diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/sx/graphimport/SparkDataciteToOAF.scala b/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/sx/graphimport/SparkDataciteToOAF.scala deleted file mode 100644 index 9e905d806b..0000000000 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/sx/graphimport/SparkDataciteToOAF.scala +++ /dev/null @@ -1,31 +0,0 @@ -package eu.dnetlib.dhp.oa.sx.graphimport - -import eu.dnetlib.dhp.application.ArgumentApplicationParser -import org.apache.commons.io.IOUtils -import org.apache.spark.SparkConf -import org.apache.spark.sql.SparkSession - -object SparkDataciteToOAF { - - - def main(args: Array[String]): Unit = { - val conf: SparkConf = new SparkConf() - val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/sx/ebi/datacite_to_df_params.json"))) - parser.parseArgument(args) - val spark: SparkSession = - SparkSession - .builder() - .config(conf) - .appName(getClass.getSimpleName) - .master(parser.get("master")).getOrCreate() - import spark.implicits._ - - - val sc = spark.sparkContext - - val inputPath = parser.get("inputPath") - - - } - -} diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/Aggregators.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/Aggregators.scala similarity index 100% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/Aggregators.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/Aggregators.scala index ce383292c1..ad4e1c96ea 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/Aggregators.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/Aggregators.scala @@ -1,8 +1,8 @@ package eu.dnetlib.dhp.oa.graph.hostedbymap import eu.dnetlib.dhp.oa.graph.hostedbymap.model.EntityInfo -import org.apache.spark.sql.{Dataset, Encoder, Encoders, TypedColumn} import org.apache.spark.sql.expressions.Aggregator +import org.apache.spark.sql.{Dataset, Encoder, Encoders, TypedColumn} case class HostedByItemType(id: String, officialname: String, issn: String, eissn: String, lissn: String, openAccess: Boolean) {} diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToDatasource.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToDatasource.scala similarity index 81% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToDatasource.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToDatasource.scala index 1b18ba3ae4..38af3eee4e 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToDatasource.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToDatasource.scala @@ -2,13 +2,12 @@ package eu.dnetlib.dhp.oa.graph.hostedbymap import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser -import eu.dnetlib.dhp.oa.graph.hostedbymap.SparkApplyHostedByMapToResult.{applyHBtoPubs, getClass} import eu.dnetlib.dhp.oa.graph.hostedbymap.model.EntityInfo import eu.dnetlib.dhp.schema.common.ModelConstants -import eu.dnetlib.dhp.schema.oaf.{Datasource, Publication} +import eu.dnetlib.dhp.schema.oaf.Datasource import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql._ import org.json4s.DefaultFormats import org.slf4j.{Logger, LoggerFactory} @@ -52,18 +51,18 @@ object SparkApplyHostedByMapToDatasource { val mapper = new ObjectMapper() - val dats : Dataset[Datasource] = spark.read.textFile(graphPath + "/datasource") + val dats: Dataset[Datasource] = spark.read.textFile(graphPath + "/datasource") .map(r => mapper.readValue(r, classOf[Datasource])) - val pinfo : Dataset[EntityInfo] = Aggregators.datasourceToSingleId( spark.read.textFile(preparedInfoPath) + val pinfo: Dataset[EntityInfo] = Aggregators.datasourceToSingleId(spark.read.textFile(preparedInfoPath) .map(ei => mapper.readValue(ei, classOf[EntityInfo]))) - applyHBtoDats(pinfo, dats).write.mode(SaveMode.Overwrite).option("compression","gzip").json(outputPath) + applyHBtoDats(pinfo, dats).write.mode(SaveMode.Overwrite).option("compression", "gzip").json(outputPath) spark.read.textFile(outputPath) .write .mode(SaveMode.Overwrite) - .option("compression","gzip") + .option("compression", "gzip") .text(graphPath + "/datasource") } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToResult.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToResult.scala similarity index 85% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToResult.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToResult.scala index 0e047d0169..d360da2e98 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToResult.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkApplyHostedByMapToResult.scala @@ -5,16 +5,13 @@ import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.oa.graph.hostedbymap.model.EntityInfo import eu.dnetlib.dhp.schema.common.ModelConstants import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils -import eu.dnetlib.dhp.schema.oaf.{Datasource, Instance, OpenAccessRoute, Publication} +import eu.dnetlib.dhp.schema.oaf.{Instance, OpenAccessRoute, Publication} import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql._ import org.json4s.DefaultFormats import org.slf4j.{Logger, LoggerFactory} - import scala.collection.JavaConverters._ - - object SparkApplyHostedByMapToResult { def applyHBtoPubs(join: Dataset[EntityInfo], pubs: Dataset[Publication]) = { @@ -39,6 +36,7 @@ object SparkApplyHostedByMapToResult { p })(Encoders.bean(classOf[Publication])) } + def main(args: Array[String]): Unit = { @@ -67,18 +65,18 @@ object SparkApplyHostedByMapToResult { implicit val mapEncoderEinfo: Encoder[EntityInfo] = Encoders.bean(classOf[EntityInfo]) val mapper = new ObjectMapper() - val pubs : Dataset[Publication] = spark.read.textFile(graphPath + "/publication") + val pubs: Dataset[Publication] = spark.read.textFile(graphPath + "/publication") .map(r => mapper.readValue(r, classOf[Publication])) - val pinfo : Dataset[EntityInfo] = spark.read.textFile(preparedInfoPath) - .map(ei => mapper.readValue(ei, classOf[EntityInfo])) + val pinfo: Dataset[EntityInfo] = spark.read.textFile(preparedInfoPath) + .map(ei => mapper.readValue(ei, classOf[EntityInfo])) - applyHBtoPubs(pinfo, pubs).write.mode(SaveMode.Overwrite).option("compression","gzip").json(outputPath) + applyHBtoPubs(pinfo, pubs).write.mode(SaveMode.Overwrite).option("compression", "gzip").json(outputPath) spark.read.textFile(outputPath) .write .mode(SaveMode.Overwrite) - .option("compression","gzip") + .option("compression", "gzip") .text(graphPath + "/publication") } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkPrepareHostedByInfoToApply.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkPrepareHostedByInfoToApply.scala similarity index 74% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkPrepareHostedByInfoToApply.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkPrepareHostedByInfoToApply.scala index b7a7d352f2..87e203e4b3 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkPrepareHostedByInfoToApply.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkPrepareHostedByInfoToApply.scala @@ -3,61 +3,58 @@ package eu.dnetlib.dhp.oa.graph.hostedbymap import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.oa.graph.hostedbymap.model.EntityInfo - import eu.dnetlib.dhp.schema.oaf.{Journal, Publication} import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql._ import org.json4s import org.json4s.DefaultFormats import org.json4s.jackson.JsonMethods.parse import org.slf4j.{Logger, LoggerFactory} - - object SparkPrepareHostedByInfoToApply { implicit val mapEncoderPInfo: Encoder[EntityInfo] = Encoders.bean(classOf[EntityInfo]) - def getList(id: String, j: Journal, name: String ) : List[EntityInfo] = { - var lst:List[EntityInfo] = List() + def getList(id: String, j: Journal, name: String): List[EntityInfo] = { + var lst: List[EntityInfo] = List() - if (j.getIssnLinking != null && !j.getIssnLinking.equals("")){ + if (j.getIssnLinking != null && !j.getIssnLinking.equals("")) { lst = EntityInfo.newInstance(id, j.getIssnLinking, name) :: lst } - if (j.getIssnOnline != null && !j.getIssnOnline.equals("")){ + if (j.getIssnOnline != null && !j.getIssnOnline.equals("")) { lst = EntityInfo.newInstance(id, j.getIssnOnline, name) :: lst } - if (j.getIssnPrinted != null && !j.getIssnPrinted.equals("")){ + if (j.getIssnPrinted != null && !j.getIssnPrinted.equals("")) { lst = EntityInfo.newInstance(id, j.getIssnPrinted, name) :: lst } lst } - def prepareResultInfo(spark:SparkSession, publicationPath:String) : Dataset[EntityInfo] = { + def prepareResultInfo(spark: SparkSession, publicationPath: String): Dataset[EntityInfo] = { implicit val mapEncoderPubs: Encoder[Publication] = Encoders.bean(classOf[Publication]) val mapper = new ObjectMapper() - val dd : Dataset[Publication] = spark.read.textFile(publicationPath) + val dd: Dataset[Publication] = spark.read.textFile(publicationPath) .map(r => mapper.readValue(r, classOf[Publication])) - dd.filter(p => p.getJournal != null ).flatMap(p => getList(p.getId, p.getJournal, "")) + dd.filter(p => p.getJournal != null).flatMap(p => getList(p.getId, p.getJournal, "")) } - def toEntityInfo(input:String): EntityInfo = { + def toEntityInfo(input: String): EntityInfo = { implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats lazy val json: json4s.JValue = parse(input) - val c :Map[String,HostedByItemType] = json.extract[Map[String, HostedByItemType]] + val c: Map[String, HostedByItemType] = json.extract[Map[String, HostedByItemType]] toEntityItem(c.keys.head, c.values.head) } - def toEntityItem(journal_id: String , hbi: HostedByItemType): EntityInfo = { + def toEntityItem(journal_id: String, hbi: HostedByItemType): EntityInfo = { EntityInfo.newInstance(hbi.id, journal_id, hbi.officialname, hbi.openAccess) @@ -67,7 +64,7 @@ object SparkPrepareHostedByInfoToApply { Aggregators.resultToSingleId(res.joinWith(hbm, res.col("journalId").equalTo(hbm.col("journalId")), "left") .map(t2 => { val res: EntityInfo = t2._1 - if(t2._2 != null ){ + if (t2._2 != null) { val ds = t2._2 res.setHostedById(ds.getId) res.setOpenAccess(ds.getOpenAccess) @@ -107,10 +104,10 @@ object SparkPrepareHostedByInfoToApply { //STEP1: read the hostedbymap and transform it in EntityInfo - val hostedByInfo:Dataset[EntityInfo] = spark.createDataset(spark.sparkContext.textFile(hostedByMapPath)).map(toEntityInfo) + val hostedByInfo: Dataset[EntityInfo] = spark.createDataset(spark.sparkContext.textFile(hostedByMapPath)).map(toEntityInfo) - //STEP2: create association (publication, issn), (publication, eissn), (publication, lissn) - val resultInfoDataset:Dataset[EntityInfo] = prepareResultInfo(spark, graphPath + "/publication") + //STEP2: create association (publication, issn), (publication, eissn), (publication, lissn) + val resultInfoDataset: Dataset[EntityInfo] = prepareResultInfo(spark, graphPath + "/publication") //STEP3: left join resultInfo with hostedByInfo on journal_id. Reduction of all the results with the same id in just //one entry (one result could be associated to issn and eissn and so possivly matching more than once against the map) diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkProduceHostedByMap.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkProduceHostedByMap.scala similarity index 61% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkProduceHostedByMap.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkProduceHostedByMap.scala index 1ee1d5d1ab..6dfe356239 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkProduceHostedByMap.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/SparkProduceHostedByMap.scala @@ -1,41 +1,39 @@ package eu.dnetlib.dhp.oa.graph.hostedbymap +import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.oa.graph.hostedbymap.model.{DOAJModel, UnibiGoldModel} import eu.dnetlib.dhp.schema.oaf.Datasource import org.apache.commons.io.IOUtils +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.{FileSystem, Path} +import org.apache.hadoop.io.compress.GzipCodec import org.apache.spark.SparkConf -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql.{Dataset, Encoder, Encoders, SparkSession} import org.json4s.DefaultFormats import org.slf4j.{Logger, LoggerFactory} -import com.fasterxml.jackson.databind.ObjectMapper -import org.apache.hadoop.conf.Configuration -import org.apache.hadoop.fs.FileSystem -import org.apache.hadoop.fs.Path + import java.io.PrintWriter -import org.apache.hadoop.io.compress.GzipCodec - - object SparkProduceHostedByMap { implicit val tupleForJoinEncoder: Encoder[(String, HostedByItemType)] = Encoders.tuple(Encoders.STRING, Encoders.product[HostedByItemType]) - def toHostedByItemType(input: ((HostedByInfo, HostedByInfo), HostedByInfo)) : HostedByItemType = { + def toHostedByItemType(input: ((HostedByInfo, HostedByInfo), HostedByInfo)): HostedByItemType = { val openaire: HostedByInfo = input._1._1 val doaj: HostedByInfo = input._1._2 val gold: HostedByInfo = input._2 val isOpenAccess: Boolean = doaj == null && gold == null openaire.journal_id match { - case Constants.ISSN => HostedByItemType(openaire.id, openaire.officialname, openaire.journal_id, "", "", isOpenAccess) - case Constants.EISSN => HostedByItemType(openaire.id, openaire.officialname, "", openaire.journal_id, "", isOpenAccess) - case Constants.ISSNL => HostedByItemType(openaire.id, openaire.officialname, "", "", openaire.journal_id, isOpenAccess) + case Constants.ISSN => HostedByItemType(openaire.id, openaire.officialname, openaire.journal_id, "", "", isOpenAccess) + case Constants.EISSN => HostedByItemType(openaire.id, openaire.officialname, "", openaire.journal_id, "", isOpenAccess) + case Constants.ISSNL => HostedByItemType(openaire.id, openaire.officialname, "", "", openaire.journal_id, isOpenAccess) // catch the default with a variable so you can print it - case whoa => null + case whoa => null } } @@ -44,7 +42,7 @@ object SparkProduceHostedByMap { implicit val formats = org.json4s.DefaultFormats - val map: Map [String, HostedByItemType] = Map (input._1 -> input._2 ) + val map: Map[String, HostedByItemType] = Map(input._1 -> input._2) Serialization.write(map) @@ -52,34 +50,33 @@ object SparkProduceHostedByMap { } - - def getHostedByItemType(id:String, officialname: String, issn:String, eissn:String, issnl:String, oa:Boolean): HostedByItemType = { - if(issn != null){ - if(eissn != null){ - if(issnl != null){ - HostedByItemType(id, officialname, issn, eissn, issnl , oa) - }else{ - HostedByItemType(id, officialname, issn, eissn, "" , oa) + def getHostedByItemType(id: String, officialname: String, issn: String, eissn: String, issnl: String, oa: Boolean): HostedByItemType = { + if (issn != null) { + if (eissn != null) { + if (issnl != null) { + HostedByItemType(id, officialname, issn, eissn, issnl, oa) + } else { + HostedByItemType(id, officialname, issn, eissn, "", oa) } - }else{ - if(issnl != null){ - HostedByItemType(id, officialname, issn, "", issnl , oa) - }else{ - HostedByItemType(id, officialname, issn, "", "" , oa) + } else { + if (issnl != null) { + HostedByItemType(id, officialname, issn, "", issnl, oa) + } else { + HostedByItemType(id, officialname, issn, "", "", oa) } } - }else{ - if(eissn != null){ - if(issnl != null){ - HostedByItemType(id, officialname, "", eissn, issnl , oa) - }else{ - HostedByItemType(id, officialname, "", eissn, "" , oa) + } else { + if (eissn != null) { + if (issnl != null) { + HostedByItemType(id, officialname, "", eissn, issnl, oa) + } else { + HostedByItemType(id, officialname, "", eissn, "", oa) } - }else{ - if(issnl != null){ - HostedByItemType(id, officialname, "", "", issnl , oa) - }else{ - HostedByItemType("", "", "", "", "" , oa) + } else { + if (issnl != null) { + HostedByItemType(id, officialname, "", "", issnl, oa) + } else { + HostedByItemType("", "", "", "", "", oa) } } } @@ -90,10 +87,10 @@ object SparkProduceHostedByMap { return getHostedByItemType(dats.getId, dats.getOfficialname.getValue, dats.getJournal.getIssnPrinted, dats.getJournal.getIssnOnline, dats.getJournal.getIssnLinking, false) } - HostedByItemType("","","","","",false) + HostedByItemType("", "", "", "", "", false) } - def oaHostedByDataset(spark:SparkSession, datasourcePath : String) : Dataset[HostedByItemType] = { + def oaHostedByDataset(spark: SparkSession, datasourcePath: String): Dataset[HostedByItemType] = { import spark.implicits._ @@ -102,10 +99,10 @@ object SparkProduceHostedByMap { implicit var encoderD = Encoders.kryo[Datasource] - val dd : Dataset[Datasource] = spark.read.textFile(datasourcePath) + val dd: Dataset[Datasource] = spark.read.textFile(datasourcePath) .map(r => mapper.readValue(r, classOf[Datasource])) - dd.map{ddt => oaToHostedbyItemType(ddt)}.filter(hb => !(hb.id.equals(""))) + dd.map { ddt => oaToHostedbyItemType(ddt) }.filter(hb => !(hb.id.equals(""))) } @@ -115,17 +112,17 @@ object SparkProduceHostedByMap { } - def goldHostedByDataset(spark:SparkSession, datasourcePath:String) : Dataset[HostedByItemType] = { + def goldHostedByDataset(spark: SparkSession, datasourcePath: String): Dataset[HostedByItemType] = { import spark.implicits._ implicit val mapEncoderUnibi: Encoder[UnibiGoldModel] = Encoders.kryo[UnibiGoldModel] val mapper = new ObjectMapper() - val dd : Dataset[UnibiGoldModel] = spark.read.textFile(datasourcePath) + val dd: Dataset[UnibiGoldModel] = spark.read.textFile(datasourcePath) .map(r => mapper.readValue(r, classOf[UnibiGoldModel])) - dd.map{ddt => goldToHostedbyItemType(ddt)}.filter(hb => !(hb.id.equals(""))) + dd.map { ddt => goldToHostedbyItemType(ddt) }.filter(hb => !(hb.id.equals(""))) } @@ -134,41 +131,40 @@ object SparkProduceHostedByMap { return getHostedByItemType(Constants.DOAJ, doaj.getJournalTitle, doaj.getIssn, doaj.getEissn, "", true) } - def doajHostedByDataset(spark:SparkSession, datasourcePath:String) : Dataset[HostedByItemType] = { + def doajHostedByDataset(spark: SparkSession, datasourcePath: String): Dataset[HostedByItemType] = { import spark.implicits._ implicit val mapEncoderDOAJ: Encoder[DOAJModel] = Encoders.kryo[DOAJModel] val mapper = new ObjectMapper() - val dd : Dataset[DOAJModel] = spark.read.textFile(datasourcePath) + val dd: Dataset[DOAJModel] = spark.read.textFile(datasourcePath) .map(r => mapper.readValue(r, classOf[DOAJModel])) - dd.map{ddt => doajToHostedbyItemType(ddt)}.filter(hb => !(hb.id.equals(""))) + dd.map { ddt => doajToHostedbyItemType(ddt) }.filter(hb => !(hb.id.equals(""))) } def toList(input: HostedByItemType): List[(String, HostedByItemType)] = { - var lst : List[(String, HostedByItemType)] = List() - if(!input.issn.equals("")){ + var lst: List[(String, HostedByItemType)] = List() + if (!input.issn.equals("")) { lst = (input.issn, input) :: lst } - if(!input.eissn.equals("")){ + if (!input.eissn.equals("")) { lst = (input.eissn, input) :: lst } - if(!input.lissn.equals("")){ + if (!input.lissn.equals("")) { lst = (input.lissn, input) :: lst } lst } - - def writeToHDFS(input: Array[String], outputPath: String, hdfsNameNode : String):Unit = { + def writeToHDFS(input: Array[String], outputPath: String, hdfsNameNode: String): Unit = { val conf = new Configuration() conf.set("fs.defaultFS", hdfsNameNode) - val fs= FileSystem.get(conf) + val fs = FileSystem.get(conf) val output = fs.create(new Path(outputPath)) val writer = new PrintWriter(output) try { @@ -182,7 +178,6 @@ object SparkProduceHostedByMap { } - def main(args: Array[String]): Unit = { val logger: Logger = LoggerFactory.getLogger(getClass) @@ -213,7 +208,7 @@ object SparkProduceHostedByMap { .union(doajHostedByDataset(spark, workingDirPath + "/doaj.json")) .flatMap(hbi => toList(hbi))).filter(hbi => hbi._2.id.startsWith("10|")) .map(hbi => toHostedByMap(hbi))(Encoders.STRING) - .rdd.saveAsTextFile(outputPath , classOf[GzipCodec]) + .rdd.saveAsTextFile(outputPath, classOf[GzipCodec]) } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/raw/CopyHdfsOafSparkApplication.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/raw/CopyHdfsOafSparkApplication.scala similarity index 88% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/raw/CopyHdfsOafSparkApplication.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/raw/CopyHdfsOafSparkApplication.scala index c7ad1890de..0179cc2663 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/raw/CopyHdfsOafSparkApplication.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/raw/CopyHdfsOafSparkApplication.scala @@ -4,20 +4,14 @@ import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.common.HdfsSupport import eu.dnetlib.dhp.schema.common.ModelSupport -import eu.dnetlib.dhp.schema.mdstore.MDStoreWithInfo import eu.dnetlib.dhp.schema.oaf.Oaf import eu.dnetlib.dhp.utils.DHPUtils -import org.apache.commons.io.IOUtils -import org.apache.commons.lang3.StringUtils -import org.apache.http.client.methods.HttpGet -import org.apache.http.impl.client.HttpClients import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession} import org.apache.spark.{SparkConf, SparkContext} import org.slf4j.LoggerFactory -import scala.collection.JavaConverters._ import scala.io.Source - +import scala.collection.JavaConverters._ object CopyHdfsOafSparkApplication { def main(args: Array[String]): Unit = { @@ -59,7 +53,7 @@ object CopyHdfsOafSparkApplication { if (validPaths.nonEmpty) { val oaf = spark.read.load(validPaths: _*).as[Oaf] val mapper = new ObjectMapper() - val l =ModelSupport.oafTypes.entrySet.asScala.map(e => e.getKey).toList + val l = ModelSupport.oafTypes.entrySet.asScala.map(e => e.getKey).toList l.foreach( e => oaf.filter(o => o.getClass.getSimpleName.equalsIgnoreCase(e)) diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveEntities.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveEntities.scala similarity index 79% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveEntities.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveEntities.scala index 316b8afed9..6b4a501d6b 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveEntities.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveEntities.scala @@ -2,7 +2,6 @@ package eu.dnetlib.dhp.oa.graph.resolution import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser -import eu.dnetlib.dhp.common.HdfsSupport import eu.dnetlib.dhp.schema.common.EntityType import eu.dnetlib.dhp.schema.oaf.{OtherResearchProduct, Publication, Result, Software, Dataset => OafDataset} import org.apache.commons.io.IOUtils @@ -14,7 +13,7 @@ import org.slf4j.{Logger, LoggerFactory} object SparkResolveEntities { val mapper = new ObjectMapper() - val entities = List(EntityType.dataset,EntityType.publication, EntityType.software, EntityType.otherresearchproduct) + val entities = List(EntityType.dataset, EntityType.publication, EntityType.software, EntityType.otherresearchproduct) def main(args: Array[String]): Unit = { val log: Logger = LoggerFactory.getLogger(getClass) @@ -51,10 +50,10 @@ object SparkResolveEntities { fs.rename(new Path(s"$workingPath/resolvedGraph/$e"), new Path(s"$graphBasePath/$e")) } -} + } -def resolveEntities(spark: SparkSession, workingPath: String, unresolvedPath: String) = { + def resolveEntities(spark: SparkSession, workingPath: String, unresolvedPath: String) = { implicit val resEncoder: Encoder[Result] = Encoders.kryo(classOf[Result]) import spark.implicits._ @@ -71,22 +70,22 @@ def resolveEntities(spark: SparkSession, workingPath: String, unresolvedPath: St } - def deserializeObject(input:String, entity:EntityType ) :Result = { + def deserializeObject(input: String, entity: EntityType): Result = { - entity match { - case EntityType.publication => mapper.readValue(input, classOf[Publication]) - case EntityType.dataset => mapper.readValue(input, classOf[OafDataset]) - case EntityType.software=> mapper.readValue(input, classOf[Software]) - case EntityType.otherresearchproduct=> mapper.readValue(input, classOf[OtherResearchProduct]) - } + entity match { + case EntityType.publication => mapper.readValue(input, classOf[Publication]) + case EntityType.dataset => mapper.readValue(input, classOf[OafDataset]) + case EntityType.software => mapper.readValue(input, classOf[Software]) + case EntityType.otherresearchproduct => mapper.readValue(input, classOf[OtherResearchProduct]) + } } - def generateResolvedEntities(spark:SparkSession, workingPath: String, graphBasePath:String) = { + def generateResolvedEntities(spark: SparkSession, workingPath: String, graphBasePath: String) = { implicit val resEncoder: Encoder[Result] = Encoders.kryo(classOf[Result]) import spark.implicits._ - val re:Dataset[Result] = spark.read.load(s"$workingPath/resolvedEntities").as[Result] + val re: Dataset[Result] = spark.read.load(s"$workingPath/resolvedEntities").as[Result] entities.foreach { e => diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveRelation.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveRelation.scala similarity index 99% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveRelation.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveRelation.scala index cd517dd5e2..c7f9b2d0e3 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveRelation.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/oa/graph/resolution/SparkResolveRelation.scala @@ -3,7 +3,7 @@ package eu.dnetlib.dhp.oa.graph.resolution import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.common.HdfsSupport -import eu.dnetlib.dhp.schema.oaf.{Relation, Result} +import eu.dnetlib.dhp.schema.oaf.Relation import eu.dnetlib.dhp.utils.DHPUtils import org.apache.commons.io.IOUtils import org.apache.hadoop.fs.{FileSystem, Path} diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertDatasetToJsonRDD.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertDatasetToJsonRDD.scala similarity index 69% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertDatasetToJsonRDD.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertDatasetToJsonRDD.scala index 3ee0c7dd6a..9d16cf907e 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertDatasetToJsonRDD.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertDatasetToJsonRDD.scala @@ -2,7 +2,7 @@ package eu.dnetlib.dhp.sx.graph import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser -import eu.dnetlib.dhp.schema.oaf.{Oaf, OtherResearchProduct, Publication, Result, Software, Dataset => OafDataset} +import eu.dnetlib.dhp.schema.oaf.Result import org.apache.commons.io.IOUtils import org.apache.hadoop.io.compress.GzipCodec import org.apache.spark.SparkConf @@ -29,13 +29,13 @@ object SparkConvertDatasetToJsonRDD { val targetPath = parser.get("targetPath") log.info(s"targetPath -> $targetPath") - val resultObject = List("publication","dataset","software", "otherResearchProduct") + val resultObject = List("publication", "dataset", "software", "otherResearchProduct") val mapper = new ObjectMapper() - implicit val oafEncoder: Encoder[Result] = Encoders.kryo(classOf[Result]) + implicit val oafEncoder: Encoder[Result] = Encoders.kryo(classOf[Result]) - resultObject.foreach{item => - spark.read.load(s"$sourcePath/$item").as[Result].map(r=> mapper.writeValueAsString(r))(Encoders.STRING).rdd.saveAsTextFile(s"$targetPath/${item.toLowerCase}", classOf[GzipCodec]) + resultObject.foreach { item => + spark.read.load(s"$sourcePath/$item").as[Result].map(r => mapper.writeValueAsString(r))(Encoders.STRING).rdd.saveAsTextFile(s"$targetPath/${item.toLowerCase}", classOf[GzipCodec]) } } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertObjectToJson.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertObjectToJson.scala similarity index 83% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertObjectToJson.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertObjectToJson.scala index 846ac37af2..cc1b97fd6e 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertObjectToJson.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertObjectToJson.scala @@ -5,10 +5,10 @@ import eu.dnetlib.dhp.application.ArgumentApplicationParser import eu.dnetlib.dhp.schema.sx.scholix.Scholix import eu.dnetlib.dhp.schema.sx.summary.ScholixSummary import org.apache.commons.io.IOUtils +import org.apache.hadoop.io.compress.GzipCodec import org.apache.spark.SparkConf import org.apache.spark.sql.{Dataset, Encoder, Encoders, SparkSession} import org.slf4j.{Logger, LoggerFactory} -import org.apache.hadoop.io.compress._ object SparkConvertObjectToJson { @@ -32,8 +32,8 @@ object SparkConvertObjectToJson { log.info(s"objectType -> $objectType") - implicit val scholixEncoder :Encoder[Scholix]= Encoders.kryo[Scholix] - implicit val summaryEncoder :Encoder[ScholixSummary]= Encoders.kryo[ScholixSummary] + implicit val scholixEncoder: Encoder[Scholix] = Encoders.kryo[Scholix] + implicit val summaryEncoder: Encoder[ScholixSummary] = Encoders.kryo[ScholixSummary] val mapper = new ObjectMapper @@ -42,11 +42,11 @@ object SparkConvertObjectToJson { case "scholix" => log.info("Serialize Scholix") val d: Dataset[Scholix] = spark.read.load(sourcePath).as[Scholix] - d.map(s => mapper.writeValueAsString(s))(Encoders.STRING).rdd.repartition(6000).saveAsTextFile(targetPath, classOf[GzipCodec]) + d.map(s => mapper.writeValueAsString(s))(Encoders.STRING).rdd.repartition(6000).saveAsTextFile(targetPath, classOf[GzipCodec]) case "summary" => log.info("Serialize Summary") val d: Dataset[ScholixSummary] = spark.read.load(sourcePath).as[ScholixSummary] - d.map(s => mapper.writeValueAsString(s))(Encoders.STRING).rdd.repartition(1000).saveAsTextFile(targetPath, classOf[GzipCodec]) + d.map(s => mapper.writeValueAsString(s))(Encoders.STRING).rdd.repartition(1000).saveAsTextFile(targetPath, classOf[GzipCodec]) } } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertRDDtoDataset.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertRDDtoDataset.scala similarity index 62% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertRDDtoDataset.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertRDDtoDataset.scala index 4b82fe6455..2eb5e3a35a 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkConvertRDDtoDataset.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkConvertRDDtoDataset.scala @@ -2,11 +2,12 @@ package eu.dnetlib.dhp.sx.graph import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.application.ArgumentApplicationParser -import eu.dnetlib.dhp.schema.oaf.{OtherResearchProduct, Publication, Relation, Result, Software, Dataset => OafDataset} +import eu.dnetlib.dhp.schema.oaf.{OtherResearchProduct, Publication, Relation, Software, Dataset => OafDataset} import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession} import org.slf4j.{Logger, LoggerFactory} + object SparkConvertRDDtoDataset { def main(args: Array[String]): Unit = { @@ -31,39 +32,39 @@ object SparkConvertRDDtoDataset { val entityPath = s"$t/entities" val relPath = s"$t/relation" val mapper = new ObjectMapper() - implicit val datasetEncoder: Encoder[OafDataset] = Encoders.kryo(classOf[OafDataset]) - implicit val publicationEncoder: Encoder[Publication] = Encoders.kryo(classOf[Publication]) - implicit val relationEncoder: Encoder[Relation] = Encoders.kryo(classOf[Relation]) - implicit val orpEncoder: Encoder[OtherResearchProduct] = Encoders.kryo(classOf[OtherResearchProduct]) - implicit val softwareEncoder: Encoder[Software] = Encoders.kryo(classOf[Software]) + implicit val datasetEncoder: Encoder[OafDataset] = Encoders.kryo(classOf[OafDataset]) + implicit val publicationEncoder: Encoder[Publication] = Encoders.kryo(classOf[Publication]) + implicit val relationEncoder: Encoder[Relation] = Encoders.kryo(classOf[Relation]) + implicit val orpEncoder: Encoder[OtherResearchProduct] = Encoders.kryo(classOf[OtherResearchProduct]) + implicit val softwareEncoder: Encoder[Software] = Encoders.kryo(classOf[Software]) log.info("Converting dataset") - val rddDataset =spark.sparkContext.textFile(s"$sourcePath/dataset").map(s => mapper.readValue(s, classOf[OafDataset])) + val rddDataset = spark.sparkContext.textFile(s"$sourcePath/dataset").map(s => mapper.readValue(s, classOf[OafDataset])) spark.createDataset(rddDataset).as[OafDataset].write.mode(SaveMode.Overwrite).save(s"$entityPath/dataset") log.info("Converting publication") - val rddPublication =spark.sparkContext.textFile(s"$sourcePath/publication").map(s => mapper.readValue(s, classOf[Publication])) + val rddPublication = spark.sparkContext.textFile(s"$sourcePath/publication").map(s => mapper.readValue(s, classOf[Publication])) spark.createDataset(rddPublication).as[Publication].write.mode(SaveMode.Overwrite).save(s"$entityPath/publication") log.info("Converting software") - val rddSoftware =spark.sparkContext.textFile(s"$sourcePath/software").map(s => mapper.readValue(s, classOf[Software])) + val rddSoftware = spark.sparkContext.textFile(s"$sourcePath/software").map(s => mapper.readValue(s, classOf[Software])) spark.createDataset(rddSoftware).as[Software].write.mode(SaveMode.Overwrite).save(s"$entityPath/software") log.info("Converting otherresearchproduct") - val rddOtherResearchProduct =spark.sparkContext.textFile(s"$sourcePath/otherresearchproduct").map(s => mapper.readValue(s, classOf[OtherResearchProduct])) + val rddOtherResearchProduct = spark.sparkContext.textFile(s"$sourcePath/otherresearchproduct").map(s => mapper.readValue(s, classOf[OtherResearchProduct])) spark.createDataset(rddOtherResearchProduct).as[OtherResearchProduct].write.mode(SaveMode.Overwrite).save(s"$entityPath/otherresearchproduct") log.info("Converting Relation") - val relationSemanticFilter = List("cites", "iscitedby","merges", "ismergedin") + val relationSemanticFilter = List("cites", "iscitedby", "merges", "ismergedin") - val rddRelation =spark.sparkContext.textFile(s"$sourcePath/relation") + val rddRelation = spark.sparkContext.textFile(s"$sourcePath/relation") .map(s => mapper.readValue(s, classOf[Relation])) - .filter(r=> r.getSource.startsWith("50") && r.getTarget.startsWith("50")) + .filter(r => r.getSource.startsWith("50") && r.getTarget.startsWith("50")) .filter(r => !relationSemanticFilter.exists(k => k.equalsIgnoreCase(r.getRelClass))) spark.createDataset(rddRelation).as[Relation].write.mode(SaveMode.Overwrite).save(s"$relPath") diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateInputGraph.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateInputGraph.scala similarity index 76% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateInputGraph.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateInputGraph.scala index 350b00c5ea..b6f6789673 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateInputGraph.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateInputGraph.scala @@ -1,14 +1,12 @@ package eu.dnetlib.dhp.sx.graph import eu.dnetlib.dhp.application.ArgumentApplicationParser -import eu.dnetlib.dhp.schema.oaf.{Oaf, OtherResearchProduct, Publication, Relation, Result, Software, Dataset => OafDataset} +import eu.dnetlib.dhp.schema.oaf.{Dataset => OafDataset, _} import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql._ import org.slf4j.{Logger, LoggerFactory} - - object SparkCreateInputGraph { def main(args: Array[String]): Unit = { @@ -33,7 +31,7 @@ object SparkCreateInputGraph { ) - implicit val oafEncoder: Encoder[Oaf] = Encoders.kryo(classOf[Oaf]) + implicit val oafEncoder: Encoder[Oaf] = Encoders.kryo(classOf[Oaf]) implicit val publicationEncoder: Encoder[Publication] = Encoders.kryo(classOf[Publication]) implicit val datasetEncoder: Encoder[OafDataset] = Encoders.kryo(classOf[OafDataset]) implicit val softwareEncoder: Encoder[Software] = Encoders.kryo(classOf[Software]) @@ -41,16 +39,13 @@ object SparkCreateInputGraph { implicit val relEncoder: Encoder[Relation] = Encoders.kryo(classOf[Relation]) - - - val sourcePath = parser.get("sourcePath") log.info(s"sourcePath -> $sourcePath") val targetPath = parser.get("targetPath") log.info(s"targetPath -> $targetPath") - val oafDs:Dataset[Oaf] = spark.read.load(s"$sourcePath/*").as[Oaf] + val oafDs: Dataset[Oaf] = spark.read.load(s"$sourcePath/*").as[Oaf] log.info("Extract Publication") @@ -70,27 +65,27 @@ object SparkCreateInputGraph { resultObject.foreach { r => log.info(s"Make ${r._1} unique") - makeDatasetUnique(s"$targetPath/extracted/${r._1}",s"$targetPath/preprocess/${r._1}",spark, r._2) + makeDatasetUnique(s"$targetPath/extracted/${r._1}", s"$targetPath/preprocess/${r._1}", spark, r._2) } } - def extractEntities[T <: Oaf ](oafDs:Dataset[Oaf], targetPath:String, clazz:Class[T], log:Logger) :Unit = { + def extractEntities[T <: Oaf](oafDs: Dataset[Oaf], targetPath: String, clazz: Class[T], log: Logger): Unit = { - implicit val resEncoder: Encoder[T] = Encoders.kryo(clazz) + implicit val resEncoder: Encoder[T] = Encoders.kryo(clazz) log.info(s"Extract ${clazz.getSimpleName}") oafDs.filter(o => o.isInstanceOf[T]).map(p => p.asInstanceOf[T]).write.mode(SaveMode.Overwrite).save(targetPath) } - def makeDatasetUnique[T <: Result ](sourcePath:String, targetPath:String, spark:SparkSession, clazz:Class[T]) :Unit = { + def makeDatasetUnique[T <: Result](sourcePath: String, targetPath: String, spark: SparkSession, clazz: Class[T]): Unit = { import spark.implicits._ - implicit val resEncoder: Encoder[T] = Encoders.kryo(clazz) + implicit val resEncoder: Encoder[T] = Encoders.kryo(clazz) - val ds:Dataset[T] = spark.read.load(sourcePath).as[T] + val ds: Dataset[T] = spark.read.load(sourcePath).as[T] - ds.groupByKey(_.getId).reduceGroups{(x,y) => + ds.groupByKey(_.getId).reduceGroups { (x, y) => x.mergeFrom(y) x }.map(_._2).write.mode(SaveMode.Overwrite).save(targetPath) diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateScholix.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateScholix.scala similarity index 76% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateScholix.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateScholix.scala index e4fcd27824..9930c57af9 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateScholix.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateScholix.scala @@ -9,7 +9,7 @@ import eu.dnetlib.dhp.sx.graph.scholix.ScholixUtils.RelatedEntities import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf import org.apache.spark.sql.functions.count -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql._ import org.slf4j.{Logger, LoggerFactory} object SparkCreateScholix { @@ -42,7 +42,7 @@ object SparkCreateScholix { val relationDS: Dataset[(String, Relation)] = spark.read.load(relationPath).as[Relation] - .filter(r => (r.getDataInfo== null || r.getDataInfo.getDeletedbyinference == false) && !r.getRelClass.toLowerCase.contains("merge")) + .filter(r => (r.getDataInfo == null || r.getDataInfo.getDeletedbyinference == false) && !r.getRelClass.toLowerCase.contains("merge")) .map(r => (r.getSource, r))(Encoders.tuple(Encoders.STRING, relEncoder)) val summaryDS: Dataset[(String, ScholixSummary)] = spark.read.load(summaryPath).as[ScholixSummary] @@ -51,54 +51,54 @@ object SparkCreateScholix { relationDS.joinWith(summaryDS, relationDS("_1").equalTo(summaryDS("_1")), "left") .map { input: ((String, Relation), (String, ScholixSummary)) => - if (input._1!= null && input._2!= null) { + if (input._1 != null && input._2 != null) { val rel: Relation = input._1._2 val source: ScholixSummary = input._2._2 (rel.getTarget, ScholixUtils.scholixFromSource(rel, source)) } - else null + else null }(Encoders.tuple(Encoders.STRING, scholixEncoder)) - .filter(r => r!= null) + .filter(r => r != null) .write.mode(SaveMode.Overwrite).save(s"$targetPath/scholix_from_source") val scholixSource: Dataset[(String, Scholix)] = spark.read.load(s"$targetPath/scholix_from_source").as[(String, Scholix)](Encoders.tuple(Encoders.STRING, scholixEncoder)) scholixSource.joinWith(summaryDS, scholixSource("_1").equalTo(summaryDS("_1")), "left") .map { input: ((String, Scholix), (String, ScholixSummary)) => - if (input._2== null) { + if (input._2 == null) { null } else { val s: Scholix = input._1._2 val target: ScholixSummary = input._2._2 ScholixUtils.generateCompleteScholix(s, target) } - }.filter(s => s!= null).write.mode(SaveMode.Overwrite).save(s"$targetPath/scholix_one_verse") + }.filter(s => s != null).write.mode(SaveMode.Overwrite).save(s"$targetPath/scholix_one_verse") val scholix_o_v: Dataset[Scholix] = spark.read.load(s"$targetPath/scholix_one_verse").as[Scholix] scholix_o_v.flatMap(s => List(s, ScholixUtils.createInverseScholixRelation(s))).as[Scholix] - .map(s=> (s.getIdentifier,s))(Encoders.tuple(Encoders.STRING, scholixEncoder)) + .map(s => (s.getIdentifier, s))(Encoders.tuple(Encoders.STRING, scholixEncoder)) .groupByKey(_._1) .agg(ScholixUtils.scholixAggregator.toColumn) .map(s => s._2) .write.mode(SaveMode.Overwrite).save(s"$targetPath/scholix") - val scholix_final:Dataset[Scholix] = spark.read.load(s"$targetPath/scholix").as[Scholix] + val scholix_final: Dataset[Scholix] = spark.read.load(s"$targetPath/scholix").as[Scholix] - val stats:Dataset[(String,String,Long)]= scholix_final.map(s => (s.getSource.getDnetIdentifier, s.getTarget.getObjectType)).groupBy("_1", "_2").agg(count("_1")).as[(String,String,Long)] + val stats: Dataset[(String, String, Long)] = scholix_final.map(s => (s.getSource.getDnetIdentifier, s.getTarget.getObjectType)).groupBy("_1", "_2").agg(count("_1")).as[(String, String, Long)] stats - .map(s => RelatedEntities(s._1, if ("dataset".equalsIgnoreCase(s._2)) s._3 else 0, if ("publication".equalsIgnoreCase(s._2)) s._3 else 0 )) + .map(s => RelatedEntities(s._1, if ("dataset".equalsIgnoreCase(s._2)) s._3 else 0, if ("publication".equalsIgnoreCase(s._2)) s._3 else 0)) .groupByKey(_.id) - .reduceGroups((a, b) => RelatedEntities(a.id, a.relatedDataset+b.relatedDataset, a.relatedPublication+b.relatedPublication)) + .reduceGroups((a, b) => RelatedEntities(a.id, a.relatedDataset + b.relatedDataset, a.relatedPublication + b.relatedPublication)) .map(_._2) .write.mode(SaveMode.Overwrite).save(s"$targetPath/related_entities") - val relatedEntitiesDS:Dataset[RelatedEntities] = spark.read.load(s"$targetPath/related_entities").as[RelatedEntities].filter(r => r.relatedPublication>0 || r.relatedDataset > 0) + val relatedEntitiesDS: Dataset[RelatedEntities] = spark.read.load(s"$targetPath/related_entities").as[RelatedEntities].filter(r => r.relatedPublication > 0 || r.relatedDataset > 0) - relatedEntitiesDS.joinWith(summaryDS, relatedEntitiesDS("id").equalTo(summaryDS("_1")), "inner").map{i => + relatedEntitiesDS.joinWith(summaryDS, relatedEntitiesDS("id").equalTo(summaryDS("_1")), "inner").map { i => val re = i._1 val sum = i._2._2 diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateSummaryObject.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateSummaryObject.scala similarity index 68% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateSummaryObject.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateSummaryObject.scala index 0970375f5c..4274cae5a6 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/SparkCreateSummaryObject.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/SparkCreateSummaryObject.scala @@ -6,7 +6,7 @@ import eu.dnetlib.dhp.schema.sx.summary.ScholixSummary import eu.dnetlib.dhp.sx.graph.scholix.ScholixUtils import org.apache.commons.io.IOUtils import org.apache.spark.SparkConf -import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.sql._ import org.slf4j.