forked from D-Net/dnet-hadoop
added oozie workflow
This commit is contained in:
parent
f417515e43
commit
3b837d38ce
|
@ -0,0 +1,23 @@
|
|||
<configuration>
|
||||
<property>
|
||||
<name>jobTracker</name>
|
||||
<value>yarnRM</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>nameNode</name>
|
||||
<value>hdfs://nameservice1</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.use.system.libpath</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.action.sharelib.for.spark</name>
|
||||
<value>spark2</value>
|
||||
</property>
|
||||
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
</configuration>
|
|
@ -0,0 +1,95 @@
|
|||
<workflow-app name="generate_MAG_Datasource" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>crossrefPath</name>
|
||||
<description>the path of the native Crossref DUMP</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>magBasePath</name>
|
||||
<description>The base path of MAG DUMP CSV Tables</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>workingPath</name>
|
||||
<description>The working path</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>resume_from</name>
|
||||
<description>start Node</description>
|
||||
|
||||
</property>
|
||||
|
||||
|
||||
|
||||
</parameters>
|
||||
|
||||
<start to="resume_from"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
|
||||
<decision name="resume_from">
|
||||
<switch>
|
||||
<case to="generateTable">${wf:conf('resumeFrom') eq 'generateTable'}</case>
|
||||
<default to="generateOAF"/> <!-- first action to be done when downloadDump is to be performed -->
|
||||
</switch>
|
||||
</decision>
|
||||
|
||||
|
||||
<action name="generateTables">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Generate ORCID Tables</name>
|
||||
<class>eu.dnetlib.dhp.collection.mag.SparkCreateMagDenormalizedTable</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.executor.memoryOverhead=2g
|
||||
--conf spark.sql.shuffle.partitions=3000
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--crossrefPath</arg><arg>${crossrefPath}</arg>
|
||||
<arg>--magBasePath</arg><arg>${magBasePath}</arg>
|
||||
<arg>--workingPath</arg><arg>${workingPath}</arg>
|
||||
<arg>--master</arg><arg>yarn</arg>
|
||||
</spark>
|
||||
<ok to="generateOAF"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="generateOAF">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Generate ORCID Tables</name>
|
||||
<class>eu.dnetlib.dhp.collection.mag.SparkCreateMagDenormalizedTable</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.executor.memoryOverhead=2g
|
||||
--conf spark.sql.shuffle.partitions=3000
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--crossrefPath</arg><arg>${crossrefPath}</arg>
|
||||
<arg>--magBasePath</arg><arg>${magBasePath}</arg>
|
||||
<arg>--workingPath</arg><arg>${workingPath}</arg>
|
||||
<arg>--master</arg><arg>yarn</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -6,10 +6,67 @@ import org.json4s
|
|||
import org.json4s.DefaultFormats
|
||||
import org.json4s.jackson.JsonMethods.parse
|
||||
|
||||
case class MAGPaper(
|
||||
paperId: Option[Long],
|
||||
rank: Option[Int],
|
||||
doi: Option[String],
|
||||
docType: Option[String],
|
||||
paperTitle: Option[String],
|
||||
originalTitle: Option[String],
|
||||
bookTitle: Option[String],
|
||||
year: Option[Int],
|
||||
date: Option[String],
|
||||
onlineDate: Option[String],
|
||||
publisher: Option[String],
|
||||
// Journal or Conference information (one will be populated)
|
||||
journalId: Option[Long],
|
||||
journalName: Option[String],
|
||||
journalIssn: Option[String],
|
||||
journalPublisher: Option[String],
|
||||
journalWebpage: Option[String],
|
||||
conferenceSeriesId: Option[Long],
|
||||
conferenceInstanceId: Option[Long],
|
||||
conferenceName: Option[String],
|
||||
conferenceLocation: Option[String],
|
||||
conferenceStartDate: Option[String],
|
||||
conferenceEndDate: Option[String],
|
||||
volume: Option[String],
|
||||
issue: Option[String],
|
||||
firstPage: Option[String],
