forked from D-Net/dnet-hadoop
Merge branch '8172_impact_indicators_workflow' of https://code-repo.d4science.org/D-Net/dnet-hadoop into 8172_impact_indicators_workflow
This commit is contained in:
commit
c64e5e588f
|
@ -213,7 +213,10 @@ if mode == 'bip':
|
||||||
cc_dir = sys.argv[4]
|
cc_dir = sys.argv[4]
|
||||||
impulse_dir = sys.argv[5]
|
impulse_dir = sys.argv[5]
|
||||||
ram_dir = sys.argv[6]
|
ram_dir = sys.argv[6]
|
||||||
refs_dir = sys.argv[7]
|
|
||||||
|
# NOTE: This was used initial, but @Serafeim told me to remove it since we don't get doi-doi referencew anymore
|
||||||
|
# In case of emergency, bring this back
|
||||||
|
# refs_dir = sys.argv[7]
|
||||||
|
|
||||||
# Score-specific dataframe
|
# Score-specific dataframe
|
||||||
pagerank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(pagerank_dir).repartition(num_partitions, 'id')
|
pagerank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(pagerank_dir).repartition(num_partitions, 'id')
|
||||||
|
@ -221,7 +224,7 @@ if mode == 'bip':
|
||||||
cc_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(cc_dir).repartition(num_partitions, 'id')
|
cc_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(cc_dir).repartition(num_partitions, 'id')
|
||||||
impulse_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(impulse_dir).repartition(num_partitions, 'id')
|
impulse_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(impulse_dir).repartition(num_partitions, 'id')
|
||||||
ram_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header', True).csv(ram_dir).repartition(num_partitions, 'id')
|
ram_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header', True).csv(ram_dir).repartition(num_partitions, 'id')
|
||||||
refs_df = spark.read.schema(refs_schema).option('delimiter', '\t').option('header',True).csv(refs_dir).repartition(num_partitions, 'id')
|
# refs_df = spark.read.schema(refs_schema).option('delimiter', '\t').option('header',True).csv(refs_dir).repartition(num_partitions, 'id')
|
||||||
|
|
||||||
# ----------- TESTING CODE --------------- #
|
# ----------- TESTING CODE --------------- #
|
||||||
# pagerank_entries = pagerank_df.count()
|
# pagerank_entries = pagerank_df.count()
|
||||||
|
@ -258,9 +261,10 @@ if mode == 'bip':
|
||||||
.select(results_df.id, 'pagerank', 'pagerank_normalized', 'attrank', 'attrank_normalized', 'cc', 'cc_normalized',\
|
.select(results_df.id, 'pagerank', 'pagerank_normalized', 'attrank', 'attrank_normalized', 'cc', 'cc_normalized',\
|
||||||
'3-cc', '3-cc_normalized', F.col('score').alias('ram'))
|
'3-cc', '3-cc_normalized', F.col('score').alias('ram'))
|
||||||
|
|
||||||
# Add references
|
# Add references - THIS WAS REMOVED SINCE WE DON't GET DOI REFERENCES
|
||||||
results_df = results_df.join(refs_df, ['id']).select(results_df.id, 'pagerank', 'pagerank_normalized', 'attrank', 'attrank_normalized', \
|
# In case of emergency bring back
|
||||||
'cc', 'cc_normalized', '3-cc', '3-cc_normalized', 'ram', 'num_refs')
|
# results_df = results_df.join(refs_df, ['id']).select(results_df.id, 'pagerank', 'pagerank_normalized', 'attrank', 'attrank_normalized', \
|
||||||
|
# 'cc', 'cc_normalized', '3-cc', '3-cc_normalized', 'ram', 'num_refs')
|
||||||
|
|
||||||
# Write resulting dataframe to file
|
# Write resulting dataframe to file
|
||||||
output_dir = "/".join(pagerank_dir.split('/')[:-1])
|
output_dir = "/".join(pagerank_dir.split('/')[:-1])
|
||||||
|
|
Loading…
Reference in New Issue