{Logger, LoggerFactory} object SparkCreateSummaryObject { @@ -28,15 +28,15 @@ object SparkCreateSummaryObject { val targetPath = parser.get("targetPath") log.info(s"targetPath -> $targetPath") - implicit val resultEncoder:Encoder[Result] = Encoders.kryo[Result] - implicit val oafEncoder:Encoder[Oaf] = Encoders.kryo[Oaf] + implicit val resultEncoder: Encoder[Result] = Encoders.kryo[Result] + implicit val oafEncoder: Encoder[Oaf] = Encoders.kryo[Oaf] - implicit val summaryEncoder:Encoder[ScholixSummary] = Encoders.kryo[ScholixSummary] + implicit val summaryEncoder: Encoder[ScholixSummary] = Encoders.kryo[ScholixSummary] - val ds:Dataset[Result] = spark.read.load(s"$sourcePath/*").as[Result].filter(r=>r.getDataInfo== null || r.getDataInfo.getDeletedbyinference== false) + val ds: Dataset[Result] = spark.read.load(s"$sourcePath/*").as[Result].filter(r => r.getDataInfo == null || r.getDataInfo.getDeletedbyinference == false) - ds.repartition(6000).map(r => ScholixUtils.resultToSummary(r)).filter(s => s!= null).write.mode(SaveMode.Overwrite).save(targetPath) + ds.repartition(6000).map(r => ScholixUtils.resultToSummary(r)).filter(s => s != null).write.mode(SaveMode.Overwrite).save(targetPath) } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/pangaea/PangaeaUtils.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/pangaea/PangaeaUtils.scala similarity index 99% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/pangaea/PangaeaUtils.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/pangaea/PangaeaUtils.scala index 193512474e..c70397d042 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/pangaea/PangaeaUtils.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/pangaea/PangaeaUtils.scala @@ -5,6 +5,7 @@ import org.apache.spark.sql.{Encoder, Encoders} import org.json4s import org.json4s.DefaultFormats import org.json4s.jackson.JsonMethods.parse + import java.util.regex.Pattern import scala.language.postfixOps import scala.xml.{Elem, Node, XML} diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/pangaea/SparkGeneratePanagaeaDataset.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/pangaea/SparkGeneratePanagaeaDataset.scala similarity index 83% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/pangaea/SparkGeneratePanagaeaDataset.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/pangaea/SparkGeneratePanagaeaDataset.scala index 79c75d6df7..f1a4553ea9 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/pangaea/SparkGeneratePanagaeaDataset.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/pangaea/SparkGeneratePanagaeaDataset.scala @@ -2,13 +2,12 @@ package eu.dnetlib.dhp.sx.graph.pangaea import eu.dnetlib.dhp.application.ArgumentApplicationParser import org.apache.spark.rdd.RDD -import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession} +import org.apache.spark.{SparkConf, SparkContext} import org.slf4j.{Logger, LoggerFactory} -import scala.collection.JavaConverters._ import scala.io.Source - +import scala.collection.JavaConverters._ object SparkGeneratePanagaeaDataset { @@ -28,17 +27,17 @@ object SparkGeneratePanagaeaDataset { parser.getObjectMap.asScala.foreach(s => logger.info(s"${s._1} -> ${s._2}")) logger.info("Converting sequential file into Dataset") - val sc:SparkContext = spark.sparkContext + val sc: SparkContext = spark.sparkContext - val workingPath:String = parser.get("workingPath") + val workingPath: String = parser.get("workingPath") implicit val pangaeaEncoders: Encoder[PangaeaDataModel] = Encoders.kryo[PangaeaDataModel] - val inputRDD:RDD[PangaeaDataModel] = sc.textFile(s"$workingPath/update").map(s => PangaeaUtils.toDataset(s)) + val inputRDD: RDD[PangaeaDataModel] = sc.textFile(s"$workingPath/update").map(s => PangaeaUtils.toDataset(s)) spark.createDataset(inputRDD).as[PangaeaDataModel] - .map(s => (s.identifier,s))(Encoders.tuple(Encoders.STRING, pangaeaEncoders)) - .groupByKey(_._1)(Encoders.STRING) + .map(s => (s.identifier, s))(Encoders.tuple(Encoders.STRING, pangaeaEncoders)) + .groupByKey(_._1)(Encoders.STRING) .agg(PangaeaUtils.getDatasetAggregator().toColumn) .map(s => s._2) .write.mode(SaveMode.Overwrite).save(s"$workingPath/dataset") @@ -46,7 +45,4 @@ object SparkGeneratePanagaeaDataset { } - - - } diff --git a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/scholix/ScholixUtils.scala b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/scholix/ScholixUtils.scala similarity index 61% rename from dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/scholix/ScholixUtils.scala rename to dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/scholix/ScholixUtils.scala index 93c554e048..7b1ddbb8fb 100644 --- a/dhp-workflows/dhp-graph-mapper/src/main/java/eu/dnetlib/dhp/sx/graph/scholix/ScholixUtils.scala +++ b/dhp-workflows/dhp-graph-mapper/src/main/scala/eu/dnetlib/dhp/sx/graph/scholix/ScholixUtils.scala @@ -1,6 +1,5 @@ package eu.dnetlib.dhp.sx.graph.scholix - import eu.dnetlib.dhp.schema.oaf.{Publication, Relation, Result, StructuredProperty} import eu.dnetlib.dhp.schema.sx.scholix._ import eu.dnetlib.dhp.schema.sx.summary.{CollectedFromType, SchemeValue, ScholixSummary, Typology} @@ -11,22 +10,23 @@ import org.json4s import org.json4s.DefaultFormats import org.json4s.jackson.JsonMethods.parse -import scala.collection.JavaConverters._ import scala.io.Source -import scala.language.postfixOps +import scala.collection.JavaConverters._ + object ScholixUtils { val DNET_IDENTIFIER_SCHEMA: String = "DNET Identifier" - val DATE_RELATION_KEY:String = "RelationDate" - case class RelationVocabulary(original:String, inverse:String){} + val DATE_RELATION_KEY: String = "RelationDate" - case class RelatedEntities(id:String, relatedDataset:Long, relatedPublication:Long){} + case class RelationVocabulary(original: String, inverse: String) {} - val relations:Map[String, RelationVocabulary] = { - val input =Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/sx/graph/relations.json")).mkString + case class RelatedEntities(id: String, relatedDataset: Long, relatedPublication: Long) {} + + val relations: Map[String, RelationVocabulary] = { + val input = Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/sx/graph/relations.json")).mkString implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats lazy val json: json4s.JValue = parse(input) @@ -35,12 +35,12 @@ object ScholixUtils { } - def extractRelationDate(relation: Relation):String = { + def extractRelationDate(relation: Relation): String = { - if (relation.getProperties== null || !relation.getProperties.isEmpty) + if (relation.getProperties == null || !relation.getProperties.isEmpty) null else { - val date =relation.getProperties.asScala.find(p => DATE_RELATION_KEY.equalsIgnoreCase(p.getKey)).map(p => p.getValue) + val date = relation.getProperties.asScala.find(p => DATE_RELATION_KEY.equalsIgnoreCase(p.getKey)).map(p => p.getValue) if (date.isDefined) date.get else @@ -48,9 +48,9 @@ object ScholixUtils { } } - def extractRelationDate(summary: ScholixSummary):String = { + def extractRelationDate(summary: ScholixSummary): String = { - if(summary.getDate== null || summary.getDate.isEmpty) + if (summary.getDate == null || summary.getDate.isEmpty) null else { summary.getDate.get(0) @@ -59,15 +59,14 @@ object ScholixUtils { } - def inverseRelationShip(rel:ScholixRelationship):ScholixRelationship = { + def inverseRelationShip(rel: ScholixRelationship): ScholixRelationship = { new ScholixRelationship(rel.getInverse, rel.getSchema, rel.getName) } - - val statsAggregator:Aggregator[(String,String, Long), RelatedEntities, RelatedEntities] = new Aggregator[(String,String, Long), RelatedEntities, RelatedEntities] with Serializable { + val statsAggregator: Aggregator[(String, String, Long), RelatedEntities, RelatedEntities] = new Aggregator[(String, String, Long), RelatedEntities, RelatedEntities] with Serializable { override def zero: RelatedEntities = null override def reduce(b: RelatedEntities, a: (String, String, Long)): RelatedEntities = { @@ -78,17 +77,16 @@ object ScholixUtils { if (b == null) RelatedEntities(a._1, relatedDataset, relatedPublication) else - RelatedEntities(a._1,b.relatedDataset+ relatedDataset, b.relatedPublication+ relatedPublication ) + RelatedEntities(a._1, b.relatedDataset + relatedDataset, b.relatedPublication + relatedPublication) } override def merge(b1: RelatedEntities, b2: RelatedEntities): RelatedEntities = { - if (b1!= null && b2!= null) - RelatedEntities(b1.id, b1.relatedDataset+ b2.relatedDataset, b1.relatedPublication+ b2.relatedPublication) + if (b1 != null && b2 != null) + RelatedEntities(b1.id, b1.relatedDataset + b2.relatedDataset, b1.relatedPublication + b2.relatedPublication) + else if (b1 != null) + b1 else - if (b1!= null) - b1 - else b2 } @@ -104,12 +102,12 @@ object ScholixUtils { override def zero: Scholix = null - def scholix_complete(s:Scholix):Boolean ={ - if (s== null || s.getIdentifier==null) { + def scholix_complete(s: Scholix): Boolean = { + if (s == null || s.getIdentifier == null) { false } else if (s.getSource == null || s.getTarget == null) { - false - } + false + } else if (s.getLinkprovider == null || s.getLinkprovider.isEmpty) false else @@ -121,7 +119,7 @@ object ScholixUtils { } override def merge(b1: Scholix, b2: Scholix): Scholix = { - if (scholix_complete(b1)) b1 else b2 + if (scholix_complete(b1)) b1 else b2 } override def finish(reduction: Scholix): Scholix = reduction @@ -132,7 +130,7 @@ object ScholixUtils { } - def createInverseScholixRelation(scholix: Scholix):Scholix = { + def createInverseScholixRelation(scholix: Scholix): Scholix = { val s = new Scholix s.setPublicationDate(scholix.getPublicationDate) s.setPublisher(scholix.getPublisher) @@ -144,34 +142,33 @@ object ScholixUtils { s - } - def extractCollectedFrom(summary:ScholixSummary): List[ScholixEntityId] = { - if (summary.getDatasources!= null && !summary.getDatasources.isEmpty) { - val l: List[ScholixEntityId] = summary.getDatasources.asScala.map{ + def extractCollectedFrom(summary: ScholixSummary): List[ScholixEntityId] = { + if (summary.getDatasources != null && !summary.getDatasources.isEmpty) { + val l: List[ScholixEntityId] = summary.getDatasources.asScala.map { d => new ScholixEntityId(d.getDatasourceName, List(new ScholixIdentifier(d.getDatasourceId, "DNET Identifier", null)).asJava) }(collection.breakOut) - l + l } else List() } - def extractCollectedFrom(relation: Relation) : List[ScholixEntityId] = { + def extractCollectedFrom(relation: Relation): List[ScholixEntityId] = { if (relation.getCollectedfrom != null && !relation.getCollectedfrom.isEmpty) { val l: List[ScholixEntityId] = relation.getCollectedfrom.asScala.map { c => - new ScholixEntityId(c.getValue, List(new ScholixIdentifier(c.getKey, DNET_IDENTIFIER_SCHEMA,null)).asJava) + new ScholixEntityId(c.getValue, List(new ScholixIdentifier(c.getKey, DNET_IDENTIFIER_SCHEMA, null)).asJava) }(collection breakOut) l } else List() } - def generateCompleteScholix(scholix: Scholix, target:ScholixSummary): Scholix = { + def generateCompleteScholix(scholix: Scholix, target: ScholixSummary): Scholix = { val s = new Scholix s.setPublicationDate(scholix.getPublicationDate) s.setPublisher(scholix.getPublisher) @@ -192,29 +189,28 @@ object ScholixUtils { r.setObjectType(summaryObject.getTypology.toString) r.setObjectSubType(summaryObject.getSubType) - if (summaryObject.getTitle!= null && !summaryObject.getTitle.isEmpty) - r.setTitle(summaryObject.getTitle.get(0)) + if (summaryObject.getTitle != null && !summaryObject.getTitle.isEmpty) + r.setTitle(summaryObject.getTitle.get(0)) - if (summaryObject.getAuthor!= null && !summaryObject.getAuthor.isEmpty){ - val l:List[ScholixEntityId] = summaryObject.getAuthor.asScala.map(a => new ScholixEntityId(a,null)).toList + if (summaryObject.getAuthor != null && !summaryObject.getAuthor.isEmpty) { + val l: List[ScholixEntityId] = summaryObject.getAuthor.asScala.map(a => new ScholixEntityId(a, null)).toList if (l.nonEmpty) r.setCreator(l.asJava) } - if (summaryObject.getDate!= null && !summaryObject.getDate.isEmpty) + if (summaryObject.getDate != null && !summaryObject.getDate.isEmpty) r.setPublicationDate(summaryObject.getDate.get(0)) - if (summaryObject.getPublisher!= null && !summaryObject.getPublisher.isEmpty) - { - val plist:List[ScholixEntityId] =summaryObject.getPublisher.asScala.map(p => new ScholixEntityId(p, null)).toList + if (summaryObject.getPublisher != null && !summaryObject.getPublisher.isEmpty) { + val plist: List[ScholixEntityId] = summaryObject.getPublisher.asScala.map(p => new ScholixEntityId(p, null)).toList if (plist.nonEmpty) r.setPublisher(plist.asJava) } - if (summaryObject.getDatasources!= null && !summaryObject.getDatasources.isEmpty) { + if (summaryObject.getDatasources != null && !summaryObject.getDatasources.isEmpty) { - val l:List[ScholixCollectedFrom] = summaryObject.getDatasources.asScala.map(c => new ScholixCollectedFrom( + val l: List[ScholixCollectedFrom] = summaryObject.getDatasources.asScala.map(c => new ScholixCollectedFrom( new ScholixEntityId(c.getDatasourceName, List(new ScholixIdentifier(c.getDatasourceId, DNET_IDENTIFIER_SCHEMA, null)).asJava) , "collected", "complete" @@ -228,12 +224,9 @@ object ScholixUtils { } + def scholixFromSource(relation: Relation, source: ScholixSummary): Scholix = { - - - def scholixFromSource(relation:Relation, source:ScholixSummary):Scholix = { - - if (relation== null || source== null) + if (relation == null || source == null) return null val s = new Scholix @@ -253,9 +246,9 @@ object ScholixUtils { s.setPublicationDate(d) - if (source.getPublisher!= null && !source.getPublisher.isEmpty) { + if (source.getPublisher != null && !source.getPublisher.isEmpty) { val l: List[ScholixEntityId] = source.getPublisher.asScala - .map{ + .map { p => new ScholixEntityId(p, null) }(collection.breakOut) @@ -265,7 +258,7 @@ object ScholixUtils { } val semanticRelation = relations.getOrElse(relation.getRelClass.toLowerCase, null) - if (semanticRelation== null) + if (semanticRelation == null) return null s.setRelationship(new ScholixRelationship(semanticRelation.original, "datacite", semanticRelation.inverse)) s.setSource(generateScholixResourceFromSummary(source)) @@ -274,8 +267,8 @@ object ScholixUtils { } - def findURLForPID(pidValue:List[StructuredProperty], urls:List[String]):List[(StructuredProperty, String)] = { - pidValue.map{ + def findURLForPID(pidValue: List[StructuredProperty], urls: List[String]): List[(StructuredProperty, String)] = { + pidValue.map { p => val pv = p.getValue @@ -285,67 +278,67 @@ object ScholixUtils { } - def extractTypedIdentifierFromInstance(r:Result):List[ScholixIdentifier] = { + def extractTypedIdentifierFromInstance(r: Result): List[ScholixIdentifier] = { if (r.getInstance() == null || r.getInstance().isEmpty) return List() - r.getInstance().asScala.filter(i => i.getUrl!= null && !i.getUrl.isEmpty) - .filter(i => i.getPid!= null && i.getUrl != null) + r.getInstance().asScala.filter(i => i.getUrl != null && !i.getUrl.isEmpty) + .filter(i => i.getPid != null && i.getUrl != null) .flatMap(i => findURLForPID(i.getPid.asScala.toList, i.getUrl.asScala.toList)) .map(i => new ScholixIdentifier(i._1.getValue, i._1.getQualifier.getClassid, i._2)).distinct.toList } - def resultToSummary(r:Result):ScholixSummary = { + def resultToSummary(r: Result): ScholixSummary = { val s = new ScholixSummary s.setId(r.getId) if (r.getPid == null || r.getPid.isEmpty) return null - val persistentIdentifiers:List[ScholixIdentifier] = extractTypedIdentifierFromInstance(r) + val persistentIdentifiers: List[ScholixIdentifier] = extractTypedIdentifierFromInstance(r) if (persistentIdentifiers.isEmpty) return null s.setLocalIdentifier(persistentIdentifiers.asJava) - if (r.isInstanceOf[Publication] ) + if (r.isInstanceOf[Publication]) s.setTypology(Typology.publication) else s.setTypology(Typology.dataset) s.setSubType(r.getInstance().get(0).getInstancetype.getClassname) - if (r.getTitle!= null && r.getTitle.asScala.nonEmpty) { - val titles:List[String] =r.getTitle.asScala.map(t => t.getValue)(collection breakOut) + if (r.getTitle != null && r.getTitle.asScala.nonEmpty) { + val titles: List[String] = r.getTitle.asScala.map(t => t.getValue)(collection breakOut) if (titles.nonEmpty) s.setTitle(titles.asJava) else - return null + return null } - if(r.getAuthor!= null && !r.getAuthor.isEmpty) { - val authors:List[String] = r.getAuthor.asScala.map(a=> a.getFullname)(collection breakOut) + if (r.getAuthor != null && !r.getAuthor.isEmpty) { + val authors: List[String] = r.getAuthor.asScala.map(a => a.getFullname)(collection breakOut) if (authors nonEmpty) s.setAuthor(authors.asJava) } if (r.getInstance() != null) { - val dt:List[String] = r.getInstance().asScala.filter(i => i.getDateofacceptance != null).map(i => i.getDateofacceptance.getValue)(collection.breakOut) + val dt: List[String] = r.getInstance().asScala.filter(i => i.getDateofacceptance != null).map(i => i.getDateofacceptance.getValue)(collection.breakOut) if (dt.nonEmpty) s.setDate(dt.distinct.asJava) } - if (r.getDescription!= null && !r.getDescription.isEmpty) { - val d = r.getDescription.asScala.find(f => f!= null && f.getValue!=null) + if (r.getDescription != null && !r.getDescription.isEmpty) { + val d = r.getDescription.asScala.find(f => f != null && f.getValue != null) if (d.isDefined) s.setDescription(d.get.getValue) } - if (r.getSubject!= null && !r.getSubject.isEmpty) { - val subjects:List[SchemeValue] =r.getSubject.asScala.map(s => new SchemeValue(s.getQualifier.getClassname, s.getValue))(collection breakOut) + if (r.getSubject != null && !r.getSubject.isEmpty) { + val subjects: List[SchemeValue] = r.getSubject.asScala.map(s => new SchemeValue(s.getQualifier.getClassname, s.getValue))(collection breakOut) if (subjects.nonEmpty) s.setSubject(subjects.asJava) } - if (r.getPublisher!= null) + if (r.getPublisher != null) s.setPublisher(List(r.getPublisher.getValue).asJava) - if (r.getCollectedfrom!= null && !r.getCollectedfrom.isEmpty) { - val cf:List[CollectedFromType] = r.getCollectedfrom.asScala.map(c => new CollectedFromType(c.getValue, c.getKey, "complete"))(collection breakOut) + if (r.getCollectedfrom != null && !r.getCollectedfrom.isEmpty) { + val cf: List[CollectedFromType] = r.getCollectedfrom.asScala.map(c => new CollectedFromType(c.getValue, c.getKey, "complete"))(collection breakOut) if (cf.nonEmpty) s.setDatasources(cf.distinct.asJava) } diff --git a/dhp-workflows/dhp-graph-mapper/src/test/resources/eu/dnetlib/dhp/oa/graph/resolution/dataset b/dhp-workflows/dhp-graph-mapper/src/test/resources/eu/dnetlib/dhp/oa/graph/resolution/dataset index 05c875148c..2c73183e2b 100644 --- a/dhp-workflows/dhp-graph-mapper/src/test/resources/eu/dnetlib/dhp/oa/graph/resolution/dataset +++ b/dhp-workflows/dhp-graph-mapper/src/test/resources/eu/dnetlib/dhp/oa/graph/resolution/dataset @@ -1,3 +1,3 @@ -{"author":[{"affiliation":[],"fullname":"Greenough, B","name":"B","pid":[],"rank":1,"surname":"Greenough"}],"bestaccessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"collectedfrom":[{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"}],"context":[],"contributor":[],"country":[],"coverage":[],"dataInfo":{"deletedbyinference":true,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"dateofcollection":"2021-09-25T10:55:00.639Z","dateoftransformation":"2021-09-25T11:00:04.201Z","description":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"value":"Heritage Education"}],"externalReference":[],"extraInfo":[],"format":[],"fulltext":[],"geolocation":[],"id":"50|DansKnawCris::09821844208a5cd6300b2bfb13bca1b9","instance":[{"accessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"alternateIdentifier":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"urn","classname":"urn","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"urn:nbn:nl:ui:13-59-cjhf"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"doi","classname":"Digital Object Identifier","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"10.17632/96bpgw5j9d.1"}],"collectedfrom":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"hostedby":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"instancetype":{"classid":"0021","classname":"Dataset","schemeid":"dnet:publication_resource","schemename":"dnet:publication_resource"},"pid":[],"refereed":{"classid":"0000","classname":"Unknown","schemeid":"dnet:review_levels","schemename":"dnet:review_levels"},"url":["","http://dx.doi.org/10.17632/96bpgw5j9d.1"]}],"language":{"classid":"und","classname":"Undetermined","schemeid":"dnet:languages","schemename":"dnet:languages"},"lastupdatetimestamp":1635434801681,"oaiprovenance":{"originDescription":{"altered":true,"baseURL":"http%3A%2F%2Fservices.nod.dans.knaw.nl%2Foa-cerif","datestamp":"2021-08-16T15:29:45Z","harvestDate":"2021-09-25T10:55:00.639Z","identifier":"oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:211323","metadataNamespace":""}},"originalId":["50|DansKnawCris::09821844208a5cd6300b2bfb13bca1b9","oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:211323"],"pid":[],"relevantdate":[],"resourcetype":{"classid":"0021","classname":"0021","schemeid":"dnet:dataCite_resource","schemename":"dnet:dataCite_resource"},"resulttype":{"classid":"dataset","classname":"dataset","schemeid":"dnet:result_typologies","schemename":"dnet:result_typologies"},"source":[],"subject":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Interdisciplinary