|
||||
lastPage: Option[String],
|
||||
referenceCount: Option[Long],
|
||||
citationCount: Option[Long],
|
||||
estimatedCitation: Option[Long],
|
||||
originalVenue: Option[String],
|
||||
familyId: Option[Long],
|
||||
familyRank: Option[Int],
|
||||
docSubTypes: Option[String],
|
||||
createdDate: Option[String],
|
||||
abstractText: Option[String],
|
||||
// List of authors
|
||||
authors: Option[List[MAGAuthor]],
|
||||
// List of Fields of Study
|
||||
fos: Option[List[MAGFieldOfStudy]]
|
||||
)
|
||||
|
||||
case class MAGAuthor(
|
||||
AffiliationId: Option[Long],
|
||||
AuthorSequenceNumber: Option[Int],
|
||||
AffiliationName: Option[String],
|
||||
AuthorName: Option[String],
|
||||
AuthorId: Option[Long],
|
||||
GridId: Option[String]
|
||||
)
|
||||
|
||||
case class MAGFieldOfStudy(
|
||||
FieldOfStudyId: Option[Long],
|
||||
DisplayName: Option[String],
|
||||
MainType: Option[String],
|
||||
Score: Option[Double]
|
||||
)
|
||||
|
||||
object MagUtility extends Serializable {
|
||||
|
||||
|
||||
val datatypedict = Map(
|
||||
"bool" -> BooleanType,
|
||||
"int" -> IntegerType,
|
||||
|
@ -251,7 +308,8 @@ object MagUtility extends Serializable {
|
|||
def getSchema(streamName: String): StructType = {
|
||||
var schema = new StructType()
|
||||
val d: Seq[String] = stream(streamName)._2
|
||||
d.foreach { case t =>
|
||||
d.foreach {
|
||||
case t =>
|
||||
val currentType = t.split(":")
|
||||
val fieldName: String = currentType.head
|
||||
var fieldType: String = currentType.last
|
||||
|
@ -263,10 +321,9 @@ object MagUtility extends Serializable {
|
|||
schema
|
||||
}
|
||||
|
||||
|
||||
def loadMagEntity(spark:SparkSession, entity:String, basePath:String):Dataset[Row] = {
|
||||
def loadMagEntity(spark: SparkSession, entity: String, basePath: String): Dataset[Row] = {
|
||||
if (stream.contains(entity)) {
|
||||
val s =getSchema(entity)
|
||||
val s = getSchema(entity)
|
||||
val pt = stream(entity)._1
|
||||
spark.read
|
||||
.option("header", "false")
|
||||
|
@ -278,6 +335,7 @@ object MagUtility extends Serializable {
|
|||
null
|
||||
|
||||
}
|
||||
|
||||
def convertInvertedIndexString(json_input: String): String = {
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: json4s.JValue = parse(json_input)
|
||||
|
|
|
@ -1,128 +0,0 @@
|
|||
package eu.dnetlib.dhp.collection.mag
|
||||
|
||||
import eu.dnetlib.dhp.application.AbstractScalaApplication
|
||||
import org.apache.spark.sql.{Dataset, Row, SaveMode, SparkSession}
|
||||
import org.apache.spark.sql.functions._
|
||||
import org.apache.spark.sql.types.{StringType, StructField, StructType}
|
||||
import org.slf4j.Logger
|
||||
|
||||
class SparkCreateMagDataset (propertyPath: String, args: Array[String], log: Logger)
|
||||
extends AbstractScalaApplication(propertyPath, args, log: Logger) {
|
||||
|
||||
|
||||
|
||||
/** Here all the spark applications runs this method
|
||||
* where the whole logic of the spark node is defined
|
||||
*/
|
||||
override def run(): Unit = {
|
||||
|
||||
}
|
||||
|
||||
|
||||
private def loadAndFilterPapers(spark:SparkSession, crossrefPath:String, magBasePath:String, workingPath:String): Unit = {
|
||||
|
||||
import spark.implicits._
|
||||
val schema:StructType= StructType(StructField("DOI", StringType)::Nil)
|
||||
|
||||
//Filter all the MAG Papers that intersect with a Crossref DOI
|
||||
val crId= spark.read.schema(schema).json(crossrefPath).withColumn("crId", lower(col("DOI"))).distinct.select("crId")
|
||||
val magPapers = MagUtility.loadMagEntity(spark, "Papers", magBasePath)
|
||||
.withColumn("Doi", lower(col("Doi")))
|
||||
.where(col("Doi").isNotNull)
|
||||
|
||||
|
||||
val intersectedPapers:Dataset[Row] =magPapers.join(crId, magPapers("Doi").equalTo(crId("crId")), "leftsemi").dropDuplicates("Doi")
|
||||
intersectedPapers.cache()
|
||||
intersectedPapers.count()
|
||||
//log.info("Create current abstract")
|
||||
|
||||
//Abstract is an inverted list, we define a function that convert in string the abstract and recreate
