git-svn-id: https://svn.d4science.research-infrastructures.eu/gcube/trunk/data-analysis/EcologicalEngineSmartExecutor@113924 82a268e6-3cf1-43bd-a215-b396298e98cf
This commit is contained in:
parent
129d834d62
commit
dd1e570c5c
|
@ -0,0 +1,178 @@
|
|||
set.seed(999) ## for same random sequence
|
||||
#require(hacks)
|
||||
|
||||
#setwd("C:/Users/Ye/Documents/Data poor fisheries/Martell Froese Method/")
|
||||
|
||||
## Read Data for stock, year=yr, catch=ct, and resilience=res. Expects space delimited file with header yr ct and years in integer and catch in real with decimal point
|
||||
## For example
|
||||
## stock res yr ct
|
||||
## cap-icel Medium 1984 1234.32
|
||||
|
||||
## filename <- "RAM_MSY.csv"
|
||||
##filename <- "ICESct2.csv"
|
||||
|
||||
cat("Step 1","\n")
|
||||
TestRUN <- F # if it is true, just run on the test samples, false will go for a formal run!
|
||||
|
||||
filename <- "D20.csv"
|
||||
outfile <- "CatchMSY_Output.csv"
|
||||
outfile2 <- paste("NonProcessedSpecies.csv",sep="")
|
||||
|
||||
#cdat <- read.csv2(filename, header=T, dec=".")
|
||||
cdat1 <- read.csv(filename)
|
||||
cat("\n", "File", filename, "read successfully","\n")
|
||||
|
||||
cat("Step 2","\n")
|
||||
if(file.exists("cdat.RData"))
|
||||
{load("cdat.RData")} else
|
||||
{
|
||||
|
||||
dim(cdat1)
|
||||
yrs=1950:2012
|
||||
|
||||
# to set NA as 0
|
||||
cdat1[is.na(cdat1)] <- 0
|
||||
nrow <- length(cdat1[,1])
|
||||
ndatColn <- length(cdat1[1,c(-1:-12)])
|
||||
rownames(cdat1) <- NULL
|
||||
|
||||
cdat <- NULL
|
||||
for(i in 1:nrow)
|
||||
{#i=1
|
||||
#a <- ctotal3[i,-1]
|
||||
tmp=data.frame(stock=rep(as.character(cdat1[i,"Stock_ID"]),ndatColn),
|
||||
species=rep(as.character(cdat1[i,"Scientific_name"]),ndatColn),
|
||||
yr=yrs,ct=unlist(c(cdat1[i,c(-1:-12)])),
|
||||
res=rep(cdat1[i,"ResilienceIndex"],ndatColn))
|
||||
|
||||
cdat <- rbind(cdat,tmp)
|
||||
#edit(cdat)
|
||||
}
|
||||
}
|
||||
|
||||
StockList=unique(as.character(cdat$stock))
|
||||
|
||||
colnames(cdat)
|
||||
|
||||
|
||||
#stock_id <- unique(as.character(cdat$stock))
|
||||
#??
|
||||
# stock_id <- "cod-2224" ## for selecting individual stocks
|
||||
# stock=stock_id
|
||||
#??
|
||||
|
||||
cat("Step 3","\n")
|
||||
|
||||
## FUNCTIONS are going to be used subsequently
|
||||
.schaefer <- function(theta)
|
||||
{
|
||||
with(as.list(theta), { ## for all combinations of ri & ki
|
||||
bt=vector()
|
||||
ell = 0 ## initialize ell
|
||||
J=0 #Ye
|
||||
for (j in startbt)
|
||||
{
|
||||
if(ell == 0)
|
||||
{
|
||||
bt[1]=j*k*exp(rnorm(1,0, sigR)) ## set biomass in first year
|
||||
for(i in 1:nyr) ## for all years in the time series
|
||||
{
|
||||
xt=rnorm(1,0, sigR)
|
||||
bt[i+1]=(bt[i]+r*bt[i]*(1-bt[i]/k)-ct[i])*exp(xt)
|
||||
## calculate biomass as function of previous year's biomass plus net production minus catch
|
||||
}
|
||||
|
||||
#Bernoulli likelihood, assign 0 or 1 to each combination of r and k
|
||||
ell = 0
|
||||
if(bt[nyr+1]/k>=lam1 && bt[nyr+1]/k <=lam2 && min(bt) > 0 && max(bt) <=k && bt[which(yr==interyr)]/k>=interbio[1] && bt[which(yr==interyr)]/k<=interbio[2])
|
||||
ell = 1
|
||||
J=j # Ye
|
||||
}
|
||||
}
|
||||
return(list(ell=ell,J=J)) # Ye adding J=J
|
||||
|
||||
|
||||
})
|
||||
}
|
||||
|
||||
sraMSY <-function(theta, N)
|
||||
{
|
||||
#This function conducts the stock reduction
|
||||
#analysis for N trials
|
||||
#args:
|
||||
# theta - a list object containing:
|
||||
# r (lower and upper bounds for r)
|
||||
# k (lower and upper bounds for k)
|
||||
# lambda (limits for current depletion)
|
||||
|
||||
|
||||
with(as.list(theta),
|
||||
{
|
||||
ri = exp(runif(N, log(r[1]), log(r[2]))) ## get N values between r[1] and r[2], assign to ri
|
||||
ki = exp(runif(N, log(k[1]), log(k[2]))) ## get N values between k[1] and k[2], assing to ki
|
||||
itheta=cbind(r=ri,k=ki, lam1=lambda[1],lam2=lambda[2], sigR=sigR)
|
||||
## assign ri, ki, and final biomass range to itheta
|
||||
M = apply(itheta,1,.schaefer) ## call Schaefer function with parameters in itheta
|
||||
i=1:N
|
||||
## prototype objective function
|
||||
get.ell=function(i) M[[i]]$ell
|
||||
ell = sapply(i, get.ell)
|
||||
get.J=function(i) M[[i]]$J # Ye
|
||||
J=sapply(i,get.J) # Ye
|
||||
return(list(r=ri,k=ki, ell=ell, J=J)) # Ye adding J=J
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
getBiomass <- function(r, k, j)
|
||||
{
|
||||
BT <- NULL
|
||||
bt=vector()
|
||||
for (v in 1:length(r))
|
||||
{
|
||||
bt[1]=j[v]*k[v]*exp(rnorm(1,0, sigR)) ## set biomass in first year
|
||||
for(i in 1:nyr) ## for all years in the time series
|
||||
{
|
||||
xt=rnorm(1,0, sigR)
|
||||
bt[i+1]=(bt[i]+r[v]*bt[i]*(1-bt[i]/k[v])-ct[i])*exp(xt)
|
||||
## calculate biomass as function of previous year's biomass plus net production minus catch
|
||||
}
|
||||
BT=rbind(BT, t(t(bt)))
|
||||
}
|
||||
return(BT)
|
||||
}
|
||||
|
||||
## The End of Functions section
|
||||
|
||||
cat("Step 4","\n")
|
||||
stockLoop <- StockList
|
||||
# randomly select stocks from randomly selected 5 area codes first
|
||||
if(TestRUN)
|
||||
{
|
||||
set.seed(999)
|
||||
AreaCodeList <- unique(cdat1$AREA_Code)
|
||||
sampledAC <- sample(AreaCodeList,size=5,replace=F)
|
||||
stockLoop <- cdat1[cdat1$AREA_Code %in% sampledAC,c("Stock_ID")]
|
||||
}
|
||||
|
||||
#setup counters
|
||||
counter1 <- 0
|
||||
counter2 <- 0
|
||||
|
||||
cat("Step 4","\n")
|
||||
## Loop through stocks
|
||||
#write.table("x",file=outfile,append = FALSE, row.names = FALSE,col.names=FALSE,sep=",")
|
||||
write.table("x",file=outfile2,append = FALSE, row.names = FALSE,col.names=FALSE,sep=",")
|
||||
|
||||
for(stock in stockLoop)
|
||||
{
|
||||
t0<-Sys.time()
|
||||
xr <- runif(1, 1.0, 10000)
|
||||
x1<-c(paste("processed",xr,sep=","))
|
||||
xr <- runif(1, 1.0, 10000)
|
||||
x2<-c(paste("non processed",xr,sep=","))
|
||||
#write.table(x1,file=outfile,append = T, row.names = FALSE,col.names=FALSE,sep=",")
|
||||
write.table(x2,file=outfile2,append = T, row.names = FALSE,col.names=FALSE,sep=",")
|
||||
|
||||
cat("Elapsed: ",Sys.time()-t0," \n")
|
||||
}
|
Loading…
Reference in New Issue