sciences"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Interdisciplinary sciences"}],"title":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"main title","classname":"main title","schemeid":"dnet:dataCite_title","schemename":"dnet:dataCite_title"},"value":"Heritage Education"}]} -{"author":[{"affiliation":[],"fullname":"Keijers, D.M.G.","name":"D.M.G.","pid":[],"rank":1,"surname":"Keijers"}],"bestaccessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"collectedfrom":[{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"}],"context":[],"contributor":[],"country":[],"coverage":[],"dataInfo":{"deletedbyinference":true,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"dateofcollection":"2021-09-25T10:41:59.767Z","dateoftransformation":"2021-09-25T11:00:19.238Z","description":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"value":"onderzoeksrapport"}],"externalReference":[],"extraInfo":[],"format":[],"fulltext":[],"geolocation":[],"id":"50|DansKnawCris::0dd644304b7116e8e58da3a5e3adc37a","instance":[{"accessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"alternateIdentifier":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"urn","classname":"urn","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"urn:nbn:nl:ui:13-das-fkq"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"doi","classname":"Digital Object Identifier","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"10.17026/dans-xsw-qtnx"}],"collectedfrom":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"hostedby":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"instancetype":{"classid":"0021","classname":"Dataset","schemeid":"dnet:publication_resource","schemename":"dnet:publication_resource"},"pid":[],"refereed":{"classid":"0000","classname":"Unknown","schemeid":"dnet:review_levels","schemename":"dnet:review_levels"},"url":["","http://dx.doi.org/10.17026/dans-xsw-qtnx"]}],"language":{"classid":"dut/nld","classname":"Dutch; Flemish","schemeid":"dnet:languages","schemename":"dnet:languages"},"lastupdatetimestamp":1635434847381,"oaiprovenance":{"originDescription":{"altered":true,"baseURL":"http%3A%2F%2Fservices.nod.dans.knaw.nl%2Foa-cerif","datestamp":"2021-08-16T13:53:29Z","harvestDate":"2021-09-25T10:41:59.767Z","identifier":"oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:20759","metadataNamespace":""}},"originalId":["oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:20759","50|DansKnawCris::0dd644304b7116e8e58da3a5e3adc37a"],"pid":[],"relevantdate":[],"resourcetype":{"classid":"0021","classname":"0021","schemeid":"dnet:dataCite_resource","schemename":"dnet:dataCite_resource"},"resulttype":{"classid":"dataset","classname":"dataset","schemeid":"dnet:result_typologies","schemename":"dnet:result_typologies"},"source":[],"subject":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"PROSPECTIE"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Archaeology"}],"title":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"main title","classname":"main title","schemeid":"dnet:dataCite_title","schemename":"dnet:dataCite_title"},"value":"Plangebied Lange Ekker te Vessem, gemeente Eersel"}]} -{"author":[],"bestaccessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"collectedfrom":[{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"}],"context":[],"contributor":[],"country":[],"coverage":[],"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"dateofcollection":"2021-09-25T10:43:13.768Z","dateoftransformation":"2021-09-25T11:01:22.863Z","description":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"value":"This find is registered at Portable Antiquities of the Netherlands with number PAN-00054604"}],"externalReference":[],"extraInfo":[],"format":[],"fulltext":[],"geolocation":[],"id":"50|DansKnawCris::203a27996ddc0fd1948258e5b7dec61c","instance":[{"accessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"alternateIdentifier":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"urn","classname":"urn","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"urn:nbn:nl:ui:13-a7-hwgy"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"doi","classname":"Digital Object Identifier","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"10.17026/dans-x3z-fsq5"}],"collectedfrom":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"hostedby":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"instancetype":{"classid":"0021","classname":"Dataset","schemeid":"dnet:publication_resource","schemename":"dnet:publication_resource"},"pid":[],"refereed":{"classid":"0000","classname":"Unknown","schemeid":"dnet:review_levels","schemename":"dnet:review_levels"},"url":["","http://dx.doi.org/10.17026/dans-x3z-fsq5"]}],"language":{"classid":"eng","classname":"English","schemeid":"dnet:languages","schemename":"dnet:languages"},"lastupdatetimestamp":1635434508886,"oaiprovenance":{"originDescription":{"altered":true,"baseURL":"http%3A%2F%2Fservices.nod.dans.knaw.nl%2Foa-cerif","datestamp":"2021-08-16T14:01:37Z","harvestDate":"2021-09-25T10:43:13.768Z","identifier":"oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:129566","metadataNamespace":""}},"originalId":["oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:129566","50|DansKnawCris::203a27996ddc0fd1948258e5b7dec61c"],"pid":[],"relevantdate":[],"resourcetype":{"classid":"0021","classname":"0021","schemeid":"dnet:dataCite_resource","schemename":"dnet:dataCite_resource"},"resulttype":{"classid":"dataset","classname":"dataset","schemeid":"dnet:result_typologies","schemename":"dnet:result_typologies"},"source":[],"subject":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"early medieval enamelled disc brooch variant A9"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Broader Match: disc brooches"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Broader Match: schijffibula - geemailleerd"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"metal"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"copper alloy"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Temporal coverage: Early Middle Ages C"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Temporal coverage: Early Middle Ages D"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Temporal coverage: 800 until 1000"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Archaeology"}],"title":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"main title","classname":"main title","schemeid":"dnet:dataCite_title","schemename":"dnet:dataCite_title"},"value":"PAN-00054604 - early medieval enamelled disc brooch variant A9"}]} \ No newline at end of file +{"author":[{"affiliation":[],"fullname":"Greenough, B","name":"B","pid":[],"rank":1,"surname":"Greenough"}],"bestaccessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"collectedfrom":[{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"}],"context":[],"contributor":[],"country":[],"coverage":[],"dataInfo":{"deletedbyinference":true,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"dateofcollection":"2021-09-25T10:55:00.639Z","dateoftransformation":"2021-09-25T11:00:04.201Z","description":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"value":"Heritage Education"}],"externalReference":[],"extraInfo":[],"format":[],"fulltext":[],"geolocation":[],"id":"50|DansKnawCris::09821844208a5cd6300b2bfb13bca1b9","instance":[{"accessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"pid":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"urn","classname":"urn","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"urn:nbn:nl:ui:13-59-cjhf"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"doi","classname":"Digital Object Identifier","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"10.17632/96bpgw5j9d.1"}],"collectedfrom":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"hostedby":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"instancetype":{"classid":"0021","classname":"Dataset","schemeid":"dnet:publication_resource","schemename":"dnet:publication_resource"},"alternateIdentifier":[],"refereed":{"classid":"0000","classname":"Unknown","schemeid":"dnet:review_levels","schemename":"dnet:review_levels"},"url":["","http://dx.doi.org/10.17632/96bpgw5j9d.1"]}],"language":{"classid":"und","classname":"Undetermined","schemeid":"dnet:languages","schemename":"dnet:languages"},"lastupdatetimestamp":1635434801681,"oaiprovenance":{"originDescription":{"altered":true,"baseURL":"http%3A%2F%2Fservices.nod.dans.knaw.nl%2Foa-cerif","datestamp":"2021-08-16T15:29:45Z","harvestDate":"2021-09-25T10:55:00.639Z","identifier":"oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:211323","metadataNamespace":""}},"originalId":["50|DansKnawCris::09821844208a5cd6300b2bfb13bca1b9","oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:211323"],"pid":[],"relevantdate":[],"resourcetype":{"classid":"0021","classname":"0021","schemeid":"dnet:dataCite_resource","schemename":"dnet:dataCite_resource"},"resulttype":{"classid":"dataset","classname":"dataset","schemeid":"dnet:result_typologies","schemename":"dnet:result_typologies"},"source":[],"subject":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Interdisciplinary sciences"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Interdisciplinary sciences"}],"title":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"main title","classname":"main title","schemeid":"dnet:dataCite_title","schemename":"dnet:dataCite_title"},"value":"Heritage Education"}]} +{"author":[{"affiliation":[],"fullname":"Keijers, D.M.G.","name":"D.M.G.","pid":[],"rank":1,"surname":"Keijers"}],"bestaccessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"collectedfrom":[{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"}],"context":[],"contributor":[],"country":[],"coverage":[],"dataInfo":{"deletedbyinference":true,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"dateofcollection":"2021-09-25T10:41:59.767Z","dateoftransformation":"2021-09-25T11:00:19.238Z","description":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"value":"onderzoeksrapport"}],"externalReference":[],"extraInfo":[],"format":[],"fulltext":[],"geolocation":[],"id":"50|DansKnawCris::0dd644304b7116e8e58da3a5e3adc37a","instance":[{"accessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"pid":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"urn","classname":"urn","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"urn:nbn:nl:ui:13-das-fkq"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"doi","classname":"Digital Object