affRo/datacite.py

112 lines
3.9 KiB
Python
Raw Normal View History

2024-11-21 13:32:50 +01:00
import json
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, from_json
from pyspark.sql.types import StructType, StructField, StringType, ArrayType
from affro_cluster import *
import sys
folder_path = sys.argv[1]
hdfs_output_path = sys.argv[2]
# Initialize Spark session
spark = SparkSession.builder.appName("AffRo-DataCite").getOrCreate()
json_schema = StructType([
StructField("doi", StringType(), True),
StructField("attributes", StructType([
StructField("doi", StringType(), True),
StructField("identifiers", ArrayType(StringType()), True),
StructField("creators", ArrayType(StructType([
StructField("name", StringType(), True),
StructField("givenName", StringType(), True),
StructField("familyName", StringType(), True),
StructField("nameType", StringType(), True),
StructField("affiliation", ArrayType(StringType()), True),
StructField("nameIdentifiers", ArrayType(StringType()), True)
])), True),
]), True),
])
def remove_duplicates(list_of_dicts):
# Use a set to store tuples of dictionary items to filter out duplicates
seen = set()
unique_list_of_dicts = []
for d in list_of_dicts:
# Convert the dictionary to a tuple of items
items = tuple(d.items())
if items not in seen:
seen.add(items)
unique_list_of_dicts.append(d)
return unique_list_of_dicts
def datacite_affro(record):
try:
doi = record['doi']
result = {}
authors = []
for creator in record['json_parsed']['attributes']['creators']:
name = {}
name['Full'] = creator['name']
corresponing = False
contributor_roles = None
matchings = []
try:
name['First'] = creator['givenName']
except Exception as e:
name['First'] = None
try:
name['Last'] = creator['familyName']
except:
name['Last'] = None
try:
name['Type'] = creator['nameType']
except:
name['Type'] = None
if 'affiliation' in creator:
affiliation = creator['affiliation']
for org in affiliation:
if 'corresponding author' in org.lower():
corresponing = True
if len(affiliation)>0:
ror_links = [affro(org) for org in affiliation]
matchings = [inner_ror for outer_ror in ror_links for inner_ror in outer_ror]
matchings = remove_duplicates(matchings)
else:
affiliation = []
matchings = []
if len(matchings)>0:
authors.append({'Name' : name, 'Corresponding' : corresponing, 'Contributor_roles' : contributor_roles, 'Raw_affiliations' : affiliation, 'Matchings':matchings})
collect_organizations = [author['Matchings'] for author in authors]
organizations = [inner_ror for outer_ror in collect_organizations for inner_ror in outer_ror]
organizations = remove_duplicates(organizations)
if len(authors)>0:
result = {'DOI' : doi, 'Authors' : authors, 'Organizations' : organizations}
return result
except Exception as e:
print(f"Error processing record with id {record['DOI']} : {str(e)}")
df = spark.read.option("mode", "PERMISSIVE").parquet(folder_path)
df_parsed = df.withColumn("json_parsed", from_json(col("json"), json_schema))
updated_rdd = df_parsed.rdd.map(lambda row: datacite_affro(row.asDict()))
filtered_rdd = updated_rdd.filter(lambda record: record is not None and record != {})
# Convert updated RDD to JSON strings
json_rdd = filtered_rdd.map(lambda record: json.dumps(record))
json_rdd.saveAsTextFile(hdfs_output_path)