|
||||
// a table(PaperId, Abstract)
|
||||
val paperAbstract = MagUtility.loadMagEntity(spark, "PaperAbstractsInvertedIndex", magBasePath)
|
||||
.map(s => (s.getLong(0),MagUtility.convertInvertedIndexString(s.getString(1))))
|
||||
.withColumnRenamed("_1","PaperId")
|
||||
.withColumnRenamed("_2","Abstract")
|
||||
|
||||
//We define Step0 as the result of the Join between PaperIntersection and the PaperAbstract
|
||||
|
||||
val step0 =intersectedPapers
|
||||
.join(paperAbstract, intersectedPapers("PaperId") === paperAbstract("PaperId"), "left")
|
||||
.select(intersectedPapers("*"),paperAbstract("Abstract")).cache()
|
||||
|
||||
step0.count()
|
||||
|
||||
intersectedPapers.unpersist()
|
||||
|
||||
// We have three table Author, Affiliation, and PaperAuthorAffiliation, in the
|
||||
//next step we create a table containing
|
||||
val authors = MagUtility.loadMagEntity(spark, "Authors", magBasePath)
|
||||
val affiliations= MagUtility.loadMagEntity(spark, "Affiliations", magBasePath)
|
||||
val paaf= MagUtility.loadMagEntity(spark, "PaperAuthorAffiliations", magBasePath)
|
||||
|
||||
val paperAuthorAffiliations =paaf.join(step0,paaf("PaperId") === step0("PaperId"),"leftsemi")
|
||||
|
||||
val j1 = paperAuthorAffiliations.join(authors,paperAuthorAffiliations("AuthorId") === authors("AuthorId"), "inner")
|
||||
.select(col("PaperId"), col("AffiliationId"),col("AuthorSequenceNumber"), authors("DisplayName").alias("AuthorName"), authors("AuthorId"))
|
||||
|
||||
val paperAuthorAffiliationNormalized = j1.join(affiliations, j1("AffiliationId")=== affiliations("AffiliationId"), "left")
|
||||
.select(j1("*"), affiliations("DisplayName").alias("AffiliationName"), affiliations("GridId"))
|
||||
.groupBy("PaperId")
|
||||
.agg(collect_list(struct("AffiliationId","AuthorSequenceNumber","AffiliationName","AuthorName","AuthorId","GridId")).alias("authors"))
|
||||
val step1 =step0.join(paperAuthorAffiliationNormalized, step0("PaperId")=== paperAuthorAffiliationNormalized("PaperId"), "left")
|
||||
.select(step0("*"),paperAuthorAffiliationNormalized("authors"))
|
||||
.cache()
|
||||
step1.count()
|
||||
|
||||
step0.unpersist()
|
||||
|
||||
|
||||
val conference = MagUtility.loadMagEntity(spark, "ConferenceInstances", magBasePath).select(
|
||||
$"ConferenceInstanceId",
|
||||
$"DisplayName".as("conferenceName"),
|
||||
$"Location".as("conferenceLocation"),
|
||||
$"StartDate".as("conferenceStartDate"),
|
||||
$"EndDate".as("conferenceEndDate")
|
||||
)
|
||||
|
||||
val step2 =step1.join(conference, step1("ConferenceInstanceId")=== conference("ConferenceInstanceId"),"left").select(
|
||||
step1("*"), conference("conferenceName"),
|
||||
conference("conferenceLocation"),
|
||||
conference("conferenceStartDate"),
|
||||
conference("conferenceEndDate")).cache()
|
||||
step2.count()
|
||||
step1.unpersist()
|
||||
|
||||
val fos = MagUtility.loadMagEntity(spark, "FieldsOfStudy", magBasePath)
|
||||
.select($"FieldOfStudyId".alias("fos"), $"DisplayName", $"MainType")
|
||||
|
||||
val paperFieldsOfStudy = MagUtility.loadMagEntity(spark, "PaperFieldsOfStudy", magBasePath)
|
||||
.select($"FieldOfStudyId", $"Score", $"PaperId")
|
||||
|
||||
val paperFoS = paperFieldsOfStudy.join(broadcast(fos),fos("fos")===paperFieldsOfStudy("FieldOfStudyId")).groupBy("PaperId")
|
||||
.agg(collect_set(struct("FieldOfStudyId","DisplayName","MainType","Score")).as("FoS"))
|
||||
|
||||
val step3=step2.join(paperFoS, step2("PaperId")===paperFoS("PaperId"), "left")
|
||||
.select(step2("*"), paperFoS("FoS")).cache()
|
||||
step3.count()
|
||||
|
||||
step2.unpersist()
|
||||
|
||||
val journals= MagUtility.loadMagEntity(spark, "Journals", magBasePath)
|
||||
.select(
|
||||
$"JournalId",
|
||||
$"DisplayName".as("journalName"),
|
||||
$"Issn".as("journalIssn"),
|
||||
$"Publisher".as("journalPublisher"),
|
||||
$"Webpage".as("journalWebpage")
|
||||
)
|
||||
step3.join(journals, step3("JournalId")===journals("JournalId"), "left").
|
||||
select(step3("*"),
|
||||
journals("journalName"),
|
||||
journals("journalIssn"),
|
||||
journals("journalPublisher"),
|
||||
journals("journalWebpage")
|
||||
).write.mode("OverWrite")
|
||||
.save(s"$workingPath/generatedMAG")
|
||||
step3.unpersist()
|
||||
}
|
||||
}
|
|
@ -0,0 +1,222 @@
|
|||
package eu.dnetlib.dhp.collection.mag
|
||||
|
||||
import eu.dnetlib.dhp.application.AbstractScalaApplication
|
||||
import org.apache.spark.sql.functions._
|
||||
import org.apache.spark.sql.types.{StringType, StructField, StructType}
|
||||
import org.apache.spark.sql.{Dataset, Row, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
class SparkCreateMagDenormalizedTable(propertyPath: String, args: Array[String], log: Logger)
|
||||
extends AbstractScalaApplication(propertyPath, args, log: Logger) {
|
||||
|
||||
/** Here all the spark applications runs this method
|
||||
* where the whole logic of the spark node is defined
|
||||
*/
|
||||
override def run(): Unit = {
|
||||
val crossrefPath: String = parser.get("crossrefPath")
|
||||
log.info("found parameters crossrefPath: {}", crossrefPath)
|
||||
val magBasePath: String = parser.get("magBasePath")
|
||||
log.info("found parameters magBasePath: {}", magBasePath)
|
||||
val workingPath: String = parser.get("workingPath")
|
||||
log.info("found parameters workingPath: {}", workingPath)
|
||||
generatedDenormalizedMAGTable(spark, crossrefPath, magBasePath, workingPath)
|
||||
}
|
||||
|
||||
private def generatedDenormalizedMAGTable(
|
||||
spark: SparkSession,
|
||||
crossrefPath: String,
|
||||
magBasePath: String,
|
||||
workingPath: String
|
||||
): Unit = {
|
||||
|
||||
import spark.implicits._
|
||||
val schema: StructType = StructType(StructField("DOI", StringType) :: Nil)
|
||||
|
||||
//Filter all the MAG Papers that intersect with a Crossref DOI
|
||||
val crId =
|
||||
spark.read.schema(schema).json(crossrefPath).withColumn("crId", lower(col("DOI"))).distinct.select("crId")
|
||||
val magPapers = MagUtility
|
||||
.loadMagEntity(spark, "Papers", magBasePath)
|
||||
.withColumn("Doi", lower(col("Doi")))
|
||||
.where(col("Doi").isNotNull)
|
||||
|
||||
val intersectedPapers: Dataset[Row] =
|
||||
magPapers.join(crId, magPapers("Doi").equalTo(crId("crId")), "leftsemi").dropDuplicates("Doi")
|
||||
intersectedPapers.cache()
|
||||
intersectedPapers.count()
|
||||
//log.info("Create current abstract")
|
||||
|
||||
//Abstract is an inverted list, we define a function that convert in string the abstract and recreate
|
||||
// a table(PaperId, Abstract)
|
||||
val paperAbstract = MagUtility
|
||||
.loadMagEntity(spark, "PaperAbstractsInvertedIndex", magBasePath)
|
||||
.map(s => (s.getLong(0), MagUtility.convertInvertedIndexString(s.getString(1))))
|
||||
.withColumnRenamed("_1", "PaperId")
|
||||
.withColumnRenamed("_2", "Abstract")
|
||||
|
||||
//We define Step0 as the result of the Join between PaperIntersection and the PaperAbstract
|
||||
|
||||
val step0 = intersectedPapers
