Oalex #13
23
strings.py
23
strings.py
|
@ -22,21 +22,22 @@ def oalex_affro(doi, aff_string):
|
|||
return []
|
||||
|
||||
|
||||
spark.read.json(folder_path)
|
||||
.filter(col("doi").isNotNull())
|
||||
spark.read.json(folder_path) \
|
||||
.filter(col("doi").isNotNull()) \
|
||||
.select(
|
||||
col("doi").alias("DOI"),
|
||||
col("rors").alias("OAlex"),
|
||||
explode(col("raw_aff_string")).alias("aff_string") #this allows to split all the raw_aff_string and to parallelize better
|
||||
)
|
||||
.withColumn("Matchings", oalex_affro(col("doi"), col("aff_string"))) #this one says create a new column with name Matchinds as the result of the function as second argument
|
||||
.drop(col("aff_string")
|
||||
.select(col("DOI"),col("OAlex"),explode("Matchins").alias("match")
|
||||
.groupBy("DOI") #this groups by doi to have just one row per each doi
|
||||
) \
|
||||
.drop(col("aff_string") #removes the aff_string column
|
||||
) \
|
||||
.select(col("DOI"),col("OAlex"),explode("Matchins").alias("match")) \
|
||||
.groupBy("DOI") \
|
||||
.agg(first("OAlex").alias("OAlex"), #for each DOI it says what are the other columns Since OALEX is equal for each doi just select the first, while use the collect_list function to aggregate the Matchings
|
||||
collect_list("match").alias("Matchings"))
|
||||
.write
|
||||
.mode("overwrite") #in case the folder already exists on hadoop it does not break
|
||||
.option("compression","gzip") #to reduce the space
|
||||
collect_list("match").alias("Matchings") #each exploded match is collected again
|
||||
) \
|
||||
.write \
|
||||
.mode("overwrite") \
|
||||
.option("compression","gzip") \
|
||||
.json(hdfs_output_path)
|
||||
|
||||
|
|
Loading…
Reference in New Issue