Identifier","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"10.17026/dans-xsw-qtnx"}],"collectedfrom":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"hostedby":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"instancetype":{"classid":"0021","classname":"Dataset","schemeid":"dnet:publication_resource","schemename":"dnet:publication_resource"},"alternateIdentifier":[],"refereed":{"classid":"0000","classname":"Unknown","schemeid":"dnet:review_levels","schemename":"dnet:review_levels"},"url":["","http://dx.doi.org/10.17026/dans-xsw-qtnx"]}],"language":{"classid":"dut/nld","classname":"Dutch; Flemish","schemeid":"dnet:languages","schemename":"dnet:languages"},"lastupdatetimestamp":1635434847381,"oaiprovenance":{"originDescription":{"altered":true,"baseURL":"http%3A%2F%2Fservices.nod.dans.knaw.nl%2Foa-cerif","datestamp":"2021-08-16T13:53:29Z","harvestDate":"2021-09-25T10:41:59.767Z","identifier":"oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:20759","metadataNamespace":""}},"originalId":["oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:20759","50|DansKnawCris::0dd644304b7116e8e58da3a5e3adc37a"],"pid":[],"relevantdate":[],"resourcetype":{"classid":"0021","classname":"0021","schemeid":"dnet:dataCite_resource","schemename":"dnet:dataCite_resource"},"resulttype":{"classid":"dataset","classname":"dataset","schemeid":"dnet:result_typologies","schemename":"dnet:result_typologies"},"source":[],"subject":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"PROSPECTIE"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Archaeology"}],"title":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"main title","classname":"main title","schemeid":"dnet:dataCite_title","schemename":"dnet:dataCite_title"},"value":"Plangebied Lange Ekker te Vessem, gemeente Eersel"}]} +{"author":[],"bestaccessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"collectedfrom":[{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"}],"context":[],"contributor":[],"country":[],"coverage":[],"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"dateofcollection":"2021-09-25T10:43:13.768Z","dateoftransformation":"2021-09-25T11:01:22.863Z","description":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"value":"This find is registered at Portable Antiquities of the Netherlands with number PAN-00054604"}],"externalReference":[],"extraInfo":[],"format":[],"fulltext":[],"geolocation":[],"id":"50|DansKnawCris::203a27996ddc0fd1948258e5b7dec61c","instance":[{"accessright":{"classid":"UNKNOWN","classname":"not available","schemeid":"dnet:access_modes","schemename":"dnet:access_modes"},"pid":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"urn","classname":"urn","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"urn:nbn:nl:ui:13-a7-hwgy"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"doi","classname":"Digital Object Identifier","schemeid":"dnet:pid_types","schemename":"dnet:pid_types"},"value":"10.17026/dans-x3z-fsq5"}],"collectedfrom":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"hostedby":{"key":"10|openaire____::c6df70599aa984f16ee52b4b86d2e89f","value":"DANS (Data Archiving and Networked Services)"},"instancetype":{"classid":"0021","classname":"Dataset","schemeid":"dnet:publication_resource","schemename":"dnet:publication_resource"},"alternateIdentifier":[],"refereed":{"classid":"0000","classname":"Unknown","schemeid":"dnet:review_levels","schemename":"dnet:review_levels"},"url":["","http://dx.doi.org/10.17026/dans-x3z-fsq5"]}],"language":{"classid":"eng","classname":"English","schemeid":"dnet:languages","schemename":"dnet:languages"},"lastupdatetimestamp":1635434508886,"oaiprovenance":{"originDescription":{"altered":true,"baseURL":"http%3A%2F%2Fservices.nod.dans.knaw.nl%2Foa-cerif","datestamp":"2021-08-16T14:01:37Z","harvestDate":"2021-09-25T10:43:13.768Z","identifier":"oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:129566","metadataNamespace":""}},"originalId":["oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:129566","50|DansKnawCris::203a27996ddc0fd1948258e5b7dec61c"],"pid":[],"relevantdate":[],"resourcetype":{"classid":"0021","classname":"0021","schemeid":"dnet:dataCite_resource","schemename":"dnet:dataCite_resource"},"resulttype":{"classid":"dataset","classname":"dataset","schemeid":"dnet:result_typologies","schemename":"dnet:result_typologies"},"source":[],"subject":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"early medieval enamelled disc brooch variant A9"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Broader Match: disc brooches"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Broader Match: schijffibula - geemailleerd"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"metal"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"copper alloy"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Temporal coverage: Early Middle Ages C"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Temporal coverage: Early Middle Ages D"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Temporal coverage: 800 until 1000"},{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"keyword","classname":"keyword","schemeid":"dnet:subject_classification_typologies","schemename":"dnet:subject_classification_typologies"},"value":"Archaeology"}],"title":[{"dataInfo":{"deletedbyinference":false,"inferenceprovenance":"","inferred":false,"invisible":false,"provenanceaction":{"classid":"sysimport:crosswalk:datasetarchive","classname":"Harvested","schemeid":"dnet:provenanceActions","schemename":"dnet:provenanceActions"},"trust":"0.9"},"qualifier":{"classid":"main title","classname":"main title","schemeid":"dnet:dataCite_title","schemename":"dnet:dataCite_title"},"value":"PAN-00054604 - early medieval enamelled disc brooch variant A9"}]} \ No newline at end of file diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/DownloadCsvTest.java b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/DownloadCsvTest.java similarity index 100% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/DownloadCsvTest.java rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/DownloadCsvTest.java diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestApply.scala b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestApply.scala similarity index 100% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestApply.scala rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestApply.scala diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPrepare.scala b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPrepare.scala similarity index 96% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPrepare.scala rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPrepare.scala index a3a753a8ab..7abce547f8 100644 --- a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPrepare.scala +++ b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPrepare.scala @@ -3,13 +3,9 @@ package eu.dnetlib.dhp.oa.graph.hostedbymap import com.fasterxml.jackson.databind.ObjectMapper import eu.dnetlib.dhp.oa.graph.hostedbymap.SparkPrepareHostedByInfoToApply.{joinResHBM, prepareResultInfo, toEntityInfo} import eu.dnetlib.dhp.oa.graph.hostedbymap.model.EntityInfo -import eu.dnetlib.dhp.schema.oaf.{Datasource, OpenAccessRoute, Publication} -import javax.management.openmbean.OpenMBeanAttributeInfo import org.apache.spark.SparkConf import org.apache.spark.sql.{Dataset, Encoder, Encoders, SparkSession} -import org.json4s import org.json4s.DefaultFormats -import eu.dnetlib.dhp.schema.common.ModelConstants import org.junit.jupiter.api.Assertions.{assertEquals, assertTrue} import org.junit.jupiter.api.Test diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPreprocess.scala b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPreprocess.scala similarity index 98% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPreprocess.scala rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPreprocess.scala index 5b00e9b6f1..0922f2e196 100644 --- a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPreprocess.scala +++ b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/hostedbymap/TestPreprocess.scala @@ -4,10 +4,9 @@ import eu.dnetlib.dhp.schema.oaf.Datasource import org.apache.spark.SparkConf import org.apache.spark.sql.{Dataset, Encoder, Encoders, SparkSession} import org.json4s.DefaultFormats -import org.junit.jupiter.api.Assertions.{assertNotNull, assertTrue} -import org.junit.jupiter.api.Test -import org.junit.jupiter.api.Assertions._ import org.json4s.jackson.Serialization.write +import org.junit.jupiter.api.Assertions._ +import org.junit.jupiter.api.Test class TestPreprocess extends java.io.Serializable{ diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/resolution/ResolveEntitiesTest.scala b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/resolution/ResolveEntitiesTest.scala similarity index 99% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/resolution/ResolveEntitiesTest.scala rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/resolution/ResolveEntitiesTest.scala index 9a142d3c0e..f1bd841d1b 100644 --- a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/oa/graph/resolution/ResolveEntitiesTest.scala +++ b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/oa/graph/resolution/ResolveEntitiesTest.scala @@ -159,6 +159,7 @@ class ResolveEntitiesTest extends Serializable { val datDS:Dataset[Result] = spark.read.text(s"$workingDir/work/resolvedGraph/dataset").as[String].map(s => SparkResolveEntities.deserializeObject(s, EntityType.dataset)) + val td = datDS.filter(p => p.getTitle!=null && p.getSubject!=null).filter(p => p.getTitle.asScala.exists(t => t.getValue.equalsIgnoreCase("FAKETITLE"))).count() diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/sx/graph/scholix/ScholixGraphTest.scala b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/sx/graph/scholix/ScholixGraphTest.scala similarity index 100% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/sx/graph/scholix/ScholixGraphTest.scala rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/sx/graph/scholix/ScholixGraphTest.scala diff --git a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/sx/pangaea/PangaeaTransformTest.scala b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/sx/pangaea/PangaeaTransformTest.scala similarity index 95% rename from dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/sx/pangaea/PangaeaTransformTest.scala rename to dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/sx/pangaea/PangaeaTransformTest.scala index b90827e81d..0d89cca85b 100644 --- a/dhp-workflows/dhp-graph-mapper/src/test/java/eu/dnetlib/dhp/sx/pangaea/PangaeaTransformTest.scala +++ b/dhp-workflows/dhp-graph-mapper/src/test/scala/eu/dnetlib/dhp/sx/pangaea/PangaeaTransformTest.scala @@ -3,7 +3,6 @@ package eu.dnetlib.dhp.sx.pangaea import eu.dnetlib.dhp.sx.graph.pangaea.PangaeaUtils import org.junit.jupiter.api.Test -import java.util.TimeZone import java.text.SimpleDateFormat import java.util.Date import scala.io.Source