feature transformer implementation: lda model, count vectorizer and tokenizer
This commit is contained in:
parent
be20c4e67e
commit
5aa559cb42
|
@ -7,14 +7,33 @@
|
||||||
<groupId>eu.dnetlib</groupId>
|
<groupId>eu.dnetlib</groupId>
|
||||||
<artifactId>dnet-and</artifactId>
|
<artifactId>dnet-and</artifactId>
|
||||||
<version>1.0.0-SNAPSHOT</version>
|
<version>1.0.0-SNAPSHOT</version>
|
||||||
|
<relativePath>../pom.xml</relativePath>
|
||||||
</parent>
|
</parent>
|
||||||
|
|
||||||
<artifactId>dnet-feature-extraction</artifactId>
|
<artifactId>dnet-feature-extraction</artifactId>
|
||||||
|
<packaging>jar</packaging>
|
||||||
|
|
||||||
<properties>
|
<dependencies>
|
||||||
<maven.compiler.source>8</maven.compiler.source>
|
<dependency>
|
||||||
<maven.compiler.target>8</maven.compiler.target>
|
<groupId>org.apache.spark</groupId>
|
||||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
<artifactId>spark-core_2.11</artifactId>
|
||||||
</properties>
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.apache.spark</groupId>
|
||||||
|
<artifactId>spark-graphx_2.11</artifactId>
|
||||||
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.apache.spark</groupId>
|
||||||
|
<artifactId>spark-sql_2.11</artifactId>
|
||||||
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.apache.spark</groupId>
|
||||||
|
<artifactId>spark-mllib_2.11</artifactId>
|
||||||
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>com.jayway.jsonpath</groupId>
|
||||||
|
<artifactId>json-path</artifactId>
|
||||||
|
</dependency>
|
||||||
|
</dependencies>
|
||||||
|
|
||||||
</project>
|
</project>
|
|
@ -1,2 +1,141 @@
|
||||||
package eu.dnetlib.featureextraction;public class FeatureTransformer {
|
package eu.dnetlib.featureextraction;
|
||||||
|
|
||||||
|
import java.io.BufferedReader;
|
||||||
|
import java.io.FileReader;
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.io.Serializable;
|
||||||
|
import java.util.*;
|
||||||
|
|
||||||
|
import eu.dnetlib.featureextraction.util.Utilities;
|
||||||
|
import org.apache.spark.ml.Model;
|
||||||
|
import org.apache.spark.ml.clustering.LDA;
|
||||||
|
import org.apache.spark.ml.clustering.LDAModel;
|
||||||
|
import org.apache.spark.ml.evaluation.Evaluator;
|
||||||
|
import org.apache.spark.ml.feature.*;
|
||||||
|
import org.apache.spark.ml.param.ParamMap;
|
||||||
|
import org.apache.spark.ml.tuning.ParamGridBuilder;
|
||||||
|
import org.apache.spark.ml.tuning.TrainValidationSplit;
|
||||||
|
import org.apache.spark.ml.tuning.TrainValidationSplitModel;
|
||||||
|
import org.apache.spark.sql.Dataset;
|
||||||
|
import org.apache.spark.sql.Row;
|
||||||
|
import scala.Tuple2;
|
||||||
|
|
||||||
|
public class FeatureTransformer implements Serializable {
|
||||||
|
|
||||||
|
public static String ID_COL = "id";
|
||||||
|
public static String TOKENIZER_INPUT_COL = "sentence";
|
||||||
|
public static String TOKENIZER_OUTPUT_COL = "rawTokens";
|
||||||
|
public static String STOPWORDREMOVER_OUTPUT_COL = "tokens";
|
||||||
|
public static String COUNTVECTORIZER_OUTPUT_COL = "features";
|
||||||
|
public static String LDA_OPTIMIZER = "online";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the tokenization of the data without stopwords
|
||||||
|
*
|
||||||
|
* @param inputDS: the input dataset of the form (id, sentence)
|
||||||
|
* @return the tokenized data (id, tokens)
|
||||||
|
*/
|
||||||
|
public static Dataset<Row> tokenizeData(Dataset<Row> inputDS) {
|
||||||
|
Tokenizer tokenizer = new Tokenizer().setInputCol(TOKENIZER_INPUT_COL).setOutputCol(TOKENIZER_OUTPUT_COL);
|
||||||
|
StopWordsRemover remover = new StopWordsRemover().setInputCol(TOKENIZER_OUTPUT_COL).setOutputCol(STOPWORDREMOVER_OUTPUT_COL);
|
||||||
|
//TODO consider implementing stemming with SparkNLP library from johnsnowlab
|
||||||
|
Dataset<Row> rawTokensDS = tokenizer.transform(inputDS).select(ID_COL, TOKENIZER_OUTPUT_COL);
|
||||||
|
return remover.transform(rawTokensDS).select(ID_COL, STOPWORDREMOVER_OUTPUT_COL);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create the vocabulary from the given data.
|
||||||
|
*
|
||||||
|
* @param inputDS: the input dataset of the form (id, tokens)
|
||||||
|
* @param minDF: minimum number of different documents a term could appear in to be included in the vocabulary
|
||||||
|
* @param minTF: filter to ignore rare words in a document
|
||||||
|
* @param vocabSize: maximum size of the vocabulary (number of terms)
|
||||||
|
* @return the vocabulary
|
||||||
|
*/
|
||||||
|
public static CountVectorizerModel createVocabularyFromTokens(Dataset<Row> inputDS, double minDF, double minTF, int vocabSize) {
|
||||||
|
return new CountVectorizer()
|
||||||
|
.setInputCol(STOPWORDREMOVER_OUTPUT_COL)
|
||||||
|
.setOutputCol(COUNTVECTORIZER_OUTPUT_COL)
|
||||||
|
.setMinDF(minDF)
|
||||||
|
.setMinTF(minTF)
|
||||||
|
.setVocabSize(vocabSize)
|
||||||
|
.fit(inputDS);
|
||||||
|
//TODO setMaxDF not found, try to add it
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create the vocabulary from file.
|
||||||
|
*
|
||||||
|
* @param inputFilePath: the input file with the vocabulary elements (one element for line)
|
||||||
|
* @return the vocabulary
|
||||||
|
*/
|
||||||
|
public static CountVectorizerModel createVocabularyFromFile(String inputFilePath) throws IOException {
|
||||||
|
Set<String> fileLines = new HashSet<>();
|
||||||
|
BufferedReader bf = new BufferedReader(new FileReader(inputFilePath));
|
||||||
|
String line = bf.readLine();
|
||||||
|
while(line != null) {
|
||||||
|
fileLines.add(line);
|
||||||
|
line = bf.readLine();
|
||||||
|
}
|
||||||
|
bf.close();
|
||||||
|
|
||||||
|
return new CountVectorizerModel(fileLines.toArray(new String[0])).setInputCol(STOPWORDREMOVER_OUTPUT_COL).setOutputCol(COUNTVECTORIZER_OUTPUT_COL);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Load an existing vocabulary
|
||||||
|
*
|
||||||
|
* @param vocabularyPath: location of the vocabulary
|
||||||
|
* @return the vocabulary
|
||||||
|
*/
|
||||||
|
public static CountVectorizerModel loadVocabulary(String vocabularyPath) {
|
||||||
|
return CountVectorizerModel.load(vocabularyPath);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Count vectorize data.
|
||||||
|
*
|
||||||
|
* @param inputDS: the input dataset of the form (id, tokens)
|
||||||
|
* @param vocabulary: the vocabulary to be used for the transformation
|
||||||
|
* @return the count vectorized data
|
||||||
|
*/
|
||||||
|
public static Dataset<Row> countVectorizeData(Dataset<Row> inputDS, CountVectorizerModel vocabulary) {
|
||||||
|
return vocabulary.transform(inputDS).select(ID_COL, COUNTVECTORIZER_OUTPUT_COL);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Train LDA model with the given parameters
|
||||||
|
*
|
||||||
|
* @param inputDS: the input dataset
|
||||||
|
* @param k: number of topics
|
||||||
|
* @param maxIter: maximum number of iterations
|
||||||
|
* @return the LDA model
|
||||||
|
*/
|
||||||
|
public static LDAModel trainLDAModel(Dataset<Row> inputDS, int k, int maxIter) {
|
||||||
|
|
||||||
|
LDA lda = new LDA()
|
||||||
|
.setK(k)
|
||||||
|
.setMaxIter(maxIter)
|
||||||
|
.setFeaturesCol(COUNTVECTORIZER_OUTPUT_COL)
|
||||||
|
.setOptimizer(LDA_OPTIMIZER);
|
||||||
|
|
||||||
|
return lda.fit(inputDS);
|
||||||
|
}
|
||||||
|
|
||||||
|
public static Map<Integer, Tuple2<LDAModel, Double>> ldaTuning(Dataset<Row> dataDS, double trainRatio, int[] numTopics, int maxIter) {
|
||||||
|
Dataset<Row>[] setsDS = dataDS.randomSplit(new double[]{trainRatio, 1 - trainRatio});
|
||||||
|
Dataset<Row> trainDS = setsDS[0];
|
||||||
|
Dataset<Row> testDS = setsDS[1];
|
||||||
|
Map<Integer, Tuple2<LDAModel, Double>> ldaModels = new HashMap<>();
|
||||||
|
|
||||||
|
for(int k: numTopics) {
|
||||||
|
LDAModel ldaModel = trainLDAModel(trainDS, k, maxIter);
|
||||||
|
double perplexity = ldaModel.logPerplexity(testDS);
|
||||||
|
ldaModels.put(k, new Tuple2<>(ldaModel, perplexity));
|
||||||
|
}
|
||||||
|
|
||||||
|
return ldaModels;
|
||||||
|
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,2 +1,9 @@
|
||||||
package eu.dnetlib.featureextraction.lda;public class LDAModeler {
|
package eu.dnetlib.featureextraction.lda;
|
||||||
|
|
||||||
|
public class LDAModeler {
|
||||||
|
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
System.out.println("prova");
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,2 +1,102 @@
|
||||||
package eu.dnetlib.featureextraction.util;public class Utilities {
|
package eu.dnetlib.featureextraction.util;
|
||||||
|
|
||||||
|
import com.jayway.jsonpath.JsonPath;
|
||||||
|
import net.minidev.json.JSONArray;
|
||||||
|
import org.apache.hadoop.conf.Configuration;
|
||||||
|
import org.apache.hadoop.fs.FSDataOutputStream;
|
||||||
|
import org.apache.hadoop.fs.FileSystem;
|
||||||
|
import org.apache.hadoop.fs.Path;
|
||||||
|
import org.apache.spark.api.java.JavaRDD;
|
||||||
|
import org.apache.spark.sql.Dataset;
|
||||||
|
import org.apache.spark.sql.Row;
|
||||||
|
import org.apache.spark.sql.RowFactory;
|
||||||
|
import org.apache.spark.sql.SQLContext;
|
||||||
|
import org.apache.spark.sql.types.DataTypes;
|
||||||
|
import org.apache.spark.sql.types.Metadata;
|
||||||
|
import org.apache.spark.sql.types.StructField;
|
||||||
|
import org.apache.spark.sql.types.StructType;
|
||||||
|
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.io.Serializable;
|
||||||
|
import java.text.Normalizer;
|
||||||
|
import java.util.List;
|
||||||
|
|
||||||
|
public class Utilities implements Serializable {
|
||||||
|
|
||||||
|
public static String DATA_ID_FIELD = "$.id";
|
||||||
|
|
||||||
|
static StructType inputSchema = new StructType(new StructField[]{
|
||||||
|
new StructField("id", DataTypes.StringType, false, Metadata.empty()),
|
||||||
|
new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
|
||||||
|
});
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns a view of the dataset including the id and the chosen field.
|
||||||
|
*
|
||||||
|
* @param sqlContext: the spark sql context
|
||||||
|
* @param jsonRDD: the input dataset
|
||||||
|
* @param inputFieldJPath: the input field jpath
|
||||||
|
* @return the view of the dataset with normalized data of the inputField (id, inputField)
|
||||||
|
*/
|
||||||
|
public static Dataset<Row> prepareDataset(SQLContext sqlContext, JavaRDD<String> jsonRDD, String inputFieldJPath) {
|
||||||
|
|
||||||
|
JavaRDD<Row> rowRDD = jsonRDD
|
||||||
|
.map(json ->
|
||||||
|
RowFactory.create(getJPathString(DATA_ID_FIELD, json), Utilities.normalize(getJPathString(inputFieldJPath, json))));
|
||||||
|
return sqlContext.createDataFrame(rowRDD, inputSchema);
|
||||||
|
}
|
||||||
|
|
||||||
|
//returns the string value of the jpath in the given input json
|
||||||
|
public static String getJPathString(final String jsonPath, final String inputJson) {
|
||||||
|
try {
|
||||||
|
Object o = JsonPath.read(inputJson, jsonPath);
|
||||||
|
if (o instanceof String)
|
||||||
|
return (String)o;
|
||||||
|
if (o instanceof JSONArray && ((JSONArray)o).size()>0)
|
||||||
|
return (String)((JSONArray)o).get(0);
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
catch (Exception e) {
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public static String normalize(final String s) {
|
||||||
|
return Normalizer.normalize(s, Normalizer.Form.NFD)
|
||||||
|
.replaceAll("[^\\w\\s-]", "") // Remove all non-word, non-space or non-dash characters
|
||||||
|
.replace('-', ' ') // Replace dashes with spaces
|
||||||
|
.trim() // trim leading/trailing whitespace (including what used to be leading/trailing dashes)
|
||||||
|
.toLowerCase(); // Lowercase the final results
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void writeLinesToHDFSFile(List<String> lines, String filePath) throws IOException {
|
||||||
|
Configuration conf = new Configuration();
|
||||||
|
|
||||||
|
FileSystem fs = FileSystem.get(conf);
|
||||||
|
fs.delete(new Path(filePath), true);
|
||||||
|
|
||||||
|
try {
|
||||||
|
fs = FileSystem.get(conf);
|
||||||
|
|
||||||
|
Path outFile = new Path(filePath);
|
||||||
|
// Verification
|
||||||
|
if (fs.exists(outFile)) {
|
||||||
|
System.out.println("Output file already exists");
|
||||||
|
throw new IOException("Output file already exists");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create file to write
|
||||||
|
FSDataOutputStream out = fs.create(outFile);
|
||||||
|
try{
|
||||||
|
for (String line: lines) {
|
||||||
|
out.writeBytes(line + "\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
finally {
|
||||||
|
out.close();
|
||||||
|
}
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue