wps/src/main/webapp/examples/localWPSFiles/xmlDescriptions/SpatialAnalyst/Groundwater/DarcyFlow.xml

176 lines
6.7 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<wps:ProcessDescriptions xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsDescribeProcess_response.xsd" xml:lang="en-US" service="WPS" version="1.0.0">
<ProcessDescription wps:processVersion="2" statusSupported="true" storeSupported="true">
<ows:Identifier>org.n52.wps.ags.spatialanalyst.groundwater.darcyflow</ows:Identifier><!-- ParameterCount=7 -->
<ows:Title>DarcyFlow_sa</ows:Title>
<ows:Abstract>Calculates the groundwater volume balance residual and other outputs for steady flow in an aquifer. Uses ArcObjects library - Spatial Analyst</ows:Abstract>
<DataInputs>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>in_head_raster</ows:Identifier><!-- 0 -->
<ows:Title>in head raster</ows:Title>
<ows:Abstract>The input raster where each cell value represents the groundwater head elevation at that location. The head is typically an elevation above some datum, such as mean sea level.</ows:Abstract>
<ComplexData>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>in_porosity_raster</ows:Identifier><!-- 1 -->
<ows:Title>in porosity raster</ows:Title>
<ows:Abstract>The input raster where each cell value represents the effective formation porosity at that location.</ows:Abstract>
<ComplexData>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>in_thickness_raster</ows:Identifier><!-- 2 -->
<ows:Title>in thickness raster</ows:Title>
<ows:Abstract>The input raster where each cell value represents the saturated thickness at that location. The value for the thickness is interpreted from geological properties of the aquifer.</ows:Abstract>
<ComplexData>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexData>
</Input>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>in_transmissivity_raster</ows:Identifier><!-- 3 -->
<ows:Title>in transmissivity raster</ows:Title>
<ows:Abstract>The input raster where each cell value represents the formation transmissivity at that location. The transmissivity of an aquifer is defined as the hydraulic conductivity K times the saturated aquifer thickness b, as units of length squared over time. This property is generally estimated from field experimental data such as pumping tests. Tables 1 and 2 in How Darcy Flow and Darcy Velocity work list ranges of hydraulic conductivities for some generalized geologic materials.</ows:Abstract>
<ComplexData>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexData>
</Input>
</DataInputs>
<ProcessOutputs>
<Output>
<ows:Identifier>out_volume_raster</ows:Identifier><!-- 4 -->
<ows:Title>out volume raster</ows:Title>
<ows:Abstract>The output raster where each cell value represents the groundwater volume balance residual for steady flow in an aquifer, as determined by Darcy's Law.</ows:Abstract>
<ComplexOutput>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexOutput>
</Output>
<Output>
<ows:Identifier>out_direction_raster</ows:Identifier><!-- 5 -->
<ows:Title>out direction raster</ows:Title>
<ows:Abstract>An optional output raster where each cell value represents the direction of the seepage velocity vector (average linear velocity) at the center of the cell, calculated as the average value of the seepage velocity through the four faces of the cell. It is used with the {out_magnitude_raster} to describe the flow vector.</ows:Abstract>
<ComplexOutput>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexOutput>
</Output>
<Output>
<ows:Identifier>out_magnitude_raster</ows:Identifier><!-- 6 -->
<ows:Title>out magnitude raster</ows:Title>
<ows:Abstract>An optional output raster where each cell value represents the magnitude of the seepage velocity vector (average linear velocity) at the center of the cell, calculated as the average value of the seepage velocity through the four faces of the cell. It is used with the {out_direction_raster} to describe the flow vector.</ows:Abstract>
<ComplexOutput>
<Default>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Default>
<Supported>
<Format>
<MimeType>application/GeoTIFF</MimeType>
<Schema></Schema>
</Format>
<Format>
<MimeType>application/img</MimeType>
<Schema></Schema>
</Format>
</Supported>
</ComplexOutput>
</Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>