This commit is contained in:
Gianpaolo Coro 2013-04-30 14:14:29 +00:00
parent 06374a28b7
commit f048b25d92
1 changed files with 291 additions and 0 deletions

View File

@ -0,0 +1,291 @@
package org.gcube.dataanalysis.ecoengine.utils;
import java.awt.Point;
import java.util.Vector;
/**
* A class that calculates the nearest neighbor according to a set of points in the space having integer coordinates
*/
class Nearest {
// Projection axes defines
public static final int PROJX = 1;
public static final int PROJY = 2;
int n; // This is the number of point expected to be tested
int projaxe; // Current projection axe
int compare; // Number of compare made to find the nearest
int maxradius; // Maximum radius of search in the array
int ndata; // Number of data in the arrays
Point data[]; // Point array
Point xindex[]; // Index for coordinates X (x is the index, y is the value)
Point yindex[]; // Index for coordinates Y (x is the index, y is the value)
boolean flags[]; // Array of flags that indicate the validity of point (true or false)
Point cindex[]; // Pointer to current index
int cvalue, cind; // Current values for the search
Point cp; // Current point being tested
// Constructor of NNFinder
public Nearest(Vector points) {
n = 10; // We expect to test 10 points... (this is arbitrary)
// Copy the point vector into an array
ndata = points.size();
// We create the arrays
data = new Point[ndata];
xindex = new Point[ndata];
yindex = new Point[ndata];
flags = new boolean[ndata];
// We initialise the data
for (int i = 0; i < ndata; i++) {
data[i] = (Point) points.elementAt(i);
// Create a new point which will have
// field x : the index of the original point in the array (data)
// field y : the value of the projected point on the axe
xindex[i] = new Point(i, data[i].x);
yindex[i] = new Point(i, data[i].y);
flags[i] = true; // The point is valid
}
// Sort the index for axe X
cindex = xindex;
BubbleSort();
// Sort the index for axe Y
cindex = yindex;
BubbleSort();
compare = 0;
}
// Simple bubble sort. Uses the index
// array to determine the values of the
// element of the array
public void BubbleSort() {
Point ptmp;
for (int i = ndata - 1; i >= 0; i--) {
for (int j = 0; j < i; j++) {
if (cindex[j].y > cindex[j + 1].y) { // Swap the points
ptmp = cindex[j];
cindex[j] = cindex[j + 1];
cindex[j + 1] = ptmp;
}
}
}
}
// Returns the number of compare done for
// finding the nearest point
public int getCompare() {
return compare;
}
// Returns the maximum radius of search
// in the arrays of points.
public int getMaxRadius() {
return maxradius;
}
// Returns the projection axe used to find
// the nearest neighbor.
public int getProjectionAxe() {
return projaxe;
}
// Dichotomic search in an ordered array using
// index
private int DichoSearchIndex(int value) {
int inf, sup, centre;
inf = 0;
sup = ndata - 1;
// Check for obious case
if (value <= cindex[inf].y)
return inf;
else if (value >= cindex[sup].y)
return sup;
// Search until we have at least two elements
while (sup > inf) {
centre = (inf + sup) / 2;
if (cindex[centre].y == value)
return centre;
else if (cindex[centre].y < value)
inf = centre + 1;
else
sup = centre - 1;
}
return inf;
}
// This function will reset the all the flags to true
private void ResetFlags() {
for (int i = 0; i < ndata; i++)
flags[i] = true;
}
public Point FindFirstNN(Point p) {
int index1, index2, i, j;
int sparse1, sparse2;
int xdim, ydim;
float s1, s2;
// Compute the dimension of the pointset
xdim = xindex[ndata - 1].y - xindex[0].y;
ydim = yindex[ndata - 1].y - yindex[0].y;
// Remember the point being tested
cp = p;
// Reset the flags
ResetFlags();
// Find the point on the projected axes
cindex = xindex;
index1 = DichoSearchIndex(p.x);
cindex = yindex;
index2 = DichoSearchIndex(p.y);
// Mesure the sparsity of axe X
i = index1 - n / 2;
if (i < 0)
i = 0;
j = index1 + n / 2;
if (j >= ndata)
j = ndata - 1;
sparse1 = xindex[j].y - xindex[i].y;
// Normalize sparsity
s1 = (float) sparse1 / (float) xdim;
// Mesure the sparsity of axe Y
i = index2 - n / 2;
if (i < 0)
i = 0;
j = index2 + n / 2;
if (j >= ndata)
j = ndata - 1;
sparse2 = yindex[j].y - yindex[i].y;
// Normalise sparsity
s2 = (float) sparse2 / (float) ydim;
if (s1 > s2) { // We take the x axe
cindex = xindex;
cvalue = p.x;
cind = index1;
projaxe = PROJX;
} else { // We take the y axe
cindex = yindex;
cvalue = p.y;
cind = index2;
projaxe = PROJY;
}
// Init the number of compare
compare = 0;
maxradius = 0;
return FindNextNN();
}
public Point FindNextNN() {
float mindist, dist;
int mini;
int i, il, ir;
// Find the radius of the circle
// cind is already at the left of the test point
il = cind;
// Find the closest next valid point
while (flags[cindex[il].x] == false && il > 0)
il--;
if (flags[cindex[il].x] == true) {
// Compute the distance
mindist = ComputeDistance(cp, data[cindex[il].x]);
compare++;
} else
// Put something big no chance of having a distance bigger than that
mindist = 500 * 500;
// Here, we must verify if it's not the end already
if (cind < ndata - 1) {
ir = cind + 1;
while (flags[cindex[ir].x] == false && ir < ndata - 1)
ir++;
if (flags[cindex[ir].x] == true) {
dist = ComputeDistance(cp, data[cindex[ir].x]);
compare++;
} else
dist = 500 * 500;
if (mindist < dist) {
maxradius = (int) Math.sqrt((double) mindist);
mini = il;
} else {
mini = ir;
maxradius = (int) Math.sqrt((double) dist);
mindist = dist;
}
} else {
mini = il;
ir = ndata - 1;
maxradius = (int) Math.sqrt((double) mindist);
}
// Search to the left of cind
i = il - 1;
while (i > 0 && maxradius > Math.abs(cvalue - cindex[i].y)) {
if (flags[cindex[i].x] == true) {
dist = ComputeDistance(cp, data[cindex[i].x]);
compare++;
if (dist < mindist) {
mindist = dist;
mini = i;
}
}
// Go to the left
i--;
}
// Search to the right of cind
i = ir + 1;
while (i < ndata && maxradius > Math.abs(cindex[i].y - cvalue)) {
if (flags[cindex[i].x] == true) {
dist = ComputeDistance(cp, data[cindex[i].x]);
compare++;
if (dist < mindist) {
mindist = dist;
mini = i;
}
}
i++; // Go to the right
}
// Set the flag of the point found to false so that
// we don't find it again for next search
flags[cindex[mini].x] = false;
// return the closest point
return data[cindex[mini].x];
}
// A crude way to find the nearest neighbor
public Point FindNearestNeighborCrude(Point p) {
float mindist, dist;
int mini = 0;
// Init compare
compare = 0;
mindist = ComputeDistance(p, data[mini]);
for (int i = 0; i < ndata; i++) {
dist = ComputeDistance(p, data[i]);
compare++;
if (dist < mindist) {
mini = i;
mindist = dist;
}
}
return data[mini];
}
// Compute the SQUARED distance between to points
public float ComputeDistance(Point p1, Point p2) {
float dx, dy;
dx = p2.x - p1.x;
dy = p2.y - p1.y;
return (dx * dx + dy * dy);
}
}