[oalex] execute affRo on distinct affilitaion_strings
This commit is contained in:
parent
ea2e27a9f4
commit
efa4db4e52
31
strings.py
31
strings.py
|
@ -9,29 +9,38 @@ spark = SparkSession.builder.appName("JSONProcessing").getOrCreate()
|
|||
|
||||
folder_path = sys.argv[1]
|
||||
hdfs_output_path = sys.argv[2]
|
||||
working_dir_path = sys.argv[3]
|
||||
|
||||
#Version of affro application on a single raw_aff_string and returns just the Matchins set
|
||||
def oalex_affro(doi, aff_string):
|
||||
def oalex_affro(aff_string):
|
||||
try:
|
||||
matchings = affro(aff_string)
|
||||
if not isinstance(matchings, list):
|
||||
matchings = [matchings]
|
||||
return matchings
|
||||
except Exception as e:
|
||||
print(f"Error processing record with doi {doi}: {str(e)}")
|
||||
print(f"Error processing affiliation string {aff_string}: {str(e)}")
|
||||
return []
|
||||
|
||||
|
||||
spark.read.json(folder_path) \
|
||||
explode = spark.read.json(folder_path) \
|
||||
.filter(col("doi").isNotNull()) \
|
||||
.select(
|
||||
col("doi").alias("DOI"),
|
||||
col("rors").alias("OAlex"),
|
||||
explode(col("raw_aff_string")).alias("aff_string") #this allows to split all the raw_aff_string and to parallelize better
|
||||
) \
|
||||
.drop(col("aff_string") #removes the aff_string column
|
||||
) \
|
||||
.select(col("DOI"),col("OAlex"),explode("Matchins").alias("match")) \
|
||||
col("doi").alias("DOI"),
|
||||
col("ror").alias("OAlex"),
|
||||
explode(col("raw_aff_string")).alias("affiliation") #this allows to split all the raw_aff_string and to parallelize better
|
||||
)
|
||||
|
||||
affs = explode \
|
||||
.select("affiliation") \
|
||||
.distinct() \
|
||||
.withColumn("Matchings", oalex_affro(col("aff_string")))
|
||||
|
||||
|
||||
affs.join(explode, on = "affiliation") \
|
||||
.select(col("DOI"),
|
||||
col("OAlex"),
|
||||
explode("Matchins").alias("match")
|
||||
) \
|
||||
.groupBy("DOI") \
|
||||
.agg(first("OAlex").alias("OAlex"), #for each DOI it says what are the other columns Since OALEX is equal for each doi just select the first, while use the collect_list function to aggregate the Matchings
|
||||
collect_list("match").alias("Matchings") #each exploded match is collected again
|
||||
|
|
Loading…
Reference in New Issue