org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks
Class Neural_Network

java.lang.Object
  extended by org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.Neural_Network
All Implemented Interfaces:
Serializable

public class Neural_Network
extends Object
implements Serializable

See Also:
Serialized Form

Nested Class Summary
static class Neural_Network.ACTIVATIONFUNCTION
           
 
Constructor Summary
Neural_Network(int N, int M, int attifun)
           
Neural_Network(int N, int M, int[] t, int attifun)
           
Neural_Network(int N, int M, int[] t, Neural_Network.ACTIVATIONFUNCTION attifun)
           
Neural_Network(int N, int M, int attifun, float[] V)
           
Neural_Network(int N, int M, Neural_Network.ACTIVATIONFUNCTION attifun)
           
Neural_Network(int N, int M, Neural_Network.ACTIVATIONFUNCTION attifun, float[] V)
           
 
Method Summary
 double[] getClassification(double[] out)
           
 double[] getNegativeCase()
           
 double[] getPositiveCase()
           
static void main(String[] args)
           
static double[] preprocessObjects(double[] vector)
           
static double[] preprocessObjects(Object[] vector)
           
 double[] propagate(double[] input)
           
 void setAcceptanceThreshold(double treshold)
           
 void setCycles(double cycs)
           
 void setThreshold(double soglia)
           
static int[] setupInnerLayers(int... numberOfNeurons)
           
 void train(double[][] inputvet, double[][] correctoutputvet)
           
 void writeout(double numero, double soglia)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Neural_Network

public Neural_Network(int N,
                      int M,
                      Neural_Network.ACTIVATIONFUNCTION attifun)

Neural_Network

public Neural_Network(int N,
                      int M,
                      Neural_Network.ACTIVATIONFUNCTION attifun,
                      float[] V)

Neural_Network

public Neural_Network(int N,
                      int M,
                      int[] t,
                      Neural_Network.ACTIVATIONFUNCTION attifun)

Neural_Network

public Neural_Network(int N,
                      int M,
                      int attifun)

Neural_Network

public Neural_Network(int N,
                      int M,
                      int attifun,
                      float[] V)

Neural_Network

public Neural_Network(int N,
                      int M,
                      int[] t,
                      int attifun)
Method Detail

setThreshold

public void setThreshold(double soglia)

setAcceptanceThreshold

public void setAcceptanceThreshold(double treshold)

setCycles

public void setCycles(double cycs)

preprocessObjects

public static double[] preprocessObjects(Object[] vector)

preprocessObjects

public static double[] preprocessObjects(double[] vector)

getPositiveCase

public double[] getPositiveCase()

getNegativeCase

public double[] getNegativeCase()

setupInnerLayers

public static int[] setupInnerLayers(int... numberOfNeurons)

propagate

public double[] propagate(double[] input)

train

public void train(double[][] inputvet,
                  double[][] correctoutputvet)

writeout

public void writeout(double numero,
                     double soglia)

getClassification

public double[] getClassification(double[] out)

main

public static void main(String[] args)


Copyright © 2012. All Rights Reserved.