git-svn-id: https://svn.d4science.research-infrastructures.eu/gcube/trunk/data-analysis/EcologicalEngine@74268 82a268e6-3cf1-43bd-a215-b396298e98cf
This commit is contained in:
parent
06374a28b7
commit
f048b25d92
|
@ -0,0 +1,291 @@
|
|||
package org.gcube.dataanalysis.ecoengine.utils;
|
||||
|
||||
import java.awt.Point;
|
||||
import java.util.Vector;
|
||||
|
||||
/**
|
||||
* A class that calculates the nearest neighbor according to a set of points in the space having integer coordinates
|
||||
*/
|
||||
class Nearest {
|
||||
// Projection axes defines
|
||||
public static final int PROJX = 1;
|
||||
public static final int PROJY = 2;
|
||||
|
||||
int n; // This is the number of point expected to be tested
|
||||
int projaxe; // Current projection axe
|
||||
int compare; // Number of compare made to find the nearest
|
||||
int maxradius; // Maximum radius of search in the array
|
||||
int ndata; // Number of data in the arrays
|
||||
Point data[]; // Point array
|
||||
Point xindex[]; // Index for coordinates X (x is the index, y is the value)
|
||||
Point yindex[]; // Index for coordinates Y (x is the index, y is the value)
|
||||
boolean flags[]; // Array of flags that indicate the validity of point (true or false)
|
||||
|
||||
Point cindex[]; // Pointer to current index
|
||||
int cvalue, cind; // Current values for the search
|
||||
Point cp; // Current point being tested
|
||||
|
||||
// Constructor of NNFinder
|
||||
public Nearest(Vector points) {
|
||||
n = 10; // We expect to test 10 points... (this is arbitrary)
|
||||
// Copy the point vector into an array
|
||||
ndata = points.size();
|
||||
// We create the arrays
|
||||
data = new Point[ndata];
|
||||
xindex = new Point[ndata];
|
||||
yindex = new Point[ndata];
|
||||
flags = new boolean[ndata];
|
||||
// We initialise the data
|
||||
for (int i = 0; i < ndata; i++) {
|
||||
data[i] = (Point) points.elementAt(i);
|
||||
// Create a new point which will have
|
||||
// field x : the index of the original point in the array (data)
|
||||
// field y : the value of the projected point on the axe
|
||||
xindex[i] = new Point(i, data[i].x);
|
||||
yindex[i] = new Point(i, data[i].y);
|
||||
flags[i] = true; // The point is valid
|
||||
}
|
||||
// Sort the index for axe X
|
||||
cindex = xindex;
|
||||
BubbleSort();
|
||||
// Sort the index for axe Y
|
||||
cindex = yindex;
|
||||
BubbleSort();
|
||||
compare = 0;
|
||||
}
|
||||
|
||||
// Simple bubble sort. Uses the index
|
||||
// array to determine the values of the
|
||||
// element of the array
|
||||
public void BubbleSort() {
|
||||
Point ptmp;
|
||||
for (int i = ndata - 1; i >= 0; i--) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (cindex[j].y > cindex[j + 1].y) { // Swap the points
|
||||
ptmp = cindex[j];
|
||||
cindex[j] = cindex[j + 1];
|
||||
cindex[j + 1] = ptmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the number of compare done for
|
||||
// finding the nearest point
|
||||
public int getCompare() {
|
||||
return compare;
|
||||
}
|
||||
|
||||
// Returns the maximum radius of search
|
||||
// in the arrays of points.
|
||||
public int getMaxRadius() {
|
||||
return maxradius;
|
||||
}
|
||||
|
||||
// Returns the projection axe used to find
|
||||
// the nearest neighbor.
|
||||
public int getProjectionAxe() {
|
||||
return projaxe;
|
||||
}
|
||||
|
||||
// Dichotomic search in an ordered array using
|
||||
// index
|
||||
private int DichoSearchIndex(int value) {
|
||||
int inf, sup, centre;
|
||||
inf = 0;
|
||||
sup = ndata - 1;
|
||||
|
||||
// Check for obious case
|
||||
if (value <= cindex[inf].y)
|
||||
return inf;
|
||||
else if (value >= cindex[sup].y)
|
||||
return sup;
|
||||
|
||||
// Search until we have at least two elements
|
||||
while (sup > inf) {
|
||||
centre = (inf + sup) / 2;
|
||||
if (cindex[centre].y == value)
|
||||
return centre;
|
||||
else if (cindex[centre].y < value)
|
||||
inf = centre + 1;
|
||||
else
|
||||
sup = centre - 1;
|
||||
}
|
||||
return inf;
|
||||
}
|
||||
|
||||
// This function will reset the all the flags to true
|
||||
private void ResetFlags() {
|
||||
for (int i = 0; i < ndata; i++)
|
||||
flags[i] = true;
|
||||
}
|
||||
|
||||
public Point FindFirstNN(Point p) {
|
||||
int index1, index2, i, j;
|
||||
int sparse1, sparse2;
|
||||
int xdim, ydim;
|
||||
float s1, s2;
|
||||
// Compute the dimension of the pointset
|
||||