|
||||
.join(paperAbstract, intersectedPapers("PaperId") === paperAbstract("PaperId"), "left")
|
||||
.select(intersectedPapers("*"), paperAbstract("Abstract"))
|
||||
.cache()
|
||||
|
||||
step0.count()
|
||||
|
||||
intersectedPapers.unpersist()
|
||||
|
||||
// We have three table Author, Affiliation, and PaperAuthorAffiliation, in the
|
||||
//next step we create a table containing
|
||||
val authors = MagUtility.loadMagEntity(spark, "Authors", magBasePath)
|
||||
val affiliations = MagUtility.loadMagEntity(spark, "Affiliations", magBasePath)
|
||||
val paaf = MagUtility.loadMagEntity(spark, "PaperAuthorAffiliations", magBasePath)
|
||||
|
||||
val paperAuthorAffiliations = paaf.join(step0, paaf("PaperId") === step0("PaperId"), "leftsemi")
|
||||
|
||||
val j1 = paperAuthorAffiliations
|
||||
.join(authors, paperAuthorAffiliations("AuthorId") === authors("AuthorId"), "inner")
|
||||
.select(
|
||||
col("PaperId"),
|
||||
col("AffiliationId"),
|
||||
col("AuthorSequenceNumber"),
|
||||
authors("DisplayName").alias("AuthorName"),
|
||||
authors("AuthorId")
|
||||
)
|
||||
|
||||
val paperAuthorAffiliationNormalized = j1
|
||||
.join(affiliations, j1("AffiliationId") === affiliations("AffiliationId"), "left")
|
||||
.select(j1("*"), affiliations("DisplayName").alias("AffiliationName"), affiliations("GridId"))
|
||||
.groupBy("PaperId")
|
||||
.agg(
|
||||
collect_list(
|
||||
struct("AffiliationId", "AuthorSequenceNumber", "AffiliationName", "AuthorName", "AuthorId", "GridId")
|
||||
).alias("authors")
|
||||
)
|
||||
val step1 = step0
|
||||
.join(paperAuthorAffiliationNormalized, step0("PaperId") === paperAuthorAffiliationNormalized("PaperId"), "left")
|
||||
.select(step0("*"), paperAuthorAffiliationNormalized("authors"))
|
||||
.cache()
|
||||
step1.count()
|
||||
|
||||
step0.unpersist()
|
||||
|
||||
val conference = MagUtility
|
||||
.loadMagEntity(spark, "ConferenceInstances", magBasePath)
|
||||
.select(
|
||||
$"ConferenceInstanceId",
|
||||
$"DisplayName".as("conferenceName"),
|
||||
$"Location".as("conferenceLocation"),
|
||||
$"StartDate".as("conferenceStartDate"),
|
||||
$"EndDate".as("conferenceEndDate")
|
||||
)
|
||||
|
||||
val step2 = step1
|
||||
.join(conference, step1("ConferenceInstanceId") === conference("ConferenceInstanceId"), "left")
|
||||
.select(
|
||||
step1("*"),
|
||||
conference("conferenceName"),
|
||||
conference("conferenceLocation"),
|
||||
conference("conferenceStartDate"),
|
||||
conference("conferenceEndDate")
|
||||
)
|
||||
.cache()
|
||||
step2.count()
|
||||
step1.unpersist()
|
||||
|
||||
val fos = MagUtility
|
||||
.loadMagEntity(spark, "FieldsOfStudy", magBasePath)
|
||||
.select($"FieldOfStudyId".alias("fos"), $"DisplayName", $"MainType")
|
||||
|
||||
val paperFieldsOfStudy = MagUtility
|
||||
.loadMagEntity(spark, "PaperFieldsOfStudy", magBasePath)
|
||||
.select($"FieldOfStudyId", $"Score", $"PaperId")
|
||||
|
||||
val paperFoS = paperFieldsOfStudy
|
||||
