affRo/strings.py

67 lines
2.2 KiB
Python

import json
from pyspark.sql.types import StringType, ArrayType, StructType, StructField, DoubleType
from affro_cluster import *
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, explode, first, collect_list, udf
import sys
spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
folder_path = sys.argv[1]
hdfs_output_path = sys.argv[2]
matchings_schema = ArrayType(
StructType([
StructField("Provenance", StringType(), nullable=True),
StructField("PID", StringType(), nullable=True),
StructField("Value", StringType(), nullable=True),
StructField("Confidence", DoubleType(), nullable=True),
StructField("Status", StringType(), nullable=True)
])
)
#Version of affro application on a single raw_aff_string and returns just the Matchins set
def oalex_affro(aff_string):
try:
matchings = affro(aff_string)
if not isinstance(matchings, list):
matchings = [matchings]
return matchings
except Exception as e:
print(f"Error processing affiliation string {aff_string}: {str(e)}")
return []
oalex_affro_udf = udf(oalex_affro, matchings_schema)
explode = spark.read.json(folder_path) \
.filter(col("doi").isNotNull()) \
.select(
col("doi").alias("DOI"),
col("ror").alias("OAlex"),
explode(col("raw_aff_string")).alias("affiliation") #this allows to split all the raw_aff_string and to parallelize better
)
affs = explode \
.select("affiliation") \
.distinct() \
.withColumn("Matchings", oalex_affro_udf(col("affiliation")))
affs.join(explode, on="affiliation") \
.select(col("DOI"),
col("OAlex"),
explode(col("Matchins")).alias("match")
) \
.groupBy("DOI") \
.agg(first("OAlex").alias("OAlex"), #for each DOI it says what are the other columns Since OALEX is equal for each doi just select the first, while use the collect_list function to aggregate the Matchings
collect_list("match").alias("Matchings") #each exploded match is collected again
) \
.write \
.mode("overwrite") \
.option("compression","gzip") \
.json(hdfs_output_path)