xdim = xindex[ndata - 1].y - xindex[0].y;
|
||||
ydim = yindex[ndata - 1].y - yindex[0].y;
|
||||
|
||||
// Remember the point being tested
|
||||
cp = p;
|
||||
|
||||
// Reset the flags
|
||||
ResetFlags();
|
||||
|
||||
// Find the point on the projected axes
|
||||
cindex = xindex;
|
||||
index1 = DichoSearchIndex(p.x);
|
||||
cindex = yindex;
|
||||
index2 = DichoSearchIndex(p.y);
|
||||
|
||||
// Mesure the sparsity of axe X
|
||||
i = index1 - n / 2;
|
||||
if (i < 0)
|
||||
i = 0;
|
||||
j = index1 + n / 2;
|
||||
if (j >= ndata)
|
||||
j = ndata - 1;
|
||||
sparse1 = xindex[j].y - xindex[i].y;
|
||||
// Normalize sparsity
|
||||
s1 = (float) sparse1 / (float) xdim;
|
||||
|
||||
// Mesure the sparsity of axe Y
|
||||
i = index2 - n / 2;
|
||||
if (i < 0)
|
||||
i = 0;
|
||||
j = index2 + n / 2;
|
||||
if (j >= ndata)
|
||||
j = ndata - 1;
|
||||
sparse2 = yindex[j].y - yindex[i].y;
|
||||
// Normalise sparsity
|
||||
s2 = (float) sparse2 / (float) ydim;
|
||||
|
||||
if (s1 > s2) { // We take the x axe
|
||||
cindex = xindex;
|
||||
cvalue = p.x;
|
||||
cind = index1;
|
||||
projaxe = PROJX;
|
||||
} else { // We take the y axe
|
||||
cindex = yindex;
|
||||
cvalue = p.y;
|
||||
cind = index2;
|
||||
projaxe = PROJY;
|
||||
}
|
||||
|
||||
// Init the number of compare
|
||||
compare = 0;
|
||||
maxradius = 0;
|
||||
return FindNextNN();
|
||||
}
|
||||
|
||||
public Point FindNextNN() {
|
||||
float mindist, dist;
|
||||
int mini;
|
||||
int i, il, ir;
|
||||
|
||||
// Find the radius of the circle
|
||||
// cind is already at the left of the test point
|
||||
il = cind;
|
||||
// Find the closest next valid point
|
||||
while (flags[cindex[il].x] == false && il > 0)
|
||||
il--;
|
||||
if (flags[cindex[il].x] == true) {
|
||||
// Compute the distance
|
||||
mindist = ComputeDistance(cp, data[cindex[il].x]);
|
||||
compare++;
|
||||
} else
|
||||
// Put something big no chance of having a distance bigger than that
|
||||
mindist = 500 * 500;
|
||||
|
||||
// Here, we must verify if it's not the end already
|
||||
if (cind < ndata - 1) {
|
||||
ir = cind + 1;
|
||||
while (flags[cindex[ir].x] == false && ir < ndata - 1)
|
||||
ir++;
|
||||
if (flags[cindex[ir].x] == true) {
|
||||
dist = ComputeDistance(cp, data[cindex[ir].x]);
|
||||
compare++;
|
||||
} else
|
||||
dist = 500 * 500;
|
||||
|
||||
if (mindist < dist) {
|
||||
maxradius = (int) Math.sqrt((double) mindist);
|
||||
mini = il;
|
||||
} else {
|
||||
mini = ir;
|
||||
maxradius = (int) Math.sqrt((double) dist);
|
||||
mindist = dist;
|
||||
}
|
||||
} else {
|
||||
mini = il;
|
||||
ir = ndata - 1;
|
||||
maxradius = (int) Math.sqrt((double) mindist);
|
||||
}
|
||||
|
||||
// Search to the left of cind
|
||||
i = il - 1;
|
||||
while (i > 0 && maxradius > Math.abs(cvalue - cindex[i].y)) {
|
||||
if (flags[cindex[i].x] == true) {
|
||||
dist = ComputeDistance(cp, data[cindex[i].x]);
|
||||
compare++;
|
||||
if (dist < mindist) {
|
||||
mindist = dist;
|
||||
mini = i;
|
||||
}
|
||||
}
|
||||
// Go to the left
|
||||
i--;
|
||||
}
|
||||
|
||||
// Search to the right of cind
|
||||
i = ir + 1;
|
||||
while (i < ndata && maxradius > Math.abs(cindex[i].y - cvalue)) {
|
||||
if (flags[cindex[i].x] == true) {
|
||||
dist = ComputeDistance(cp, data[cindex[i].x]);
|
||||
compare++;
|
||||
if (dist < mindist) {
|
||||
mindist = dist;
|
||||
mini = i;
|
||||
}
|
||||
}
|
||||
i++; // Go to the right
|
||||
}
|
||||
|
||||
// Set the flag of the point found to false so that
|
||||
// we don't find it again for next search
|
||||
flags[cindex[mini].x] = false;
|
||||
|
||||
// return the closest point
|
||||
return data[cindex[mini].x];
|
||||
}
|
||||
|
||||
// A crude way to find the nearest neighbor
|
||||
public Point FindNearestNeighborCrude(Point p) {
|
||||
float mindist, dist;
|
||||
int mini = 0;
|
||||
// Init compare
|
||||
compare = 0;
|
||||
mindist = ComputeDistance(p, data[mini]);
|
||||
for (int i = 0; i < ndata; i++) {
|
||||
dist = ComputeDistance(p, data[i]);
|
||||
compare++;
|
||||
if (dist < mindist) {
|
||||
mini = i;
|
||||
mindist = dist;
|
||||
}
|
||||
}
|
||||
return data[mini];
|
||||
}
|
||||
|
||||
// Compute the SQUARED distance between to points
|
||||
public float ComputeDistance(Point p1, Point p2) {
|
||||
float dx, dy;
|
||||
dx = p2.x - p1.x;
|
||||
dy = p2.y - p1.y;
|
||||
return (dx * dx + dy * dy);
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue