This commit is contained in:
Gianpaolo Coro 2012-07-26 10:23:28 +00:00
parent 9aba3dea04
commit 645c869f0d
54 changed files with 1297 additions and 550 deletions

View File

@ -1,3 +1,2 @@
LOCAL_WITH_DATABASE=org.gcube.dataanalysis.ecoengine.processing.LocalSplitGenerator
SIMPLE_LOCAL=org.gcube.dataanalysis.ecoengine.processing.LocalSimpleSplitGenerator
REMOTE_RAINYCLOUD=org.gcube.dataanalysis.ecoengine.processing.RainyCloudGenerator

View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="WINDOWS-1252" standalone="no"?>
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<jardesc>
<jar path="StatisticalLibSupportLibraries/lib/EcologicalEngine/ecologicalDataMining.jar"/>
<jar path="EcologicalEngineExecutor/AQUAMAPS_SUITABLE/ecologicalDataMining.jar"/>
<options buildIfNeeded="true" compress="true" descriptionLocation="/EcologicalEngine/ecologicalEngine.jardesc" exportErrors="true" exportWarnings="true" includeDirectoryEntries="false" overwrite="true" saveDescription="true" storeRefactorings="false" useSourceFolders="false"/>
<storedRefactorings deprecationInfo="true" structuralOnly="false"/>
<selectedProjects/>
@ -11,6 +11,6 @@
</sealing>
</manifest>
<selectedElements exportClassFiles="true" exportJavaFiles="false" exportOutputFolder="false">
<javaElement handleIdentifier="=EcologicalEngine1.2/src"/>
<javaElement handleIdentifier="=EcologicalEngine/src\/main\/java"/>
</selectedElements>
</jardesc>

View File

@ -0,0 +1,122 @@
package org.gcube.dataanalysis.ecoengine.clustering;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Clusterer;
import org.gcube.dataanalysis.ecoengine.utils.Transformations;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.IOContainer;
import com.rapidminer.operator.IOObject;
import com.rapidminer.operator.clustering.Cluster;
import com.rapidminer.operator.clustering.ClusterModel;
import com.rapidminer.tools.OperatorService;
public class DBScan implements Clusterer{
AlgorithmConfiguration config;
String epsilon;
String minPoints;
ExampleSet points;
ArrayList<ArrayList<String>> rows;
public static void main(String[] args) {
// TODO Auto-generated method stub
}
@Override
public ALG_PROPS[] getSupportedAlgorithms() {
// TODO Auto-generated method stub
return null;
}
@Override
public INFRASTRUCTURE getInfrastructure() {
// TODO Auto-generated method stub
return null;
}
@Override
public void init() throws Exception {
if (config!=null)
config.initRapidMiner();
}
@Override
public void setConfiguration(AlgorithmConfiguration config) {
// TODO Auto-generated method stub
}
@Override
public void shutdown() {
// TODO Auto-generated method stub
}
protected void getSamples(double[][] sampleVectors) throws Exception{
points = Transformations.matrix2ExampleSet(sampleVectors);
}
@Override
public void cluster() throws Exception {
rows = new ArrayList<ArrayList<String>>();
com.rapidminer.operator.clustering.clusterer.DBScan clusterer = (com.rapidminer.operator.clustering.clusterer.DBScan) OperatorService.createOperator("DBScanClustering");
clusterer.setParameter("local_random_seed", "-1");
clusterer.setParameter("epsilon", epsilon);
clusterer.setParameter("min_points", minPoints);
clusterer.setParameter("add_cluster_attribute", "true");
clusterer.setParameter("keep_example_set", "true");
IOContainer innerInput = new IOContainer(points);
IOContainer output = clusterer.apply(innerInput);
IOObject[] outputvector = output.getIOObjects();
ClusterModel innermodel = (ClusterModel) outputvector[1];
for (Cluster c : innermodel.getClusters()){
c.getClusterId();
}
}
@Override
public float getStatus() {
// TODO Auto-generated method stub
return 0;
}
@Override
public StatisticalType getOutput() {
// TODO Auto-generated method stub
return null;
}
@Override
public List<StatisticalType> getInputParameters() {
// TODO Auto-generated method stub
return null;
}
@Override
public String getDescription() {
// TODO Auto-generated method stub
return null;
}
}

View File

@ -65,6 +65,7 @@ public class AlgorithmConfiguration extends LexicalEngineConfiguration implement
private String cachePath;
private String persistencePath;
private String distributionTable;
private String tableSpace;
private Boolean createTable = false;
private Boolean useDB = true;
@ -203,6 +204,14 @@ public class AlgorithmConfiguration extends LexicalEngineConfiguration implement
this.endpoints = endpoints;
}
public String getTableSpace() {
return tableSpace;
}
public void setTableSpace(String tableSpace) {
this.tableSpace = tableSpace;
}
}

View File

@ -0,0 +1,32 @@
package org.gcube.dataanalysis.ecoengine.datatypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
public class DatabaseType extends StatisticalType{
public DatabaseType(DatabaseParameters databaseParameter, String name, String description, String defaultValue, boolean optional) {
super(name, description, defaultValue, optional);
this.databaseParameter=databaseParameter;
}
public DatabaseType(DatabaseParameters databaseParameter, String name, String description, String defaultValue) {
super(name, description, defaultValue);
this.databaseParameter=databaseParameter;
}
public DatabaseType(DatabaseParameters databaseParameter, String name, String description) {
super(name, description);
this.databaseParameter=databaseParameter;
}
protected DatabaseParameters databaseParameter;
public DatabaseParameters getDatabaseParameter() {
return databaseParameter;
}
public void setDatabaseParameter(DatabaseParameters databaseParameters) {
this.databaseParameter = databaseParameters;
}
}

View File

@ -0,0 +1,41 @@
package org.gcube.dataanalysis.ecoengine.datatypes;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
public class InputTable extends StatisticalType{
protected List<TableTemplates> templateNames;
public InputTable(List<TableTemplates> templateName, String name, String description, String defaultValue, boolean optional) {
super(name, description, defaultValue, optional);
this.templateNames=templateName;
}
public InputTable(List<TableTemplates> templateName,String name, String description, String defaultValue) {
super(name, description, defaultValue);
this.templateNames=templateName;
}
public InputTable(List<TableTemplates> templateName,String name, String description) {
super(name, description);
this.templateNames=templateName;
}
public List<TableTemplates> getTemplateNames() {
return templateNames;
}
public void setTemplateNames(List<TableTemplates> templateName) {
this.templateNames = templateName;
}
public String getTableName(){
return super.name;
}
}

View File

@ -0,0 +1,33 @@
package org.gcube.dataanalysis.ecoengine.datatypes;
import java.util.List;
import java.util.UUID;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
public class OutputTable extends InputTable{
public OutputTable(List<TableTemplates> templateName, String name, String tableName, String description, String defaultValue, boolean optional) {
super(templateName, name, description, defaultValue, optional);
this.tableName=tableName;
}
public OutputTable(List<TableTemplates> templateName, String name, String tableName, String description, String defaultValue) {
super(templateName, name, description, defaultValue);
this.tableName=tableName;
}
public OutputTable(List<TableTemplates> templateName, String name, String tableName, String description) {
super(templateName, name, description);
this.tableName=tableName;
}
protected String tableName;
public String getTableName(){
return tableName;
}
}

View File

@ -0,0 +1,50 @@
package org.gcube.dataanalysis.ecoengine.datatypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
public class PrimitiveType extends StatisticalType{
public PrimitiveType(String className, Object content, PrimitiveTypes type, String name, String description, String defaultValue, boolean optional) {
super(name, description, defaultValue, optional);
this.className=className;
this.content=content;
this.type=type;
}
public PrimitiveType(String className, Object content, PrimitiveTypes type,String name, String description, String defaultValue) {
super(name, description, defaultValue);
this.className=className;
this.content=content;
this.type=type;
}
public PrimitiveType(String className, Object content, PrimitiveTypes type,String name, String description) {
super(name, description);
this.className=className;
this.content=content;
this.type=type;
}
protected String className;
public String getClassName() {
return className;
}
public void setClassName(String className) {
this.className = className;
}
protected Object content;
public Object getContent() {
return content;
}
public void setContent(Object content) {
this.content = content;
}
protected PrimitiveTypes type;
public PrimitiveTypes getType() {
return type;
}
public void setType(PrimitiveTypes type) {
this.type = type;
}
}

View File

@ -0,0 +1,34 @@
package org.gcube.dataanalysis.ecoengine.datatypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
public class ServiceType extends StatisticalType{
public ServiceType(ServiceParameters serviceParameter,String name, String description, String defaultValue, boolean optional) {
super(name, description, defaultValue, optional);
this.serviceParameter = serviceParameter;
}
public ServiceType(ServiceParameters serviceParameter,String name, String description, String defaultValue) {
super(name, description, defaultValue);
this.serviceParameter = serviceParameter;
}
public ServiceType(ServiceParameters serviceParameter,String name, String description) {
super(name, description);
this.serviceParameter = serviceParameter;
}
protected ServiceParameters serviceParameter;
public ServiceParameters getServiceParameter() {
return serviceParameter;
}
public void setServiceParameter(ServiceParameters serviceParameter) {
this.serviceParameter = serviceParameter;
}
}

View File

@ -0,0 +1,62 @@
package org.gcube.dataanalysis.ecoengine.datatypes;
public class StatisticalType {
protected String defaultValue;
protected String description;
protected String name;
protected boolean optional;
public StatisticalType(String name, String description,String defaultValue, boolean optional){
this.name=name;
this.description=description;
this.defaultValue=defaultValue;
this.optional=optional;
}
public StatisticalType(String name, String description,String defaultValue){
this.name=name;
this.description=description;
this.defaultValue=defaultValue;
this.optional=true;
}
public StatisticalType(String name, String description){
this.name=name;
this.description=description;
this.defaultValue="";
this.optional=true;
}
public String getDefaultValue() {
return defaultValue;
}
public void setDefaultValue(String defaultValue) {
this.defaultValue = defaultValue;
}
public String getDescription() {
return description;
}
public void setDescription(String description) {
this.description = description;
}
public boolean isOptional() {
return optional;
}
public void setOptional(boolean optional) {
this.optional = optional;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String toString(){
return name+":"+description+":"+defaultValue+":"+optional;
}
}

View File

@ -0,0 +1,11 @@
package org.gcube.dataanalysis.ecoengine.datatypes.enumtypes;
public enum DatabaseParameters {
DATABASEUSERNAME,
DATABASEPASSWORD,
DATABASEURL,
DATABASEDRIVER,
DATABASEDIALECT
}

View File

@ -0,0 +1,12 @@
package org.gcube.dataanalysis.ecoengine.datatypes.enumtypes;
public enum PrimitiveTypes {
STRING,
NUMBER,
CONSTANT,
RANDOM,
FILE,
MAP,
BOOLEAN
}

View File

@ -0,0 +1,11 @@
package org.gcube.dataanalysis.ecoengine.datatypes.enumtypes;
public enum ServiceParameters {
EPR_LIST,
INFRA,
SERVICE,
USERNAME,
RANDOMSTRING
}

View File

@ -0,0 +1,12 @@
package org.gcube.dataanalysis.ecoengine.datatypes.enumtypes;
public enum TableTemplates {
HSPEN,
HCAF,
HSPEC,
OCCURRENCE,
MINMAXLAT,
TRAININGSET,
TESTSET
}

View File

@ -3,16 +3,22 @@ package org.gcube.dataanalysis.ecoengine.evaluation;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.gcube.contentmanagement.graphtools.utils.MathFunctions;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.DataAnalysis;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseUtils;
import org.gcube.dataanalysis.ecoengine.utils.Operations;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class DiscrepancyAnalysis extends DataAnalysis {
@ -42,41 +48,42 @@ public class DiscrepancyAnalysis extends DataAnalysis {
private HashMap<String, String> output;
@Override
public HashMap<String, VarCouple> getInputParameters() {
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templates = new ArrayList<TableTemplates>();
templates.add(TableTemplates.HSPEC);
templates.add(TableTemplates.TRAININGSET);
templates.add(TableTemplates.TESTSET);
InputTable p1 = new InputTable(templates,"FirstTable","First Table");
InputTable p2 = new InputTable(templates,"SecondTable","Second Table");
PrimitiveType p3 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "FirstTableCsquareColumn","the csquares column name in the first table ","csquarecode");
PrimitiveType p4 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "SecondTableCsquareColumn","the csquares column name in the second table","csquarecode");
PrimitiveType p5 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "FirstTableProbabilityColumn","the probability column in the first table","probability");
PrimitiveType p6 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.NUMBER, "ComparisonThreshold","the comparison threshold","0.1");
PrimitiveType p7 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.NUMBER, "MaxSamples","the comparison threshold","10000");
DatabaseType p8 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p9 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p10 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p11 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p12 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
parameters.put("FirstTable", new VarCouple(VARTYPE.STRING, "hspec1"));
parameters.put("SecondTable", new VarCouple(VARTYPE.STRING, "hspec2"));
parameters.put("FirstTableCsquareColumn", new VarCouple(VARTYPE.STRING, "csquare"));
parameters.put("SecondTableCsquareColumn", new VarCouple(VARTYPE.STRING, "csquarecode"));
parameters.put("FirstTableProbabilityColumn", new VarCouple(VARTYPE.STRING, "csquare"));
parameters.put("SecondTableProbabilityColumn", new VarCouple(VARTYPE.STRING, "csquarecode"));
parameters.put("ComparisonThreshold", new VarCouple(VARTYPE.STRING, "0.1"));
parameters.put("MaxSamples", new VarCouple(VARTYPE.STRING, "10000"));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
parameters.add(p11);
parameters.add(p12);
return parameters;
}
@Override
public List<String> getOutputParameters() {
List<String> outputs = new ArrayList<String>();
outputs.add("MEAN");
outputs.add("VARIANCE");
outputs.add("NUMBER_OF_ERRORS");
outputs.add("NUMBER_OF_COMPARISONS");
outputs.add("ACCURACY");
outputs.add("MAXIMUM_ERROR");
outputs.add("MAXIMUM_ERROR_POINT");
return outputs;
}
@Override
public void init(AlgorithmConfiguration config) throws Exception {
@ -200,12 +207,8 @@ public class DiscrepancyAnalysis extends DataAnalysis {
}
@Override
public VARTYPE getContentType() {
return VARTYPE.MAP;
}
@Override
public Object getContent() {
return output;
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(Map.class.getName(), output, PrimitiveTypes.MAP, "ErrorsAnalysis","Analysis of the discrepancies");
return p;
}
}

View File

@ -4,13 +4,19 @@ import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.DataAnalysis;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
import com.rapidminer.example.Attribute;
@ -38,27 +44,47 @@ public class DistributionQualityAnalysis extends DataAnalysis {
double bestThreshold = 0.5d;
private HashMap<String, String> output;
public HashMap<String, VarCouple> getInputParameters() {
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templates = new ArrayList<TableTemplates>();
templates.add(TableTemplates.HSPEC);
templates.add(TableTemplates.TRAININGSET);
templates.add(TableTemplates.TESTSET);
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
List<TableTemplates> templatesOccurrences = new ArrayList<TableTemplates>();
templatesOccurrences.add(TableTemplates.OCCURRENCE);
templatesOccurrences.add(TableTemplates.TRAININGSET);
templatesOccurrences.add(TableTemplates.TESTSET);
parameters.put("PositiveCasesTable", new VarCouple(VARTYPE.STRING, ""));
parameters.put("NegativeCasesTable", new VarCouple(VARTYPE.STRING, ""));
InputTable p1 = new InputTable(templatesOccurrences,"PositiveCasesTable","A Table containing positive cases");
InputTable p2 = new InputTable(templatesOccurrences,"NegativeCasesTable","A Table containing negative cases");
PrimitiveType p3 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "PositiveCasesTableKeyColumn","Positive Cases Table Key Column","csquarecode");
PrimitiveType p4 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "NegativeCasesTableKeyColumn","Negative Cases Table Key Column","csquarecode");
InputTable p5 = new InputTable(templates,"DistributionTable","A probability distribution table");
PrimitiveType p6 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "DistributionTableKeyColumn","Distribution Table Key Column","csquarecode");
PrimitiveType p7 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "DistributionTableProbabilityColumn","Distribution Table Probability Column","csquarecode");
PrimitiveType p8 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "PositiveThreshold","Positive acceptance threshold","0.8");
PrimitiveType p9 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "NegativeThreshold","Negative acceptance threshold","0.3");
DatabaseType p10 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p11 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p12 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p13 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p14 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
parameters.put("PositiveCasesTableKeyColumn", new VarCouple(VARTYPE.STRING, "csquarecode"));
parameters.put("NegativeCasesTableKeyColumn", new VarCouple(VARTYPE.STRING, "csquarecode"));
parameters.put("DistributionTable", new VarCouple(VARTYPE.STRING, "csquare"));
parameters.put("DistributionTableKeyColumn", new VarCouple(VARTYPE.STRING, "csquarecode"));
parameters.put("DistributionTableProbabilityColumn", new VarCouple(VARTYPE.STRING, "csquarecode"));
parameters.put("PositiveThreshold", new VarCouple(VARTYPE.STRING, "0.8"));
parameters.put("NegativeThreshold", new VarCouple(VARTYPE.STRING, "0.3"));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
parameters.add(p11);
parameters.add(p12);
parameters.add(p13);
parameters.add(p14);
return parameters;
}
@ -324,13 +350,9 @@ public class DistributionQualityAnalysis extends DataAnalysis {
@Override
public VARTYPE getContentType() {
return VARTYPE.MAP;
}
@Override
public Object getContent() {
return output;
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(Map.class.getName(), output, PrimitiveTypes.MAP, "AnalysisResult","Analysis of the probability distribution quality");
return p;
}
}

View File

@ -3,17 +3,23 @@ package org.gcube.dataanalysis.ecoengine.evaluation;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.contentmanagement.lexicalmatcher.utils.MathFunctions;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.DataAnalysis;
import org.gcube.dataanalysis.ecoengine.models.cores.pca.PrincipalComponentAnalysis;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.Operations;
import org.gcube.dataanalysis.ecoengine.utils.Transformations;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class HabitatRepresentativeness extends DataAnalysis {
@ -31,24 +37,39 @@ public class HabitatRepresentativeness extends DataAnalysis {
private float innerstatus;
private int maxTests = 2;
public HashMap<String, VarCouple> getInputParameters() {
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templates = new ArrayList<TableTemplates>();
templates.add(TableTemplates.HCAF);
templates.add(TableTemplates.TRAININGSET);
templates.add(TableTemplates.TESTSET);
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
List<TableTemplates> templatesOccurrences = new ArrayList<TableTemplates>();
templatesOccurrences.add(TableTemplates.OCCURRENCE);
templatesOccurrences.add(TableTemplates.TRAININGSET);
templatesOccurrences.add(TableTemplates.TESTSET);
parameters.put("ProjectingAreaTable", new VarCouple(VARTYPE.STRING, ""));
parameters.put("ProjectingAreaFeaturesOptionalCondition", new VarCouple(VARTYPE.STRING, "oceanarea>0"));
parameters.put("PositiveCasesTable", new VarCouple(VARTYPE.STRING, ""));
parameters.put("NegativeCasesTable", new VarCouple(VARTYPE.STRING, ""));
parameters.put("FeaturesColumns", new VarCouple(VARTYPE.STRING, ""));
parameters.put("PositiveFeaturesColumns", new VarCouple(VARTYPE.STRING, ""));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
InputTable p1 = new InputTable(templates,"ProjectingAreaTable","A Table containing projecting area information");
PrimitiveType p2 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "ProjectingAreaFeaturesOptionalCondition","optional filter for taking area rows","oceanarea>0",true);
InputTable p3 = new InputTable(templatesOccurrences,"PositiveCasesTable","A Table containing positive cases");
InputTable p4 = new InputTable(templatesOccurrences,"NegativeCasesTable","A Table containing negative cases");
PrimitiveType p5 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "FeaturesColumns","fetures columns names separated by comma","depthmean,depthmax,depthmin, sstanmean,sbtanmean,salinitymean,salinitybmean, primprodmean,iceconann,landdist,oceanarea");
DatabaseType p6 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p7 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p8 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p9 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p10 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
return parameters;
}
@ -315,13 +336,9 @@ public class HabitatRepresentativeness extends DataAnalysis {
}
@Override
public VARTYPE getContentType() {
return VARTYPE.MAP;
}
@Override
public Object getContent() {
return output;
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(Map.class.getName(), output, PrimitiveTypes.MAP, "AnalysisResult","Habitat Representativeness Score");
return p;
}
@Override

View File

@ -4,11 +4,14 @@ import java.awt.Image;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.UUID;
import org.gcube.contentmanagement.graphtools.utils.MathFunctions;
import org.gcube.contentmanagement.lexicalmatcher.analysis.core.LexicalEngineConfiguration;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Evaluator;
import org.gcube.dataanalysis.ecoengine.models.cores.aquamaps.Hspen;
import org.gcube.dataanalysis.ecoengine.processing.factories.EvaluatorsFactory;
@ -90,7 +93,7 @@ public class BioClimateAnalysis {
bioClimate.produceGraphs2D();
}
private static String[] SERIES = { "High Probability Cells Trend (>%1$s)", "Number of Changing Cells", "Reducing Ice Concentration Trend", "Average Discrepancy Between Distributions", "Average Trends", "Ice Concentration", "Sea Surface Temperature", "Salinity" };
private static String[] SERIES = { "High Probability Cells Trend (>%1$s)", "Number of Changing Cells", "Reducing Ice Concentration Trend", "High Probability Cells Trend Derivative", "Average Trends", "Ice Concentration", "Sea Surface Temperature", "Salinity" };
public void produceGraphs2D() throws Exception {
DefaultCategoryDataset testpoints = new DefaultCategoryDataset();
@ -107,9 +110,9 @@ public class BioClimateAnalysis {
lineg9.render(testpoints);
}
private HashMap<String,Image> producedImages;
private HashMap<String, Image> producedImages;
public HashMap<String,Image> getProducedImages() {
public HashMap<String, Image> getProducedImages() {
return producedImages;
}
@ -118,7 +121,7 @@ public class BioClimateAnalysis {
csquareTableNames = checkTableNames(csquareTableNames);
hspecTableNames = checkTableNames(hspecTableNames);
producedImages = new HashMap<String,Image> ();
producedImages = new HashMap<String, Image>();
int numberOfTrends = highProbabilityCells.length;
// create the datasets...
@ -149,14 +152,14 @@ public class BioClimateAnalysis {
discrepancies[0] = min;
if (liveRender) {
BioClimateGraph lineg1 = new BioClimateGraph(String.format(SERIES[0],threshold), Operations.getMax(highProbabilityCells), Operations.getMin(highProbabilityCells));
BioClimateGraph lineg1 = new BioClimateGraph(String.format(SERIES[0], threshold), Operations.getMax(highProbabilityCells), Operations.getMin(highProbabilityCells));
BioClimateGraph lineg4 = new BioClimateGraph(SERIES[3], Operations.getMax(discrepancies), min);
lineg4.render(discrepanciesTrend);
lineg1.render(probabilityTrend);
}
producedImages.put("Probability_Trend",BioClimateGraph.renderStaticImgObject(width, height, probabilityTrend, String.format(SERIES[0],threshold), Operations.getMax(highProbabilityCells), Operations.getMin(highProbabilityCells)));
producedImages.put("Probability_Discrepancies_Trend",BioClimateGraph.renderStaticImgObject(width, height, discrepanciesTrend, SERIES[3], Operations.getMax(discrepancies), min));
producedImages.put("Probability_Trend", BioClimateGraph.renderStaticImgObject(width, height, probabilityTrend, String.format(SERIES[0], threshold), Operations.getMax(highProbabilityCells), Operations.getMin(highProbabilityCells)));
producedImages.put("Probability_Discrepancies_Trend", BioClimateGraph.renderStaticImgObject(width, height, discrepanciesTrend, SERIES[3], Operations.getMax(discrepancies), min));
}
if (doHcafAn) {
@ -170,9 +173,9 @@ public class BioClimateAnalysis {
lineg8.render(avgSalinityD);
}
producedImages.put("Average_Ice_Concentration",BioClimateGraph.renderStaticImgObject(width, height, avgIceD, SERIES[5], Operations.getMax(avgIce), Operations.getMin(avgIce)));
producedImages.put("Average_SST",BioClimateGraph.renderStaticImgObject(width, height, avgSSTD, SERIES[6], Operations.getMax(avgSST), Operations.getMin(avgSST)));
producedImages.put("Average_Salinity",BioClimateGraph.renderStaticImgObject(width, height, avgSalinityD, SERIES[7], Operations.getMax(avgSalinity), Operations.getMin(avgSalinity)));
producedImages.put("Average_Ice_Concentration", BioClimateGraph.renderStaticImgObject(width, height, avgIceD, SERIES[5], Operations.getMax(avgIce), Operations.getMin(avgIce)));
producedImages.put("Average_SST", BioClimateGraph.renderStaticImgObject(width, height, avgSSTD, SERIES[6], Operations.getMax(avgSST), Operations.getMin(avgSST)));
producedImages.put("Average_Salinity", BioClimateGraph.renderStaticImgObject(width, height, avgSalinityD, SERIES[7], Operations.getMax(avgSalinity), Operations.getMin(avgSalinity)));
}
@ -181,28 +184,28 @@ public class BioClimateAnalysis {
}
public void hcafEvolutionAnalysis(String[] hcafTable, String[] hcafTableNames) throws Exception {
globalEvolutionAnalysis(hcafTable, null, hcafTableNames, null, null, null,0f);
globalEvolutionAnalysis(hcafTable, null, hcafTableNames, null, null, null, 0f);
}
public void hspecEvolutionAnalysis(String[] hspecTables, String[] hspecTableNames, String probabilityColumn, String csquareColumn,float threshold) throws Exception {
public void hspecEvolutionAnalysis(String[] hspecTables, String[] hspecTableNames, String probabilityColumn, String csquareColumn, float threshold) throws Exception {
globalEvolutionAnalysis(null, hspecTables, null, hspecTableNames, probabilityColumn, csquareColumn, threshold);
}
private String[] checkTableNames(String [] tablesNames){
private String[] checkTableNames(String[] tablesNames) {
ArrayList<String> newtables = new ArrayList<String>();
if ((tablesNames==null) || (tablesNames.length==0))
if ((tablesNames == null) || (tablesNames.length == 0))
return tablesNames;
for (String table:tablesNames){
int i=1;
for (String table : tablesNames) {
int i = 1;
String originalTable = table;
while (newtables.contains(table)){
table = originalTable+"_"+i;
while (newtables.contains(table)) {
table = originalTable + "_" + i;
i++;
}
newtables.add(table);
}
String [] tables = new String[tablesNames.length];
for (int j=0;j<tablesNames.length;j++){
String[] tables = new String[tablesNames.length];
for (int j = 0; j < tablesNames.length; j++) {
tables[j] = newtables.get(j);
}
return tables;
@ -211,7 +214,7 @@ public class BioClimateAnalysis {
public void produceCharts(HashMap<String, HashMap<String, double[]>> GeoMap, String[] tablesNames) {
// produce a char for each feature
tablesNames = checkTableNames(tablesNames);
producedImages = new HashMap<String,Image> ();
producedImages = new HashMap<String, Image>();
for (String featurename : GeoMap.keySet()) {
DefaultCategoryDataset chart = new DefaultCategoryDataset();
HashMap<String, double[]> timeseries = GeoMap.get(featurename);
@ -231,13 +234,13 @@ public class BioClimateAnalysis {
BioClimateGraph lineg1 = new BioClimateGraph(featurename, absmax, absmin);
lineg1.render(chart);
}
producedImages.put(featurename.replace(" ", "_"),BioClimateGraph.renderStaticImgObject(width, height, chart, featurename, absmax, absmin));
producedImages.put(featurename.replace(" ", "_"), BioClimateGraph.renderStaticImgObject(width, height, chart, featurename, absmax, absmin));
}
}
/**
* Generates a chart for hspens in time according to a certain interval in the parameter
* e.g. : a chart for several salinity intervals
* Generates a chart for hspens in time according to a certain interval in the parameter e.g. : a chart for several salinity intervals
*
* @param hspenTables
* @param hspenTableNames
* @param parameterName
@ -291,8 +294,8 @@ public class BioClimateAnalysis {
// for each cluster build up a chart
for (int j = 1; j < pClusters.length; j++) {
double prevpmax = MathFunctions.roundDecimal(Double.parseDouble("" + (Object) paramrange.get(pClusters[j - 1])),2);
pmax = MathFunctions.roundDecimal(Double.parseDouble("" + (Object) paramrange.get(pClusters[j])),2);
double prevpmax = MathFunctions.roundDecimal(Double.parseDouble("" + (Object) paramrange.get(pClusters[j - 1])), 2);
pmax = MathFunctions.roundDecimal(Double.parseDouble("" + (Object) paramrange.get(pClusters[j])), 2);
if (prevpmax != pmax) {
// take the number of elements for this range
@ -340,11 +343,13 @@ public class BioClimateAnalysis {
/**
* Generates a chart for hspec probability > thr in each Fao Area and LME
*
* @param hspecTables
* @param hspecTablesNames
* @throws Exception
*/
public void speciesGeographicEvolutionAnalysis(String[] hspecTables, String[] hspecTablesNames, float threshold) throws Exception {
public void speciesGeographicEvolutionAnalysis2(String[] hspecTables, String[] hspecTablesNames, float threshold) throws Exception {
try {
referencedbConnection = DatabaseFactory.initDBConnection(configPath + AlgorithmConfiguration.defaultConnectionFile, config);
AnalysisLogger.getLogger().debug("ReferenceDB initialized");
@ -362,18 +367,17 @@ public class BioClimateAnalysis {
for (int i = 0; i < numbOfTables; i++) {
// for each criterion to apply: fao area, lme etc.
for (int j = 0; j < criteriaNames.length; j++) {
List<Object> listCriterion = DatabaseFactory.executeSQLQuery(DatabaseUtils.getDinstictElements("hcaf_s", selectionCriteria[j],criteriaFilters[j]),referencedbConnection);
for (Object code: listCriterion){
String code$ = ""+code;
String query = String.format(countProbabilityPerArea,hspecTables[i],selectionCriteria[j],code$);
query = query.replace("#THRESHOLD#", ""+threshold);
AnalysisLogger.getLogger().trace("Executing query for counting probabilities: "+query);
List<Object> listCriterion = DatabaseFactory.executeSQLQuery(DatabaseUtils.getDinstictElements("hcaf_s", selectionCriteria[j], criteriaFilters[j]), referencedbConnection);
for (Object code : listCriterion) {
String code$ = "" + code;
String query = String.format(countProbabilityPerArea, hspecTables[i], selectionCriteria[j], code$);
query = query.replace("#THRESHOLD#", "" + threshold);
AnalysisLogger.getLogger().trace("Executing query for counting probabilities: " + query);
List<Object> counts = DatabaseFactory.executeSQLQuery(query, referencedbConnection);
AnalysisLogger.getLogger().trace("Query Executed");
int countPerArea = (counts==null)?0:Integer.parseInt(""+counts.get(0));
int countPerArea = (counts == null) ? 0 : Integer.parseInt("" + counts.get(0));
String chartName = "Hspec (prob>0.8) for " + criteriaNames[j] + "_" + code$;
// put the code and the value in the timeseries associated to the feature name
String chartName = "Hspec (prob>0.8) for " + criteriaNames[j] + "_" + code$; // put the code and the value in the timeseries associated to the feature name
HashMap<String, double[]> submap = GeoMap.get(chartName);
if (submap == null) {
submap = new HashMap<String, double[]>();
@ -407,12 +411,96 @@ public class BioClimateAnalysis {
}
}
/**
* Generates a geographic trend for each hspec feature: ice con, salinity, sst in each fao area
* @param hcafTable
* @param hcafTableNames
* @throws Exception
*/
public void speciesGeographicEvolutionAnalysis(String[] hspecTables, String[] hspecTablesNames, float threshold) throws Exception {
try {
referencedbConnection = DatabaseFactory.initDBConnection(configPath + AlgorithmConfiguration.defaultConnectionFile, config);
AnalysisLogger.getLogger().debug("ReferenceDB initialized");
status = 0f;
int numbOfTables = (hspecTables != null) ? hspecTables.length : 0;
if (numbOfTables > 0) {
// a map for each feature. each sub map contains a trend for faoaream, lme etc.
HashMap<String, HashMap<String, double[]>> GeoMap = new HashMap<String, HashMap<String, double[]>>();
float statusstep = 80f / (float) numbOfTables;
// for each table
for (int i = 0; i < numbOfTables; i++) {
String tmpanalysisTable = "tmpanalysis" + ("" + UUID.randomUUID()).replace("-", "").replace("_", "");
try {
DatabaseFactory.executeSQLUpdate("drop table " + tmpanalysisTable, referencedbConnection);
} catch (Exception ee) {
AnalysisLogger.getLogger().trace("table " + tmpanalysisTable + " does not exist");
}
String preparationQuery = "create table " + tmpanalysisTable + " as select a.faoaream, lme,count(*) from %1$s as a where a.probability > #THRESHOLD# group by faoaream,lme;";
preparationQuery = String.format(preparationQuery, hspecTables[i]);
preparationQuery = preparationQuery.replace("#THRESHOLD#", "" + threshold);
AnalysisLogger.getLogger().trace("Executing query for counting probabilities: " + preparationQuery);
DatabaseFactory.executeSQLUpdate(preparationQuery, referencedbConnection);
AnalysisLogger.getLogger().trace("Query Executed");
// for each criterion to apply: fao area, lme etc.
for (int j = 0; j < criteriaNames.length; j++) {
String criteriaQuery = String.format("select %1$s,sum(count) from " + tmpanalysisTable + " %2$s group by %1$s;", selectionCriteria[j], criteriaFilters[j]);
AnalysisLogger.getLogger().trace("Executing query for counting probabilities: " + criteriaQuery);
List<Object> codeSums = DatabaseFactory.executeSQLQuery(criteriaQuery, referencedbConnection);
for (Object codeSum : codeSums) {
String code$ = "" + ((Object[]) codeSum)[0];
int countPerArea = (((Object[]) codeSum)[1] == null) ? 0 : Integer.parseInt("" + ((Object[]) codeSum)[1]);
AnalysisLogger.getLogger().trace("Analyzing " + selectionCriteria[j] + " with code " + code$ + " count " + countPerArea);
String chartName = "Hspec (prob>0.8) for " + criteriaNames[j] + "_" + code$;
// put the code and the value in the timeseries associated to the feature name
HashMap<String, double[]> submap = GeoMap.get(chartName);
if (submap == null) {
submap = new HashMap<String, double[]>();
GeoMap.put(chartName, submap);
}
String timeseries = "number of occupied cells";
double[] elements = submap.get(timeseries);
if (elements == null) {
elements = new double[numbOfTables];
submap.put(timeseries, elements);
}
elements[i] = countPerArea;
}
}
try {
DatabaseFactory.executeSQLUpdate("drop table " + tmpanalysisTable, referencedbConnection);
} catch (Exception ee) {
ee.printStackTrace();
AnalysisLogger.getLogger().trace("table " + tmpanalysisTable + " does not exist");
}
status = status + statusstep;
}
status = 80f;
produceCharts(GeoMap, hspecTablesNames);
}
} catch (Exception e) {
e.printStackTrace();
throw e;
} finally {
status = 100f;
referencedbConnection.close();
}
}
/**
* Generates a geographic trend for each hspec feature: ice con, salinity, sst in each fao area
*
* @param hcafTable
* @param hcafTableNames
* @throws Exception
*/
public void geographicEvolutionAnalysis(String[] hcafTable, String[] hcafTableNames) throws Exception {
try {
referencedbConnection = DatabaseFactory.initDBConnection(configPath + AlgorithmConfiguration.defaultConnectionFile, config);
@ -482,8 +570,8 @@ public class BioClimateAnalysis {
}
/**
* Generates a chart for each hspec feature
* Generates a chart for hspec prob > thr and performs a discrepancy analysis on hspec
* Generates a chart for each hspec feature Generates a chart for hspec prob > thr and performs a discrepancy analysis on hspec
*
* @param hcafTable
* @param hspecTables
* @param hcafTablesNames
@ -492,7 +580,7 @@ public class BioClimateAnalysis {
* @param csquareColumn
* @throws Exception
*/
public void globalEvolutionAnalysis(String[] hcafTable, String[] hspecTables, String[] hcafTablesNames, String[] hspecTableNames, String probabilityColumn, String csquareColumn,float threshold) throws Exception {
public void globalEvolutionAnalysis(String[] hcafTable, String[] hspecTables, String[] hcafTablesNames, String[] hspecTableNames, String probabilityColumn, String csquareColumn, float threshold) throws Exception {
try {
referencedbConnection = DatabaseFactory.initDBConnection(configPath + AlgorithmConfiguration.defaultConnectionFile, config);
AnalysisLogger.getLogger().debug("ReferenceDB initialized");
@ -517,6 +605,9 @@ public class BioClimateAnalysis {
avgSalinity = new double[numbOfPoints];
float statusstep = 80f / (float) numbOfPoints;
// create temp table puppa as select count(*), probability > 0.8 as aboveThreshold, sum(probability) as partialprobability from hspec_2050_suitable group by probability >0.8;
// select count(*), probability > 0.8 as aboveThreshold, sum(probability) as partialprobability from hspec_2050_suitable group by probability >0.8;
// select sum(count) as count, 3 as x from puppa union select count,2 as x from puppa where abovethreshold = true union select sum(partialprobability) as count, 1 as x from puppa order by x desc;
for (int i = 0; i < numbOfPoints; i++) {
if (doHspecAn)
@ -534,7 +625,8 @@ public class BioClimateAnalysis {
discrepancies[i] = 1.0;
} else {
// OLD CALCULATION discrepancies[i] = MathFunctions.roundDecimal(calcDiscrepancy(configPath, temporaryDirectory, hspecTables[i], hspecTables[i - 1], probabilityColumn, csquareColumn, 0.1f), 5);
discrepancies[i] = MathFunctions.roundDecimal(calcOverDiscrepancy(configPath, temporaryDirectory, hspecTables[i], hspecTables[i - 1], probabilityColumn, csquareColumn, 0.1f), 5);
// discrepancies[i] = MathFunctions.roundDecimal(calcOverDiscrepancy(configPath, temporaryDirectory, hspecTables[i], hspecTables[i - 1], probabilityColumn, csquareColumn, 0.1f), 5);
discrepancies[i] = highProbabilityCells[i]-highProbabilityCells[i-1];
}
AnalysisLogger.getLogger().trace("(" + hspecTables[i] + "): DISCREPANCY " + discrepancies[i] + " HIGH PROB CELLS " + highProbabilityCells[i]);
}
@ -544,7 +636,7 @@ public class BioClimateAnalysis {
status = status + statusstep;
}
status = 80f;
produceGraphs(hcafTablesNames, hspecTableNames,threshold);
produceGraphs(hcafTablesNames, hspecTableNames, threshold);
} catch (Exception e) {
e.printStackTrace();
@ -653,7 +745,9 @@ public class BioClimateAnalysis {
config.setParam("MaxSamples", "" + 30000);
eval = EvaluatorsFactory.getEvaluators(config).get(0);
HashMap<String, String> out = eval.process(config);
PrimitiveType output = (PrimitiveType) eval.process(config);
HashMap<String, String> out = (HashMap<String, String>)output.getContent();
Double d = Double.parseDouble(out.get("MEAN"));
return d;

View File

@ -212,6 +212,7 @@ public class InterpolateTables {
String filename = temporaryDirectory + initialFile + "_" + (yearCals) + "_" + function.name() + "_" + i + System.currentTimeMillis() + ".csv";
FileTools.saveString(filename, completeFile.toString(), true, "UTF-8");
producedfiles[i] = new File(filename);
System.out.println("PRODUCED FILE TO COPY "+producedfiles[i]);
}
}
@ -267,13 +268,18 @@ public class InterpolateTables {
public static void main(String[] args) throws Exception {
String configPath = "./cfg/";
String persistencePath = "c:/tmp/";
String persistencePath = "/win/";
/*
String databaseUrl = "jdbc:postgresql://localhost/testdb";
String databaseUser = "gcube";
String databasePassword = "d4science2";
*/
String databaseUrl = "jdbc:postgresql://dbtest.research-infrastructures.eu/aquamapsorgupdated";
String databaseUser = "utente";
String databasePassword = "d4science";
InterpolateTables interp = new InterpolateTables(configPath, persistencePath, databaseUrl, databaseUser, databasePassword);
interp.interpolate("hcaf_d", "hcaf_d_2050", 5, INTERPOLATIONFUNCTIONS.LINEAR, 2012, 2050);
interp.interpolate("hcaf_d", "hcaf_d_2050", 7, INTERPOLATIONFUNCTIONS.LINEAR, 2012, 2050);
}

View File

@ -0,0 +1,31 @@
package org.gcube.dataanalysis.ecoengine.interfaces;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
public interface Clusterer {
public ALG_PROPS[] getSupportedAlgorithms();
public INFRASTRUCTURE getInfrastructure();
public void init() throws Exception;
public void setConfiguration(AlgorithmConfiguration config);
public void shutdown();
public float getStatus();
public String getDescription();
public List<StatisticalType> getInputParameters();
public StatisticalType getOutput();
public void cluster() throws Exception;
}

View File

@ -1,15 +1,14 @@
package org.gcube.dataanalysis.ecoengine.interfaces;
import java.util.HashMap;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
public interface ComputationalAgent {
//set the input parameters for this generator
public HashMap<String, VarCouple> getInputParameters();
public List<StatisticalType> getInputParameters();
public String getResourceLoad();
@ -20,10 +19,8 @@ public interface ComputationalAgent {
//gets the weight of the generator: according to this the generator will be placed in the execution order
public INFRASTRUCTURE getInfrastructure();
// gets the type of the content inside the generator: String, File, HashMap.
public VARTYPE getContentType();
// gets the content of the model: e.g. Table indications etc.
public Object getContent();
public StatisticalType getOutput();
}

View File

@ -2,11 +2,14 @@ package org.gcube.dataanalysis.ecoengine.interfaces;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.utils.ResourceFactory;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
/**
* Implements a mono-thread data analysis process
@ -21,15 +24,11 @@ public abstract class DataAnalysis implements Evaluator{
protected float status;
/**
* establishes imput parameters for this algorithm along with their type
* establishes input parameters for this algorithm along with their type
*/
public abstract HashMap<String, VarCouple> getInputParameters();
public abstract List<StatisticalType> getInputParameters();
/**
* lists the output parameters names
* @return
*/
public abstract List<String> getOutputParameters();
/**
* Executed the core of the algorithm
@ -58,7 +57,7 @@ public abstract class DataAnalysis implements Evaluator{
* @return
* @throws Exception
*/
public HashMap<String, String> process(AlgorithmConfiguration config) throws Exception{
public StatisticalType process(AlgorithmConfiguration config) throws Exception{
status = 0;
HashMap<String, String> out = new HashMap<String, String>();
try{
@ -72,7 +71,7 @@ public abstract class DataAnalysis implements Evaluator{
finally{
status = 100;
}
return out;
return new PrimitiveType(Map.class.getName(), out, PrimitiveTypes.MAP, "Analysis","Analysis Results");
}
/**

View File

@ -3,12 +3,13 @@ package org.gcube.dataanalysis.ecoengine.interfaces;
import java.util.HashMap;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
public interface Evaluator extends ComputationalAgent{
public HashMap<String, String> process(AlgorithmConfiguration config) throws Exception;
public StatisticalType process(AlgorithmConfiguration config) throws Exception;
public abstract void init(AlgorithmConfiguration config) throws Exception;

View File

@ -20,4 +20,5 @@ public interface Generator extends ComputationalAgent{
public void generate() throws Exception;
public SpatialProbabilityDistribution getAlgorithm();
}

View File

@ -1,11 +1,10 @@
package org.gcube.dataanalysis.ecoengine.interfaces;
import java.util.HashMap;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
public interface Model {
@ -20,7 +19,7 @@ public interface Model {
public String getDescription();
//set the input parameters for this generator
public HashMap<String, VarCouple> getInputParameters();
public List<StatisticalType> getInputParameters();
public float getVersion();
@ -34,17 +33,11 @@ public interface Model {
public float getStatus();
public String getInputType();
public String getOutputType();
public void postprocess(AlgorithmConfiguration Input, Model previousModel);
public void train(AlgorithmConfiguration Input, Model previousModel);
public void stop();
public VARTYPE getContentType();
public Object getContent();
public StatisticalType getOutput();
}

View File

@ -1,10 +1,9 @@
package org.gcube.dataanalysis.ecoengine.interfaces;
import java.util.HashMap;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
public interface SpatialProbabilityDistribution {
@ -18,10 +17,8 @@ public interface SpatialProbabilityDistribution {
public String getDescription();
//set the input parameters for this generator
public HashMap<String, VarCouple> getInputParameters();
public List<StatisticalType> getInputParameters();
public VARTYPE getContentType();
public Object getContent();
public StatisticalType getOutput();
}

View File

@ -1,34 +1,80 @@
package org.gcube.dataanalysis.ecoengine.interfaces;
import java.io.File;
import java.io.FileWriter;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
public interface SpatialProbabilityDistributionNode extends SpatialProbabilityDistribution {
public abstract class SpatialProbabilityDistributionNode implements SpatialProbabilityDistribution {
//initialization of ta single node
public void initSingleNode(AlgorithmConfiguration config);
public abstract void initSingleNode(AlgorithmConfiguration config);
//get the internal processing status for the single step calculation
public float getInternalStatus();
public abstract float getInternalStatus();
//execute a single node
public int executeNode(int cellStarIndex, int numberOfCellsToProcess, int speciesStartIndex, int numberOfSpeciesToProcess, String sandboxFolder, String logfileNameToProduce);
public abstract int executeNode(int cellStarIndex, int numberOfCellsToProcess, int speciesStartIndex, int numberOfSpeciesToProcess, boolean duplicate, String sandboxFolder, String nodeConfigurationFileObject, String logfileNameToProduce);
// An initialization phase in which the inputs are initialized
public void setup(AlgorithmConfiguration config) throws Exception;
public abstract void setup(AlgorithmConfiguration config) throws Exception;
//get overall number of species to process
public int getNumberOfSpecies();
public abstract int getNumberOfSpecies();
//get overall number of geographical information to process
public int getNumberOfGeoInfo();
public abstract int getNumberOfGeoInfo();
//get overall number of processed species
public int getNumberOfProcessedSpecies();
public abstract int getNumberOfProcessedSpecies();
//stop the sexecution of the node
public void stop();
public abstract void stop();
//prostprocess after the whole calculation : reduce operation
public void postProcess();
public abstract void postProcess(boolean manageDuplicates, boolean manageFault);
public static void main(String[] args) throws Exception{
try{
System.out.println("Generic Node: Process Started ");
try {
for (int i = 0; i < args.length; i++) {
System.out.println("Generic Node: RECEIVED INPUT " + args[i]);
}
} catch (Exception e) {
}
System.out.println("Generic Node: checking arguments from "+args[0]);
String[] rargs = args[0].split("_");
int order = Integer.parseInt(rargs[0]);
System.out.println("Generic Node: order: " + order);
int chunksize = Integer.parseInt(rargs[1]);
System.out.println("Generic Node: chunk: " + chunksize);
int speciesOrder = Integer.parseInt(rargs[2]);
System.out.println("Generic Node: species: " + speciesOrder);
int speciesChunksize = Integer.parseInt(rargs[3]);
System.out.println("Generic Node: species chunk size: " + speciesChunksize);
String path = rargs[4];
System.out.println("Generic Node: path: " + path);
String algorithmClass = rargs[5];
System.out.println("Generic Node: algorithmClass: " + algorithmClass);
Boolean duplicate = Boolean.parseBoolean(rargs[6]);
System.out.println("Generic Node: duplicate message: " + duplicate);
String nodeConfiguration = rargs[7];
System.out.println("Generic Node: config: " + nodeConfiguration);
String logfile = args[1];
System.out.println("Generic Node: logfile: " + logfile);
System.out.println("Generic Node: executing class");
SpatialProbabilityDistributionNode node = (SpatialProbabilityDistributionNode) Class.forName(algorithmClass).newInstance();
node.executeNode(order, chunksize, speciesOrder, speciesChunksize, duplicate, path, nodeConfiguration, logfile);
}catch(Exception e){
System.out.println("ERROR "+e.getMessage());
System.out.println(e);
}
}
}

View File

@ -1,14 +1,13 @@
package org.gcube.dataanalysis.ecoengine.modeling;
import java.util.HashMap;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.interfaces.Modeler;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class SimpleModeler implements Modeler{
private Model innermodel;
@ -64,7 +63,7 @@ public class SimpleModeler implements Modeler{
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
public List<StatisticalType> getInputParameters() {
return innermodel.getInputParameters();
}
@ -73,12 +72,8 @@ public class SimpleModeler implements Modeler{
return INFRASTRUCTURE.LOCAL;
}
public VARTYPE getContentType() {
return innermodel.getContentType();
}
public Object getContent() {
return innermodel.getContent();
public StatisticalType getOutput() {
return innermodel.getOutput();
}
}

View File

@ -4,17 +4,26 @@ import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.Neural_Network;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class ModelAquamapsNN implements Model {
@ -36,18 +45,34 @@ public class ModelAquamapsNN implements Model {
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
parameters.put("AbsenceDataTable", new VarCouple(VARTYPE.STRING, "absence_data"));
parameters.put("PresenceDataTable", new VarCouple(VARTYPE.STRING, "presence_data"));
parameters.put("SpeciesName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("LayersNeurons", new VarCouple(VARTYPE.STRING, "100,2"));
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templatesOccurrences = new ArrayList<TableTemplates>();
templatesOccurrences.add(TableTemplates.OCCURRENCE);
parameters.put("UserName", new VarCouple(VARTYPE.SERVICE, ""));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
InputTable p1 = new InputTable(templatesOccurrences,"AbsenceDataTable","A Table containing absence points");
InputTable p2 = new InputTable(templatesOccurrences,"PresenceDataTable","A Table containing positive occurrences");
PrimitiveType p3 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "SpeciesName","Species Code of the fish the NN will correspond to","Fis-10407");
PrimitiveType p4 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "LayersNeurons","a list of neurons number for each inner layer separated by comma","100,2");
DatabaseType p5 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p6 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p7 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p8 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p9 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
ServiceType p10 = new ServiceType(ServiceParameters.USERNAME, "UserName","LDAP username");
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
return parameters;
}
@ -119,15 +144,7 @@ public class ModelAquamapsNN implements Model {
return status;
}
@Override
public String getInputType() {
return AlgorithmConfiguration.class.getName();
}
@Override
public String getOutputType() {
return File.class.getName();
}
@Override
public void postprocess(AlgorithmConfiguration Input, Model previousModel) {
@ -182,13 +199,12 @@ public class ModelAquamapsNN implements Model {
status = 100f;
}
public VARTYPE getContentType() {
return VARTYPE.FILE;
}
public Object getContent() {
return new File(fileName);
@Override
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(File.class.getName(), new File(fileName), PrimitiveTypes.FILE, "NeuralNetwork","Trained Neural Network");
return p;
}
@Override

View File

@ -4,19 +4,25 @@ import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.HashMap;
import java.util.ArrayList;
import java.util.List;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.Neural_Network;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.neurosolutions.NeuralNet;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.neurosolutions.Pattern;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class ModelAquamapsNNNS implements Model {
@ -38,20 +44,36 @@ public class ModelAquamapsNNNS implements Model {
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
parameters.put("AbsenceDataTable", new VarCouple(VARTYPE.STRING, "absence_data"));
parameters.put("PresenceDataTable", new VarCouple(VARTYPE.STRING, "presence_data"));
parameters.put("SpeciesName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("UserName", new VarCouple(VARTYPE.STRING, ""));
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templatesOccurrences = new ArrayList<TableTemplates>();
templatesOccurrences.add(TableTemplates.OCCURRENCE);
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
InputTable p1 = new InputTable(templatesOccurrences,"AbsenceDataTable","A Table containing absence points");
InputTable p2 = new InputTable(templatesOccurrences,"PresenceDataTable","A Table containing positive occurrences");
PrimitiveType p3 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "SpeciesName","Species Code of the fish the NN will correspond to","Fis-10407");
PrimitiveType p4 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "LayersNeurons","a list of neurons number for each inner layer separated by comma","100,2");
DatabaseType p5 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p6 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p7 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p8 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p9 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
ServiceType p10 = new ServiceType(ServiceParameters.USERNAME, "UserName","LDAP username");
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
return parameters;
}
@Override
public float getVersion() {
return 0;
@ -109,15 +131,7 @@ public class ModelAquamapsNNNS implements Model {
return status;
}
@Override
public String getInputType() {
return AlgorithmConfiguration.class.getName();
}
@Override
public String getOutputType() {
return String.class.getName();
}
@Override
public void postprocess(AlgorithmConfiguration Input, Model previousModel) {
@ -187,14 +201,12 @@ public class ModelAquamapsNNNS implements Model {
status = 100f;
}
public VARTYPE getContentType() {
return VARTYPE.FILE;
@Override
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(File.class.getName(), new File(fileName), PrimitiveTypes.FILE, "NeuralNetwork","Trained Neural Network");
return p;
}
public Object getContent() {
return fileName;
}
@Override
public void stop() {

View File

@ -13,12 +13,20 @@ import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.ResourceLoad;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.Resources;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.OutputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.models.cores.aquamaps.AquamapsEnvelopeAlgorithm;
import org.gcube.dataanalysis.ecoengine.models.cores.aquamaps.EnvelopeSet;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class ModelHSPEN implements Model {
@ -57,6 +65,7 @@ public class ModelHSPEN implements Model {
private long lastTime;
AlgorithmConfiguration outconfig;
private String outputTable;
private String outputTableLabel;
@Override
public float getVersion() {
@ -90,6 +99,7 @@ public class ModelHSPEN implements Model {
}
outputTable = outconfig.getParam("OuputEnvelopeTable");
outputTableLabel = outconfig.getParam("OuputEnvelopeTableLabel");
// initialize queries
dynamicAlterQuery = alterQuery.replace("%HSPEN%", outconfig.getParam("OuputEnvelopeTable"));
dynamicDropTable = dropHspenTable.replace("%HSPEN%", outconfig.getParam("OuputEnvelopeTable"));
@ -335,13 +345,15 @@ public class ModelHSPEN implements Model {
// take ending time
}
public VARTYPE getContentType() {
return VARTYPE.HSPEN;
@Override
public StatisticalType getOutput() {
List<TableTemplates> templateHspen = new ArrayList<TableTemplates>();
templateHspen.add(TableTemplates.HSPEN);
OutputTable p = new OutputTable(templateHspen,outputTableLabel,outputTable,"Output hspen table");
return p;
}
public Object getContent() {
return outputTable;
}
@Override
public void setVersion(float version) {
@ -404,15 +416,6 @@ public class ModelHSPEN implements Model {
return status;
}
@Override
public String getInputType() {
return AlgorithmConfiguration.class.getName();
}
@Override
public String getOutputType() {
return String.class.getName();
}
@Override
public ALG_PROPS[] getProperties() {
@ -426,17 +429,39 @@ public class ModelHSPEN implements Model {
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String,VarCouple>();
parameters.put("EnvelopeTable", new VarCouple(VARTYPE.STRING,"hspen"));
parameters.put("CsquarecodesTable", new VarCouple(VARTYPE.STRING,"hcaf_d"));
parameters.put("OccurrenceCellsTable", new VarCouple(VARTYPE.STRING,"occurrencecells"));
parameters.put("CreateTable", new VarCouple(VARTYPE.STRING,"true"));
parameters.put("OuputEnvelopeTable", new VarCouple(VARTYPE.RANDOM,"hspen_"));
parameters.put("DatabaseUserName",new VarCouple(VARTYPE.DATABASEUSERNAME,""));
parameters.put("DatabasePassword",new VarCouple(VARTYPE.DATABASEPASSWORD,""));
parameters.put("DatabaseURL",new VarCouple(VARTYPE.DATABASEURL,""));
parameters.put("DatabaseDriver",new VarCouple(VARTYPE.DATABASEDRIVER,""));
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templatesOccurrences = new ArrayList<TableTemplates>();
templatesOccurrences.add(TableTemplates.OCCURRENCE);
List<TableTemplates> templateHspen = new ArrayList<TableTemplates>();
templateHspen.add(TableTemplates.HSPEN);
List<TableTemplates> templateHcaf = new ArrayList<TableTemplates>();
templateHcaf.add(TableTemplates.HCAF);
InputTable p1 = new InputTable(templateHspen,"EnvelopeTable","The previous hspen table for regeneration","hspen");
InputTable p2 = new InputTable(templateHcaf,"CsquarecodesTable","HCaf Table","hcaf_d");
InputTable p3 = new InputTable(templatesOccurrences,"OccurrenceCellsTable","Ocurrence Cells Table","occurrencecells");
PrimitiveType p4 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.CONSTANT, "CreateTable","Create New Table for each computation","true");
PrimitiveType p5 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "OuputEnvelopeTableLabel","Table name for the new hspen","hspen_1");
ServiceType p11 = new ServiceType(ServiceParameters.RANDOMSTRING, "OuputEnvelopeTable","Table name for the new hspen","hspen_");
DatabaseType p6 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p7 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p8 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p9 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p10 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
parameters.add(p11);
return parameters;
}

View File

@ -1,6 +1,5 @@
package org.gcube.dataanalysis.ecoengine.processing;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
@ -17,10 +16,10 @@ import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.ResourceLoad;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.Resources;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Generator;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistribution;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistributionGeneric;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class LocalSimpleSplitGenerator implements Generator {
@ -328,18 +327,21 @@ public class LocalSimpleSplitGenerator implements Generator {
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
public List<StatisticalType> getInputParameters() {
return distributionModel.getInputParameters();
}
@Override
public VARTYPE getContentType() {
return distributionModel.getContentType();
public StatisticalType getOutput() {
return distributionModel.getOutput();
}
@Override
public Object getContent() {
return distributionModel.getContent();
public SpatialProbabilityDistribution getAlgorithm() {
return distributionModel;
}

View File

@ -1,6 +1,5 @@
package org.gcube.dataanalysis.ecoengine.processing;
import java.util.HashMap;
import java.util.List;
import java.util.Properties;
import java.util.Queue;
@ -19,11 +18,11 @@ import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.configuration.INFRASTRUCTURE;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.ResourceLoad;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.Resources;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Generator;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistribution;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistributionTable;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class LocalSplitGenerator implements Generator {
@ -497,18 +496,22 @@ public class LocalSplitGenerator implements Generator {
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
public List<StatisticalType> getInputParameters() {
return distributionModel.getInputParameters();
}
@Override
public VARTYPE getContentType() {
return distributionModel.getContentType();
public StatisticalType getOutput() {
return distributionModel.getOutput();
}
@Override
public Object getContent() {
return config.getParam("DistributionTable");
public SpatialProbabilityDistribution getAlgorithm() {
return distributionModel;
}
}

View File

@ -1,6 +1,7 @@
package org.gcube.dataanalysis.ecoengine.processing;
import java.util.HashMap;
import java.util.List;
import org.gcube.contentmanagement.graphtools.utils.HttpRequest;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
@ -12,11 +13,11 @@ import org.gcube.dataanalysis.ecoengine.connectors.RemoteHspecInputObject;
import org.gcube.dataanalysis.ecoengine.connectors.RemoteHspecOutputObject;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.ResourceLoad;
import org.gcube.dataanalysis.ecoengine.connectors.livemonitor.Resources;
import org.gcube.dataanalysis.ecoengine.interfaces.Generator;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistribution;
public class RainyCloudGenerator implements Generator {
//deprecated
public class RainyCloudGenerator {
AlgorithmConfiguration config;
private boolean interruptProcessing;
@ -31,7 +32,6 @@ public class RainyCloudGenerator implements Generator {
public RainyCloudGenerator() {
}
@Override
public float getStatus() {
RemoteHspecOutputObject oo = remoteGenerationManager.retrieveCompleteStatus();
@ -45,7 +45,6 @@ public class RainyCloudGenerator implements Generator {
}
}
@Override
public void init() {
AnalysisLogger.setLogger(config.getConfigPath() + AlgorithmConfiguration.defaultLoggerFile);
interruptProcessing = false;
@ -89,17 +88,16 @@ public class RainyCloudGenerator implements Generator {
remoteGenerationManager = new RemoteGenerationManager(config.getParam("RemoteCalculator"));
}
@Override
public void setConfiguration(AlgorithmConfiguration config) {
this.config = config;
}
@Override
public void shutdown() {
interruptProcessing = true;
}
@Override
public String getResourceLoad() {
String returnString = "[]";
@ -115,7 +113,6 @@ public class RainyCloudGenerator implements Generator {
return returnString;
}
@Override
public String getResources() {
Resources res = new Resources();
try {
@ -129,7 +126,6 @@ public class RainyCloudGenerator implements Generator {
return "[]";
}
@Override
public String getLoad() {
RemoteHspecOutputObject rhoo = remoteGenerationManager.retrieveCompleteStatus();
String returnString = "[]";
@ -140,7 +136,7 @@ public class RainyCloudGenerator implements Generator {
return returnString;
}
@Override
public void generate() throws Exception {
try {
@ -163,18 +159,18 @@ public class RainyCloudGenerator implements Generator {
AnalysisLogger.getLogger().trace("REMOTE PROCESSING ENDED");
}
@Override
public ALG_PROPS[] getSupportedAlgorithms() {
ALG_PROPS[] p = { ALG_PROPS.SPECIES_VS_CSQUARE_REMOTE_FROM_DATABASE };
return p;
}
@Override
public INFRASTRUCTURE getInfrastructure() {
return INFRASTRUCTURE.D4SCIENCE;
}
@Override
/*
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
parameters.put("RemoteEnvironment", new VarCouple(VARTYPE.INFRA,""));
@ -191,14 +187,14 @@ public class RainyCloudGenerator implements Generator {
return parameters;
}
@Override
public VARTYPE getContentType() {
return VARTYPE.HSPEC;
}
@Override
public Object getContent() {
return config.getParam("DistributionTable");
}
*/
}

View File

@ -1,17 +1,11 @@
package org.gcube.dataanalysis.ecoengine.processing.factories;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Properties;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Evaluator;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.interfaces.Modeler;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class EvaluatorsFactory {
@ -26,8 +20,8 @@ public class EvaluatorsFactory {
return evaluators;
}
public static HashMap<String,VarCouple> getEvaluatorParameters(String configPath, String algorithmName) throws Exception{
HashMap<String,VarCouple> inputs = ProcessorsFactory.getParameters(configPath + AlgorithmConfiguration.evaluatorsFile, algorithmName);
public static List<StatisticalType> getEvaluatorParameters(String configPath, String algorithmName) throws Exception{
List<StatisticalType> inputs = ProcessorsFactory.getParameters(configPath + AlgorithmConfiguration.evaluatorsFile, algorithmName);
return inputs;
}

View File

@ -1,7 +1,6 @@
package org.gcube.dataanalysis.ecoengine.processing.factories;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Properties;
import java.util.ServiceLoader;
@ -9,10 +8,10 @@ import java.util.ServiceLoader;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Generator;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistribution;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistributionGeneric;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class GeneratorsFactory {
@ -69,8 +68,8 @@ public class GeneratorsFactory {
public static HashMap<String,VarCouple> getAlgorithmParameters(String configPath, String algorithmName) throws Exception{
HashMap<String,VarCouple> inputs = ProcessorsFactory.getParameters(configPath + AlgorithmConfiguration.algorithmsFile, algorithmName);
public static List<StatisticalType> getAlgorithmParameters(String configPath, String algorithmName) throws Exception{
List<StatisticalType> inputs = ProcessorsFactory.getParameters(configPath + AlgorithmConfiguration.algorithmsFile, algorithmName);
return inputs;
}

View File

@ -1,16 +1,15 @@
package org.gcube.dataanalysis.ecoengine.processing.factories;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Properties;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.interfaces.Modeler;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class ModelersFactory {
@ -31,8 +30,8 @@ public class ModelersFactory {
}
public static HashMap<String,VarCouple> getModelParameters(String configPath, String algorithmName) throws Exception{
HashMap<String,VarCouple> inputs = ProcessorsFactory.getParameters(configPath + AlgorithmConfiguration.modelsFile, algorithmName);
public static List<StatisticalType> getModelParameters(String configPath, String algorithmName) throws Exception{
List<StatisticalType> inputs = ProcessorsFactory.getParameters(configPath + AlgorithmConfiguration.modelsFile, algorithmName);
return inputs;
}

View File

@ -7,17 +7,17 @@ import java.util.Properties;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Evaluator;
import org.gcube.dataanalysis.ecoengine.interfaces.Generator;
import org.gcube.dataanalysis.ecoengine.interfaces.Model;
import org.gcube.dataanalysis.ecoengine.interfaces.Modeler;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistribution;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class ProcessorsFactory {
public static HashMap<String, VarCouple> getDefaultDatabaseConfiguration(String cfgPath) {
public static List<StatisticalType> getDefaultDatabaseConfiguration(String cfgPath) {
String databasecfgfile = cfgPath + AlgorithmConfiguration.defaultConnectionFile;
try {
return DatabaseFactory.getDefaultDatabaseConfiguration(databasecfgfile);
@ -37,7 +37,7 @@ public class ProcessorsFactory {
return algs;
}
public static HashMap<String, VarCouple> getParameters(String file, String algorithmName) throws Exception {
public static List<StatisticalType> getParameters(String file, String algorithmName) throws Exception {
Properties p = AlgorithmConfiguration.getProperties(file);
String algorithmclass = p.getProperty(algorithmName);

View File

@ -3,13 +3,16 @@ package org.gcube.dataanalysis.ecoengine.spatialdistributions;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.HashMap;
import java.util.List;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.Neural_Network;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class AquamapsNN extends AquamapsNative{
@ -27,23 +30,14 @@ public class AquamapsNN extends AquamapsNative{
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = super.getInputParameters();
parameters.put("EnvelopeTable", new VarCouple(VARTYPE.STRING,"hspen"));
parameters.put("PreprocessedTable", new VarCouple(VARTYPE.STRING,"maxminlat_hspen"));
PrimitiveType p1 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "SpeciesName","Name of the Species for which the distribution has to be produced","Fis-10407");
ServiceType p2 = new ServiceType(ServiceParameters.USERNAME, "UserName","LDAP username");
parameters.put("SpeciesTable", new VarCouple(VARTYPE.STRING, "hspen"));
parameters.put("CsquarecodesTable", new VarCouple(VARTYPE.STRING, "hcaf_d"));
parameters.put("DistributionTable", new VarCouple(VARTYPE.RANDOM, "hspec_nn_"));
parameters.put("SpeciesName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("CreateTable", new VarCouple(VARTYPE.STRING,"true"));
parameters.put("UserName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
parameters.add(p1);
parameters.add(p2);
return parameters;
}

View File

@ -3,13 +3,16 @@ package org.gcube.dataanalysis.ecoengine.spatialdistributions;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.HashMap;
import java.util.List;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.neurosolutions.NeuralNet;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class AquamapsNNNS extends AquamapsNative{
@ -27,23 +30,14 @@ public class AquamapsNNNS extends AquamapsNative{
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = super.getInputParameters();
parameters.put("EnvelopeTable", new VarCouple(VARTYPE.STRING,"hspen"));
parameters.put("PreprocessedTable", new VarCouple(VARTYPE.STRING,"maxminlat_hspen"));
PrimitiveType p1 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "SpeciesName","Name of the Species for which the distribution has to be produced","Fis-10407");
ServiceType p2 = new ServiceType(ServiceParameters.USERNAME, "UserName","LDAP username");
parameters.put("SpeciesTable", new VarCouple(VARTYPE.STRING, "hspen"));
parameters.put("CsquarecodesTable", new VarCouple(VARTYPE.STRING, "hcaf_d"));
parameters.put("DistributionTable", new VarCouple(VARTYPE.RANDOM, "hspec_nn_"));
parameters.put("SpeciesName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("CreateTable", new VarCouple(VARTYPE.STRING,"true"));
parameters.put("UserName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
parameters.add(p1);
parameters.add(p2);
return parameters;
}

View File

@ -3,13 +3,16 @@ package org.gcube.dataanalysis.ecoengine.spatialdistributions;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.HashMap;
import java.util.List;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.models.cores.neuralnetworks.Neural_Network;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class AquamapsNNSuitable extends AquamapsSuitable{
@ -27,23 +30,14 @@ public class AquamapsNNSuitable extends AquamapsSuitable{
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = super.getInputParameters();
parameters.put("EnvelopeTable", new VarCouple(VARTYPE.STRING,"hspen"));
parameters.put("PreprocessedTable", new VarCouple(VARTYPE.STRING,"maxminlat_hspen"));
PrimitiveType p1 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "SpeciesName","Name of the Species for which the distribution has to be produced","Fis-10407");
ServiceType p2 = new ServiceType(ServiceParameters.USERNAME, "UserName","LDAP username");
parameters.put("SpeciesTable", new VarCouple(VARTYPE.STRING, "hspen"));
parameters.put("CsquarecodesTable", new VarCouple(VARTYPE.STRING, "hcaf_d"));
parameters.put("DistributionTable", new VarCouple(VARTYPE.RANDOM, "hspec_nn_"));
parameters.put("SpeciesName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("CreateTable", new VarCouple(VARTYPE.STRING,"true"));
parameters.put("UserName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
parameters.add(p1);
parameters.add(p2);
return parameters;
}

View File

@ -8,10 +8,18 @@ import java.util.Queue;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.InputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.OutputTable;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.ServiceType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.ServiceParameters;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.TableTemplates;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistributionTable;
import org.gcube.dataanalysis.ecoengine.utils.DatabaseFactory;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
import org.hibernate.SessionFactory;
public class AquamapsSuitable implements SpatialProbabilityDistributionTable{
@ -20,6 +28,7 @@ public class AquamapsSuitable implements SpatialProbabilityDistributionTable{
String csquareCodeQuery = "select csquarecode,depthmean,depthmax,depthmin, sstanmean,sbtanmean,salinitymean,salinitybmean, primprodmean,iceconann,landdist,oceanarea,centerlat,centerlong,faoaream,eezall,lme from %1$s d where oceanarea>0";
String createTableStatement = "CREATE TABLE %1$s ( speciesid character varying, csquarecode character varying, probability real, boundboxyn smallint, faoareayn smallint, faoaream integer, eezall character varying, lme integer) WITH (OIDS=FALSE ); CREATE INDEX CONCURRENTLY %1$s_idx ON %1$s USING btree (speciesid, csquarecode, faoaream, eezall, lme);";
String destinationTable;
String destinationTableLabel;
String metainfo ="boundboxyn, faoareayn, faoaream, eezall, lme";
String selectAllSpeciesObservationQuery = "SELECT speciesid,maxclat,minclat from %1$s;";
String hspenMinMaxLat = "maxminlat_hspen";
@ -36,6 +45,8 @@ public class AquamapsSuitable implements SpatialProbabilityDistributionTable{
csquareCodeQuery = String.format(csquareCodeQuery, config.getParam("CsquarecodesTable"));
createTableStatement = String.format(createTableStatement,config.getParam("DistributionTable"));
destinationTable = config.getParam("DistributionTable");
destinationTableLabel = config.getParam("DistributionTableLabel");
core = new AquamapsAlgorithmCore();
if ((config.getParam("PreprocessedTable")!=null)&&(config.getParam("PreprocessedTable").length()>0))
@ -204,35 +215,56 @@ public class AquamapsSuitable implements SpatialProbabilityDistributionTable{
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String,VarCouple>();
parameters.put("EnvelopeTable", new VarCouple(VARTYPE.HSPEN,"hspen"));
parameters.put("CsquarecodesTable", new VarCouple(VARTYPE.HCAF,"hcaf_d"));
parameters.put("DistributionTable", new VarCouple(VARTYPE.RANDOM,"hspec_"));
parameters.put("PreprocessedTable", new VarCouple(VARTYPE.MINMAXLAT,"maxminlat_hspen"));
parameters.put("CreateTable", new VarCouple(VARTYPE.STRING,"true"));
parameters.put("DatabaseUserName",new VarCouple(VARTYPE.DATABASEUSERNAME,""));
parameters.put("DatabasePassword",new VarCouple(VARTYPE.DATABASEPASSWORD,""));
parameters.put("DatabaseURL",new VarCouple(VARTYPE.DATABASEURL,""));
parameters.put("DatabaseDriver",new VarCouple(VARTYPE.DATABASEDRIVER,""));
public List<StatisticalType> getInputParameters() {
List<StatisticalType> parameters = new ArrayList<StatisticalType>();
List<TableTemplates> templatesMinmax = new ArrayList<TableTemplates>();
templatesMinmax.add(TableTemplates.MINMAXLAT);
List<TableTemplates> templateHspen = new ArrayList<TableTemplates>();
templateHspen.add(TableTemplates.HSPEN);
List<TableTemplates> templateHcaf = new ArrayList<TableTemplates>();
templateHcaf.add(TableTemplates.HCAF);
InputTable p1 = new InputTable(templateHspen,"EnvelopeTable","The previous hspen table for regeneration","hspen");
InputTable p2 = new InputTable(templateHcaf,"CsquarecodesTable","HCaf Table","hcaf_d");
ServiceType p3 = new ServiceType(ServiceParameters.RANDOMSTRING, "DistributionTable","Table name of the distribution","hspec_");
PrimitiveType p4 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.STRING, "DistributionTableLabel","Name of the HSPEC probability distribution","hspec");
InputTable p5 = new InputTable(templateHcaf,"PreprocessedTable","Minimum maximum latitudes table for species","maxminlat_hspen");
PrimitiveType p6 = new PrimitiveType(String.class.getName(), null, PrimitiveTypes.CONSTANT, "CreateTable","Create New Table for each computation","true");
DatabaseType p7 = new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name");
DatabaseType p8 = new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password");
DatabaseType p9 = new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver");
DatabaseType p10 = new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url");
DatabaseType p11 = new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect");
parameters.add(p1);
parameters.add(p2);
parameters.add(p3);
parameters.add(p4);
parameters.add(p5);
parameters.add(p6);
parameters.add(p7);
parameters.add(p8);
parameters.add(p9);
parameters.add(p10);
parameters.add(p11);
return parameters;
}
@Override
public VARTYPE getContentType() {
return VARTYPE.HSPEC;
}
@Override
public Object getContent() {
return destinationTable;
public StatisticalType getOutput() {
List<TableTemplates> templateHspec = new ArrayList<TableTemplates>();
templateHspec.add(TableTemplates.HSPEC);
OutputTable p = new OutputTable(templateHspec,destinationTableLabel,destinationTable,"Output hspec table");
return p;
}
}

View File

@ -5,7 +5,6 @@ import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
@ -13,9 +12,10 @@ import java.util.UUID;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistributionGeneric;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class DummyAlgorithm implements SpatialProbabilityDistributionGeneric{
@ -188,23 +188,19 @@ public class DummyAlgorithm implements SpatialProbabilityDistributionGeneric{
@Override
public String getDescription() {
// TODO Auto-generated method stub
return "a testing algorithm for statistical service work performances - calculates a random probability distribution and stores on a file";
}
@Override
public List<StatisticalType> getInputParameters() {
return null;
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
return null;
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(File.class.getName(), new File(filename), PrimitiveTypes.FILE, "DummyDistribution","Dummy Distribution File");
return p;
}
@Override
public VARTYPE getContentType() {
return VARTYPE.FILE;
}
@Override
public Object getContent() {
return new File(filename);
}
}

View File

@ -5,7 +5,6 @@ import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
@ -13,9 +12,10 @@ import java.util.UUID;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.ALG_PROPS;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.PrimitiveTypes;
import org.gcube.dataanalysis.ecoengine.interfaces.SpatialProbabilityDistributionGeneric;
import org.gcube.dataanalysis.ecoengine.utils.VARTYPE;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class TestAlgorithm implements SpatialProbabilityDistributionGeneric{
@ -136,22 +136,18 @@ public class TestAlgorithm implements SpatialProbabilityDistributionGeneric{
@Override
public String getDescription() {
return "A performance test algorithm for the Statistical Manager - generates a constant probability distribution";
}
@Override
public List<StatisticalType> getInputParameters() {
return null;
}
@Override
public HashMap<String, VarCouple> getInputParameters() {
return null;
}
@Override
public VARTYPE getContentType() {
return VARTYPE.FILE;
}
@Override
public Object getContent() {
return new File(filename);
public StatisticalType getOutput() {
PrimitiveType p = new PrimitiveType(File.class.getName(), new File(filename), PrimitiveTypes.FILE, "TestDistribution","Test Distribution File");
return p;
}
}

View File

@ -5,13 +5,13 @@ import java.util.List;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.interfaces.Evaluator;
import org.gcube.dataanalysis.ecoengine.interfaces.Generator;
import org.gcube.dataanalysis.ecoengine.processing.factories.EvaluatorsFactory;
import org.gcube.dataanalysis.ecoengine.processing.factories.GeneratorsFactory;
import org.gcube.dataanalysis.ecoengine.processing.factories.ModelersFactory;
import org.gcube.dataanalysis.ecoengine.processing.factories.ProcessorsFactory;
import org.gcube.dataanalysis.ecoengine.utils.VarCouple;
public class TestsMetaInfo {
/**
@ -22,7 +22,7 @@ public class TestsMetaInfo {
public static void main(String[] args) throws Exception {
System.out.println("***TEST 1 - Get Algorithm Information***");
HashMap<String, VarCouple> map = GeneratorsFactory.getAlgorithmParameters("./cfg/","DUMMY");
List<StatisticalType> map = GeneratorsFactory.getAlgorithmParameters("./cfg/","DUMMY");
System.out.println("input for DUMMY algorithm: "+map);
map = GeneratorsFactory.getAlgorithmParameters("./cfg/","AQUAMAPS_SUITABLE");

View File

@ -17,13 +17,15 @@ public class RegressionComplexGeneration {
public static void main(String[] args) throws Exception {
System.out.println("TEST 1");
/*
List<Generator> generators = GeneratorsFactory.getGenerators(testConfigRemote());
generators.get(0).init();
// generate(generators.get(0));
generators = null;
*/
System.out.println("TEST 2");
generators = GeneratorsFactory.getGenerators(testConfigLocal());
List<Generator> generators = GeneratorsFactory.getGenerators(testConfigLocal());
generators.get(0).init();
generate(generators.get(0));
generators = null;

View File

@ -5,6 +5,7 @@ import java.util.List;
import org.gcube.contentmanagement.lexicalmatcher.utils.AnalysisLogger;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.evaluation.DiscrepancyAnalysis;
import org.gcube.dataanalysis.ecoengine.interfaces.Evaluator;
import org.gcube.dataanalysis.ecoengine.processing.factories.EvaluatorsFactory;
@ -73,8 +74,8 @@ public static void main(String[] args) throws Exception {
public void run() {
try {
HashMap<String, String> out = dg.process(config);
PrimitiveType output = (PrimitiveType) dg.process(config);
HashMap<String, String> out = (HashMap<String, String>)output.getContent();
DiscrepancyAnalysis.visualizeResults(out);
} catch (Exception e) {

View File

@ -0,0 +1,61 @@
package org.gcube.dataanalysis.ecoengine.test.regressions;
import org.gcube.dataanalysis.ecoengine.evaluation.bioclimate.BioClimateAnalysis;
public class TestHSPECBioClimateAnalysisDev {
public static void main(String args[]) throws Exception{
/*
String dburl = "jdbc:postgresql://node49.p.d4science.research-infrastructures.eu/aquamaps";
String dbUser = "gcube";
String dbPassword = "bilico1980";
*/
String dburl = "jdbc:postgresql://dbtest.research-infrastructures.eu/aquamapsorgupdated";
String dbUser = "utente";
String dbPassword = "d4science";
BioClimateAnalysis bioClimate=new BioClimateAnalysis("./cfg/","./",dburl, dbUser, dbPassword, true);
/*
final String [] hspecTables = {
"hspec2012_07_05_21_47_13_772",
"hspec2012_07_05_21_47_13_801",
"hspec2012_07_05_21_47_13_819",
"hspec2012_07_05_21_47_13_842",
"hspec2012_07_05_21_47_13_860",
"hspec2012_07_05_21_47_13_888",
"hspec2012_07_05_21_47_13_903",
"hspec2012_07_05_21_47_13_917"
};
*/
final String [] hspecTables = {
"hspec2012_03_12_12_13_14_610",
"hspec2012_03_12_15_07_50_820",
"hspec2012_03_12_18_07_21_503",
"hspec2012_03_12_23_59_57_744",
"hspec2012_03_13_02_50_59_399",
"hspec2012_03_13_10_22_31_865"
};
final String [] hspecTableNames = {
"T1",
"T2",
"T3",
"T4",
"T5",
"T6",
"T7",
"T8"
};
// bioClimate.globalEvolutionAnalysis(null, hspecTables, null, hspecTableNames, "probability", "csquare", 0.8f);
bioClimate.speciesGeographicEvolutionAnalysis(hspecTables, hspecTableNames,0.8f);
}
}

View File

@ -0,0 +1,57 @@
package org.gcube.dataanalysis.ecoengine.test.regressions;
import org.gcube.dataanalysis.ecoengine.evaluation.bioclimate.BioClimateAnalysis;
public class TestHSPECBioClimateAnalysisProd {
public static void main(String args[]) throws Exception{
String dburl = "jdbc:postgresql://node49.p.d4science.research-infrastructures.eu/aquamaps";
String dbUser = "gcube";
String dbPassword = "bilico1980";
/*
String dburl = "jdbc:postgresql://dbtest.research-infrastructures.eu/aquamapsorgupdated";
String dbUser = "utente";
String dbPassword = "d4science";
*/
BioClimateAnalysis bioClimate=new BioClimateAnalysis("./cfg/","./",dburl, dbUser, dbPassword, true);
final String [] hspecTables = {
"hspec2012_07_02_17_14_10_063",
"hspec2012_07_05_21_47_13_772",
"hspec2012_07_05_21_47_13_801"
// "hspec2012_07_05_21_47_13_819",
// "hspec2012_07_05_21_47_13_842",
// "hspec2012_07_05_21_47_13_860",
// "hspec2012_07_05_21_47_13_888",
// "hspec2012_07_05_21_47_13_903",
// "hspec2012_07_05_21_47_13_917",
// "hspec2012_07_06_13_05_11_775"
};
final String [] hspecTableNames = {
"HSPEC 2015 Suitable Parabolic ",
"HSPEC 2018 Suitable Parabolic",
"HSPEC 2021 Suitable Parabolic",
"HSPEC 2024 Suitable Parabolic",
"HSPEC 2027 Suitable Parabolic",
"HSPEC 2030 Suitable Parabolic",
"HSPEC 2033 Suitable Parabolic",
"HSPEC 2036 Suitable Parabolic",
"HSPEC 2039 Suitable Parabolic",
"HSPEC 2042 Suitable Parabolic",
};
bioClimate.globalEvolutionAnalysis(null, hspecTables, null, hspecTableNames, "probability", "csquare", 0.8f);
// bioClimate.speciesGeographicEvolutionAnalysis(hspecTables, hspecTableNames,0.8f);
}
}

View File

@ -4,6 +4,7 @@ import java.util.HashMap;
import java.util.List;
import org.gcube.dataanalysis.ecoengine.configuration.AlgorithmConfiguration;
import org.gcube.dataanalysis.ecoengine.datatypes.PrimitiveType;
import org.gcube.dataanalysis.ecoengine.evaluation.DiscrepancyAnalysis;
import org.gcube.dataanalysis.ecoengine.interfaces.Evaluator;
import org.gcube.dataanalysis.ecoengine.processing.factories.EvaluatorsFactory;
@ -17,7 +18,8 @@ public class EvaluatorT implements Runnable{
public void run() {
try {
HashMap<String, String> out = dg.process(config);
PrimitiveType output = (PrimitiveType) dg.process(config);
HashMap<String, String> out = (HashMap<String, String>)output.getContent();
DiscrepancyAnalysis.visualizeResults(out);
} catch (Exception e) {

View File

@ -7,7 +7,7 @@ import java.io.FileInputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.HashMap;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
@ -18,6 +18,9 @@ import org.dom4j.Node;
import org.dom4j.io.SAXReader;
import org.gcube.contentmanagement.lexicalmatcher.analysis.core.LexicalEngineConfiguration;
import org.gcube.contentmanagement.lexicalmatcher.utils.FileTools;
import org.gcube.dataanalysis.ecoengine.datatypes.DatabaseType;
import org.gcube.dataanalysis.ecoengine.datatypes.StatisticalType;
import org.gcube.dataanalysis.ecoengine.datatypes.enumtypes.DatabaseParameters;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
@ -35,9 +38,9 @@ public class DatabaseFactory{
}
public static HashMap<String,VarCouple> getDefaultDatabaseConfiguration(String configurationFile) throws Exception {
public static List<StatisticalType> getDefaultDatabaseConfiguration(String configurationFile) throws Exception {
HashMap<String,VarCouple> defaultconfig = new HashMap<String, VarCouple>();
List<StatisticalType> defaultconfig = new ArrayList<StatisticalType>();
// take the configuration file
File fl = new File(configurationFile);
@ -53,15 +56,15 @@ public class DatabaseFactory{
Node currentnode = nodesIterator.next();
String element = currentnode.valueOf("@name");
if (element.equals("connection.driver_class"))
defaultconfig.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, currentnode.getText()));
defaultconfig.add(new DatabaseType(DatabaseParameters.DATABASEDRIVER, "DatabaseDriver", "db driver",currentnode.getText()));
if (element.equals("connection.url"))
defaultconfig.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, currentnode.getText()));
defaultconfig.add(new DatabaseType(DatabaseParameters.DATABASEURL, "DatabaseURL", "db url",currentnode.getText()));
if (element.equals("connection.username"))
defaultconfig.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, currentnode.getText()));
defaultconfig.add(new DatabaseType(DatabaseParameters.DATABASEUSERNAME, "DatabaseUserName", "db user name",currentnode.getText()));
if (element.equals("connection.password"))
defaultconfig.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, currentnode.getText()));
defaultconfig.add(new DatabaseType(DatabaseParameters.DATABASEPASSWORD, "DatabasePassword", "db password",currentnode.getText()));
if (element.equals("dialect"))
defaultconfig.put("DatabaseDialect", new VarCouple(VARTYPE.DATABASEDIALECT, currentnode.getText()));
defaultconfig.add(new DatabaseType(DatabaseParameters.DATABASEDIALECT, "DatabaseDialect", "db dialect",currentnode.getText()));
}
return defaultconfig;

View File

@ -19,20 +19,7 @@ public class TrainingSetsGenerator {
float threshold = 0.1f;
String configPath = "./cfg/";
public HashMap<String, VarCouple> getInputParameters() {
HashMap<String, VarCouple> parameters = new HashMap<String, VarCouple>();
parameters.put("casesTable", new VarCouple(VARTYPE.STRING, ""));
parameters.put("columnKeyName", new VarCouple(VARTYPE.STRING, ""));
parameters.put("DatabaseUserName", new VarCouple(VARTYPE.DATABASEUSERNAME, ""));
parameters.put("DatabasePassword", new VarCouple(VARTYPE.DATABASEPASSWORD, ""));
parameters.put("DatabaseURL", new VarCouple(VARTYPE.DATABASEURL, ""));
parameters.put("DatabaseDriver", new VarCouple(VARTYPE.DATABASEDRIVER, ""));
return parameters;
}
private int calculateNumberOfPoints(String table) {

View File

@ -1,22 +0,0 @@
package org.gcube.dataanalysis.ecoengine.utils;
public enum VARTYPE {
STRING,
EPR_LIST,
INFRA,
SERVICE,
DATABASEUSERNAME,
DATABASEPASSWORD,
DATABASEURL,
DATABASEDRIVER,
DATABASEDIALECT,
CONSTANT,
RANDOM,
HSPEN,
HCAF,
HSPEC,
OCCURRENCE,
MINMAXLAT,
FILE,
MAP
}

View File

@ -1,26 +0,0 @@
package org.gcube.dataanalysis.ecoengine.utils;
public class VarCouple {
VARTYPE first;
private String second;
public VarCouple(VARTYPE first, String second){
this.first = first;
this.second = second;
}
public String getSecond(){
return second;
}
public String getFirst(){
return first.toString();
}
public String toString(){
return "("+first+","+second+")";
}
}