1
0
Fork 0

Produce 5 classes of ranking scores

This commit is contained in:
Ilias Kanellos 2023-05-11 14:42:25 +03:00
parent 90332439ad
commit 3de35fd6a3
2 changed files with 27 additions and 6 deletions

View File

@ -421,7 +421,7 @@ elif mode == 'json':
# Score-specific dataframe - read inputs # Score-specific dataframe - read inputs
pagerank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(pagerank_dir).repartition(num_partitions, 'id') pagerank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(pagerank_dir).repartition(num_partitions, 'id')
attrank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',False).csv(attrank_dir).repartition(num_partitions, 'id') attrank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(attrank_dir).repartition(num_partitions, 'id')
cc_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(cc_dir).repartition(num_partitions, 'id') cc_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(cc_dir).repartition(num_partitions, 'id')
impulse_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(impulse_dir).repartition(num_partitions, 'id') impulse_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(impulse_dir).repartition(num_partitions, 'id')
ram_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header', True).csv(ram_dir).repartition(num_partitions, 'id') ram_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header', True).csv(ram_dir).repartition(num_partitions, 'id')
@ -601,7 +601,7 @@ elif mode == 'json-5-way':
# Score-specific dataframe - read inputs # Score-specific dataframe - read inputs
pagerank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(pagerank_dir).repartition(num_partitions, 'id') pagerank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(pagerank_dir).repartition(num_partitions, 'id')
attrank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',False).csv(attrank_dir).repartition(num_partitions, 'id') attrank_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header',True).csv(attrank_dir).repartition(num_partitions, 'id')
cc_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(cc_dir).repartition(num_partitions, 'id') cc_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(cc_dir).repartition(num_partitions, 'id')
impulse_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(impulse_dir).repartition(num_partitions, 'id') impulse_df = spark.read.schema(int_schema).option('delimiter', '\t').option('header',True).csv(impulse_dir).repartition(num_partitions, 'id')
ram_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header', True).csv(ram_dir).repartition(num_partitions, 'id') ram_df = spark.read.schema(float_schema).option('delimiter', '\t').option('header', True).csv(ram_dir).repartition(num_partitions, 'id')
@ -753,15 +753,36 @@ elif mode == 'json-5-way':
# -------------------------------------------- # # -------------------------------------------- #
# Write json output # Write json output
# -------------------------------------------- #
# Write json output - set the directory here
output_dir = "/".join(pagerank_dir.split('/')[:-1]) output_dir = "/".join(pagerank_dir.split('/')[:-1])
if graph_type == 'bip': if graph_type == 'bip':
output_dir = output_dir + '/bip_universe_doi_scores_5_classes/' output_dir = output_dir + '/bip_universe_doi_scores/'
else: else:
output_dir = output_dir + '/openaire_universe_scores_5_classes/' output_dir = output_dir + '/openaire_universe_scores/'
# Write the dataframe
print ("Writing output to: " + output_dir) print ("Writing output to: " + output_dir)
results_df.write.mode('overwrite').option('header', False).text(output_dir, compression='gzip') results_df.write.mode('overwrite').option('header', False).text(output_dir, compression='gzip')
# Rename the files to .json.gz now
sc = spark.sparkContext
URI = sc._gateway.jvm.java.net.URI
Path = sc._gateway.jvm.org.apache.hadoop.fs.Path
FileSystem = sc._gateway.jvm.org.apache.hadoop.fs.FileSystem
# Get master prefix from input file path
master_prefix = "/".join(pagerank_dir.split('/')[:5])
fs = FileSystem.get(URI(master_prefix), sc._jsc.hadoopConfiguration())
path = Path(output_dir)
print ("Path is:" + path.toString())
file_list = fs.listStatus(Path(output_dir))
print ("Renaming files:")
for f in file_list:
initial_filename = f.getPath().toString()
if "part" in initial_filename:
print (initial_filename + " => " + initial_filename.replace(".txt.gz", ".json.gz"))
fs.rename(Path(initial_filename), Path(initial_filename.replace(".txt.gz", ".json.gz")))
# Close spark session # Close spark session
spark.stop() spark.stop()

View File

@ -390,7 +390,7 @@
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress} --conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}</spark-opts> --conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}</spark-opts>
<!-- Script arguments here --> <!-- Script arguments here -->
<arg>json</arg> <arg>json-5-way</arg>
<!-- Input files must be identified dynamically --> <!-- Input files must be identified dynamically -->
<arg>${nameNode}/${workflowDataDir}/${wf:actionData('get-file-names')['pr_file']}</arg> <arg>${nameNode}/${workflowDataDir}/${wf:actionData('get-file-names')['pr_file']}</arg>
<arg>${nameNode}/${workflowDataDir}/${wf:actionData('get-file-names')['attrank_file']}</arg> <arg>${nameNode}/${workflowDataDir}/${wf:actionData('get-file-names')['attrank_file']}</arg>