRecord] = Encoders.kryo[MetadataRecord]
|
||||
|
||||
implicit val resEncoder: Encoder[Oaf] = Encoders.kryo[Oaf]
|
||||
CollectionUtils.saveDataset(
|
||||
spark.read.load(sourcePath).as[DataciteType]
|
||||
.filter(d => d.isActive)
|
||||
.flatMap(d => DataciteToOAFTransformation.generateOAF(d.json, d.timestamp, d.timestamp, vocabularies, exportLinks))
|
||||
.filter(d => d != null)
|
||||
.flatMap(i => fixRelations(i)).filter(i => i != null)
|
||||
.write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
.filter(d => d != null),
|
||||
targetPath)
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -6,7 +6,7 @@ import eu.dnetlib.dhp.schema.oaf.Oaf
|
|||
import eu.dnetlib.dhp.sx.bio.BioDBToOAF.ScholixResolved
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
object SparkTransformBioDatabaseToOAF {
|
||||
|
@ -36,13 +36,13 @@ object SparkTransformBioDatabaseToOAF {
|
|||
import spark.implicits._
|
||||
database.toUpperCase() match {
|
||||
case "UNIPROT" =>
|
||||
spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.uniprotToOAF(i))).flatMap(i => CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
CollectionUtils.saveDataset(spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.uniprotToOAF(i))), targetPath)
|
||||
case "PDB" =>
|
||||
spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.pdbTOOaf(i))).flatMap(i => CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
CollectionUtils.saveDataset(spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.pdbTOOaf(i))), targetPath)
|
||||
case "SCHOLIX" =>
|
||||
spark.read.load(dbPath).as[ScholixResolved].map(i => BioDBToOAF.scholixResolvedToOAF(i)).flatMap(i => CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
CollectionUtils.saveDataset(spark.read.load(dbPath).as[ScholixResolved].map(i => BioDBToOAF.scholixResolvedToOAF(i)), targetPath)
|
||||
case "CROSSREF_LINKS" =>
|
||||
spark.createDataset(sc.textFile(dbPath).map(i => BioDBToOAF.crossrefLinksToOaf(i))).flatMap(i => CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
CollectionUtils.saveDataset(spark.createDataset(sc.textFile(dbPath).map(i => BioDBToOAF.crossrefLinksToOaf(i))), targetPath)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
package eu.dnetlib.dhp.sx.bio.ebi
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.collection.CollectionUtils
|
||||
import eu.dnetlib.dhp.common.vocabulary.VocabularyGroup
|
||||
import eu.dnetlib.dhp.schema.oaf.Result
|
||||
import eu.dnetlib.dhp.schema.oaf.{Oaf, Result}
|
||||
import eu.dnetlib.dhp.sx.bio.pubmed._
|
||||
import eu.dnetlib.dhp.utils.ISLookupClientFactory
|
||||
import org.apache.commons.io.IOUtils
|
||||
|
@ -177,7 +178,7 @@ object SparkCreateBaselineDataFrame {
|
|||
implicit val PMEncoder: Encoder[PMArticle] = Encoders.kryo(classOf[PMArticle])
|
||||
implicit val PMJEncoder: Encoder[PMJournal] = Encoders.kryo(classOf[PMJournal])
|
||||
implicit val PMAEncoder: Encoder[PMAuthor] = Encoders.kryo(classOf[PMAuthor])
|
||||
implicit val resultEncoder: Encoder[Result] = Encoders.kryo(classOf[Result])
|
||||
implicit val resultEncoder: Encoder[Oaf] = Encoders.kryo(classOf[Oaf])
|
||||
|
||||
if (!"true".equalsIgnoreCase(skipUpdate)) {
|
||||
downloadBaseLineUpdate(s"$workingPath/baseline", hdfsServerUri)
|
||||
|
@ -192,9 +193,10 @@ object SparkCreateBaselineDataFrame {
|
|||
}
|
||||
|
||||
val exported_dataset = spark.read.load(s"$workingPath/baseline_dataset").as[PMArticle]
|
||||
exported_dataset
|
||||
.map(a => PubMedToOaf.convert(a, vocabularies)).as[Result]
|
||||
.filter(p => p != null)
|
||||
.write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
CollectionUtils.saveDataset(exported_dataset
|
||||
.map(a => PubMedToOaf.convert(a, vocabularies)).as[Oaf]
|
||||
.filter(p => p != null),
|
||||
targetPath)
|
||||
|
||||
}
|
||||
}
|
||||
|
|
|
@ -34,10 +34,9 @@ object SparkEBILinksToOaf {
|
|||
|
||||
val ebLinks: Dataset[EBILinkItem] = spark.read.load(sourcePath).as[EBILinkItem].filter(l => l.links != null && l.links.startsWith("{"))
|
||||
|
||||
ebLinks.flatMap(j => BioDBToOAF.parse_ebi_links(j.links))
|
||||
CollectionUtils.saveDataset(ebLinks.flatMap(j => BioDBToOAF.parse_ebi_links(j.links))
|
||||
.filter(p => BioDBToOAF.EBITargetLinksFilter(p))
|
||||
.flatMap(p => BioDBToOAF.convertEBILinksToOaf(p))
|
||||
.flatMap(i => CollectionUtils.fixRelations(i)).filter(i => i != null)
|
||||
.write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
.flatMap(p => BioDBToOAF.convertEBILinksToOaf(p)),
|
||||
targetPath)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -109,7 +109,7 @@ object PubMedToOaf {
|
|||
* @param vocabularies the vocabularies
|
||||
* @return The OAF instance if the mapping did not fail
|
||||
*/
|
||||
def convert(article: PMArticle, vocabularies: VocabularyGroup): Result = {
|
||||
def convert(article: PMArticle, vocabularies: VocabularyGroup): Oaf = {
|
||||
|
||||
if (article.getPublicationTypes == null)
|
||||
return null
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
package eu.dnetlib.dhp.oa.graph.raw
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import com.fasterxml.jackson.databind.{DeserializationFeature, ObjectMapper}
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.common.HdfsSupport
|
||||
import eu.dnetlib.dhp.schema.common.ModelSupport
|
||||
|
@ -8,7 +8,10 @@ import eu.dnetlib.dhp.schema.oaf.Oaf
|
|||
import eu.dnetlib.dhp.utils.DHPUtils
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.apache.spark.{SparkConf, SparkContext}
|
||||
import org.json4s.DefaultFormats
|
||||
import org.json4s.jackson.JsonMethods.parse
|
||||
import org.slf4j.LoggerFactory
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
import scala.io.Source
|
||||
|
||||
|
@ -45,18 +48,21 @@ object CopyHdfsOafSparkApplication {
|
|||
log.info("hdfsPath: {}", hdfsPath)
|
||||
|
||||
implicit val oafEncoder: Encoder[Oaf] = Encoders.kryo[Oaf]
|
||||
import spark.implicits._
|
||||
|
||||
val paths = DHPUtils.mdstorePaths(mdstoreManagerUrl, mdFormat, mdLayout, mdInterpretation, true).asScala
|
||||
|
||||
val validPaths: List[String] = paths.filter(p => HdfsSupport.exists(p, sc.hadoopConfiguration)).toList
|
||||
|
||||
if (validPaths.nonEmpty) {
|
||||
val oaf = spark.read.load(validPaths: _*).as[Oaf]
|
||||
val mapper = new ObjectMapper()
|
||||
val l = ModelSupport.oafTypes.entrySet.asScala.map(e => e.getKey).toList
|
||||
val oaf = spark.read.load(validPaths: _*).as[String]
|
||||
val mapper = new ObjectMapper().configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
|
||||
val l = ModelSupport.oafTypes.entrySet.asScala.toList
|
||||
l.foreach(
|
||||
e =>
|
||||
oaf.filter(o => o.getClass.getSimpleName.equalsIgnoreCase(e))
|
||||
oaf
|
||||
.filter(o => isOafType(o, e.getKey))
|
||||
.map(j => mapper.readValue(j, e.getValue).asInstanceOf[Oaf])
|
||||
.map(s => mapper.writeValueAsString(s))(Encoders.STRING)
|
||||
.write
|
||||
.option("compression", "gzip")
|
||||
|
@ -65,4 +71,20 @@ object CopyHdfsOafSparkApplication {
|
|||
)
|
||||
}
|
||||
}
|
||||
|
||||
def isOafType(input: String, oafType: String): Boolean = {
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: org.json4s.JValue = parse(input)
|
||||
if (oafType == "relation") {
|
||||
val hasSource = (json \ "source").extractOrElse[String](null)
|
||||
val hasTarget = (json \ "target").extractOrElse[String](null)
|
||||
|
||||
hasSource != null && hasTarget != null
|
||||
} else {
|
||||
val hasId = (json \ "id").extractOrElse[String](null)
|
||||
val resultType = (json \ "resulttype" \ "classid").extractOrElse[String](null)
|
||||
hasId != null && oafType.equalsIgnoreCase(resultType)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue