Oalex #13
91
strings.py
91
strings.py
|
@ -1,8 +1,11 @@
|
||||||
import json
|
import time
|
||||||
|
|
||||||
|
from pyspark.sql.types import StringType, ArrayType, StructType, StructField, DoubleType
|
||||||
|
from threading import Thread
|
||||||
from affro_cluster import *
|
from affro_cluster import *
|
||||||
import os
|
|
||||||
from pyspark.sql import SparkSession
|
from pyspark.sql import SparkSession
|
||||||
from pyspark.sql.functions import col
|
from pyspark.sql.functions import col, explode, first, collect_list, udf, collect_set
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
|
spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
|
||||||
|
@ -10,31 +13,85 @@ spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
|
||||||
folder_path = sys.argv[1]
|
folder_path = sys.argv[1]
|
||||||
hdfs_output_path = sys.argv[2]
|
hdfs_output_path = sys.argv[2]
|
||||||
|
|
||||||
# folder_path = '/user/zeppelin/affiliations/raw_aff_string/2024-08'
|
matchings_schema = ArrayType(
|
||||||
# hdfs_output_path = 'tmp/affro/results_strings'
|
StructType([
|
||||||
|
StructField("Provenance", StringType(), nullable=True),
|
||||||
|
StructField("PID", StringType(), nullable=True),
|
||||||
|
StructField("Value", StringType(), nullable=True),
|
||||||
|
StructField("Confidence", DoubleType(), nullable=True),
|
||||||
|
StructField("Status", StringType(), nullable=True)
|
||||||
|
])
|
||||||
|
)
|
||||||
|
|
||||||
|
operation_counter = spark.sparkContext.accumulator(0)
|
||||||
|
|
||||||
def oalex_affro(record):
|
#Version of affro application on a single raw_aff_string and returns just the Matchins set
|
||||||
doi = record['doi'][16:]
|
def oalex_affro(aff_string):
|
||||||
oalex = record['rors']
|
global operation_counter
|
||||||
try:
|
try:
|
||||||
matchings = [item for sublist in [affro(x) for x in record['raw_aff_string']] for item in (sublist if isinstance(sublist, list) else [sublist])]
|
matchings = affro(aff_string)
|
||||||
|
operation_counter += 1
|
||||||
|
# Ensure matchings is a list, even if affro returns a single dict
|
||||||
|
if not isinstance(matchings, list):
|
||||||
|
matchings = [matchings]
|
||||||
|
|
||||||
result = {'DOI' : doi, 'OAlex' : oalex, 'Matchings': matchings}
|
# Create the result as a tuple that matches matchings_schema
|
||||||
|
result = []
|
||||||
|
for matching in matchings:
|
||||||
|
# Assuming 'matching' is a dictionary that contains 'Provenance', 'PID', 'Value', 'Confidence', 'Status'
|
||||||
|
result.append((
|
||||||
|
matching.get("Provenance", None),
|
||||||
|
matching.get("PID", None),
|
||||||
|
matching.get("Value", None),
|
||||||
|
float(matching.get("Confidence", None)),
|
||||||
|
matching.get("Status", None)
|
||||||
|
))
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error processing record with id {record.get('doi')}: {str(e)}")
|
print(f"Error processing affiliation string {aff_string}: {str(e)}")
|
||||||
return None
|
return ()
|
||||||
|
|
||||||
|
oalex_affro_udf = udf(oalex_affro, matchings_schema)
|
||||||
|
monitor_done = False
|
||||||
|
|
||||||
df = spark.read.json(folder_path)
|
def monitor_counter(interval):
|
||||||
filtered_df = df.filter(col("doi").isNotNull())
|
while True:
|
||||||
updated_rdd = filtered_df.rdd.map(lambda row: oalex_affro(row.asDict()))
|
print(f"Number of calls to AffRo: {operation_counter.value}")
|
||||||
|
time.sleep(interval)
|
||||||
|
if monitor_done:
|
||||||
|
break
|
||||||
|
|
||||||
json_rdd = updated_rdd.map(lambda record: json.dumps(record))
|
exploded = spark.read.json(folder_path) \
|
||||||
|
.filter(col("doi").isNotNull()) \
|
||||||
|
.select(
|
||||||
|
col("doi").alias("DOI"),
|
||||||
|
col("rors").alias("OAlex"),
|
||||||
|
explode(col("raw_aff_string")).alias("affiliation") #this allows to split all the raw_aff_string and to parallelize better
|
||||||
|
)
|
||||||
|
|
||||||
|
monitor_thread = Thread(target=monitor_counter, args=(600,), daemon=True)
|
||||||
|
monitor_thread.start()
|
||||||
|
|
||||||
json_rdd.saveAsTextFile(hdfs_output_path)
|
affs = exploded \
|
||||||
|
.select("affiliation") \
|
||||||
|
.distinct() \
|
||||||
|
.withColumn("Matchings", oalex_affro_udf(col("affiliation")))
|
||||||
|
|
||||||
|
affs.join(exploded, on="affiliation") \
|
||||||
|
.select(col("DOI"),
|
||||||
|
col("OAlex"),
|
||||||
|
explode(col("Matchings")).alias("match")
|
||||||
|
) \
|
||||||
|
.groupBy("DOI") \
|
||||||
|
.agg(first("OAlex").alias("OAlex"), #for each DOI it says what are the other columns Since OALEX is equal for each doi just select the first, while use the collect_list function to aggregate the Matchings
|
||||||
|
collect_set("match").alias("Matchings") #each exploded match is collected again
|
||||||
|
) \
|
||||||
|
.write \
|
||||||
|
.mode("overwrite") \
|
||||||
|
.option("compression","gzip") \
|
||||||
|
.json(hdfs_output_path)
|
||||||
|
|
||||||
|
monitor_done = True
|
||||||
|
monitor_thread.join()
|
Loading…
Reference in New Issue