.join(broadcast(fos), fos("fos") === paperFieldsOfStudy("FieldOfStudyId"))
|
||||
.groupBy("PaperId")
|
||||
.agg(collect_set(struct("FieldOfStudyId", "DisplayName", "MainType", "Score")).as("FoS"))
|
||||
|
||||
val step3 = step2
|
||||
.join(paperFoS, step2("PaperId") === paperFoS("PaperId"), "left")
|
||||
.select(step2("*"), paperFoS("FoS"))
|
||||
.cache()
|
||||
step3.count()
|
||||
|
||||
step2.unpersist()
|
||||
|
||||
val journals = MagUtility
|
||||
.loadMagEntity(spark, "Journals", magBasePath)
|
||||
.select(
|
||||
$"JournalId",
|
||||
$"DisplayName".as("journalName"),
|
||||
$"Issn".as("journalIssn"),
|
||||
$"Publisher".as("journalPublisher"),
|
||||
$"Webpage".as("journalWebpage")
|
||||
)
|
||||
step3
|
||||
.join(journals, step3("JournalId") === journals("JournalId"), "left")
|
||||
.select(
|
||||
step3("*"),
|
||||
journals("journalName"),
|
||||
journals("journalIssn"),
|
||||
journals("journalPublisher"),
|
||||
journals("journalWebpage")
|
||||
)
|
||||
.select(
|
||||
$"PaperId".as("paperId"),
|
||||
$"Rank".as("rank"),
|
||||
$"Doi".as("doi"),
|
||||
$"DocType".as("docType"),
|
||||
$"PaperTitle".as("paperTitle"),
|
||||
$"OriginalTitle".as("originalTitle"),
|
||||
$"BookTitle".as("bookTitle"),
|
||||
$"Year".as("year"),
|
||||
$"Date".as("date"),
|
||||
$"OnlineDate".as("onlineDate"),
|
||||
$"Publisher".as("publisher"),
|
||||
$"JournalId".as("journalId"),
|
||||
$"ConferenceSeriesId".as("conferenceSeriesId"),
|
||||
$"ConferenceInstanceId".as("conferenceInstanceId"),
|
||||
$"Volume".as("volume"),
|
||||
$"Issue".as("issue"),
|
||||
$"FirstPage".as("firstPage"),
|
||||
$"LastPage".as("lastPage"),
|
||||
$"ReferenceCount".as("referenceCount"),
|
||||
$"CitationCount".as("citationCount"),
|
||||
$"EstimatedCitation".as("estimatedCitation"),
|
||||
$"OriginalVenue".as("originalVenue"),
|
||||
$"FamilyId".as("familyId"),
|
||||
$"FamilyRank".as("familyRank"),
|
||||
$"DocSubTypes".as("docSubTypes"),
|
||||
$"CreatedDate".as("createdDate"),
|
||||
$"Abstract".as("abstractText"),
|
||||
$"authors".as("authors"),
|
||||
$"conferenceName".as("conferenceName"),
|
||||
$"conferenceLocation".as("conferenceLocation"),
|
||||
$"conferenceStartDate".as("conferenceStartDate"),
|
||||
$"conferenceEndDate".as("conferenceEndDate"),
|
||||
$"FoS".as("fos"),
|
||||
$"journalName".as("journalName"),
|
||||
$"journalIssn".as("journalIssn"),
|
||||
$"journalPublisher".as("journalPublisher"),
|
||||
$"journalWebpage".as("journalWebpage")
|
||||
)
|
||||
.write
|
||||
.mode("OverWrite")
|
||||
.save(s"$workingPath/mag")
|
||||
step3.unpersist()
|
||||
}
|
||||
}
|
||||
|
||||
object SparkCreateMagDenormalizedTable {
|
||||
|
||||
val log: Logger = LoggerFactory.getLogger(SparkCreateMagDenormalizedTable.getClass)
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
new SparkCreateMagDenormalizedTable(
|
||||
"/eu/dnetlib/dhp/collection/mag/create_MAG_denormalized_table_properites.json",
|
||||
args,
|
||||
log
|
||||
)
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue