forked from D-Net/dnet-hadoop
[scholexplorer]
- Minor fix on SparkConvertRDDtoDataset -first implementation of retrieve datacite dump
This commit is contained in:
parent
e30e5ac8a8
commit
e5bff64f2e
|
@ -0,0 +1,54 @@
|
|||
package eu.dnetlib.dhp.sx.graph
|
||||
|
||||
import eu.dnetlib.dhp.application.AbstractScalaApplication
|
||||
import eu.dnetlib.dhp.schema.oaf.{Oaf, Result}
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
|
||||
import org.apache.spark.sql.functions.max
|
||||
import org.slf4j.Logger
|
||||
|
||||
class SparkRetrieveDataciteDelta (propertyPath:String, args:Array[String], log:Logger) extends AbstractScalaApplication(propertyPath, args, log:Logger) {
|
||||
|
||||
|
||||
def retrieveLastCollectedFrom(spark:SparkSession, entitiesPath:String):String = {
|
||||
log.info("Retrieve last entities collected From")
|
||||
|
||||
implicit val oafEncoder:Encoder[Result] = Encoders.kryo[Result]
|
||||
import spark.implicits._
|
||||
|
||||
val entitiesDS = spark.read.load(s"$entitiesPath/*").as[Result]
|
||||
|
||||
entitiesDS.filter(r => r.getDateofcollection!= null).map(_.getDateofcollection).select(max("value")).first.getString(0)
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Here all the spark applications runs this method
|
||||
* where the whole logic of the spark node is defined
|
||||
*/
|
||||
override def run(): Unit = {
|
||||
val sourcePath = parser.get("sourcePath")
|
||||
log.info(s"SourcePath is '$sourcePath'")
|
||||
|
||||
val datacitePath = parser.get("datacitePath")
|
||||
log.info(s"DatacitePath is '$datacitePath'")
|
||||
|
||||
|
||||
log.info("Retrieve last entities collected From")
|
||||
|
||||
implicit val oafEncoder:Encoder[Result] = Encoders.kryo[Result]
|
||||
|
||||
val lastCollectionDate = retrieveLastCollectedFrom(spark, s"$sourcePath/entities")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
}
|
|
@ -79,7 +79,7 @@
|
|||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.shuffle.partitions=20000
|
||||
--conf spark.sql.shuffle.partitions=30000
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
|
|
|
@ -2,12 +2,11 @@ package eu.dnetlib.dhp.sx.graph
|
|||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.schema.oaf.{OtherResearchProduct, Publication, Relation, Software,Dataset => OafDataset}
|
||||
import eu.dnetlib.dhp.schema.oaf.{OtherResearchProduct, Publication, Relation, Result, Software, Dataset => OafDataset}
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
object SparkConvertRDDtoDataset {
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
|
@ -40,31 +39,32 @@ object SparkConvertRDDtoDataset {
|
|||
|
||||
|
||||
log.info("Converting dataset")
|
||||
val rddDataset = spark.sparkContext.textFile(s"$sourcePath/dataset").map(s => mapper.readValue(s, classOf[OafDataset]))
|
||||
val rddDataset =spark.sparkContext.textFile(s"$sourcePath/dataset").map(s => mapper.readValue(s, classOf[OafDataset])).filter(r=> r.getDataInfo!= null && r.getDataInfo.getDeletedbyinference == false)
|
||||
spark.createDataset(rddDataset).as[OafDataset].write.mode(SaveMode.Overwrite).save(s"$entityPath/dataset")
|
||||
|
||||
|
||||
log.info("Converting publication")
|
||||
val rddPublication = spark.sparkContext.textFile(s"$sourcePath/publication").map(s => mapper.readValue(s, classOf[Publication]))
|
||||
val rddPublication =spark.sparkContext.textFile(s"$sourcePath/publication").map(s => mapper.readValue(s, classOf[Publication])).filter(r=> r.getDataInfo!= null && r.getDataInfo.getDeletedbyinference == false)
|
||||
spark.createDataset(rddPublication).as[Publication].write.mode(SaveMode.Overwrite).save(s"$entityPath/publication")
|
||||
|
||||
log.info("Converting software")
|
||||
val rddSoftware = spark.sparkContext.textFile(s"$sourcePath/software").map(s => mapper.readValue(s, classOf[Software]))
|
||||
val rddSoftware =spark.sparkContext.textFile(s"$sourcePath/software").map(s => mapper.readValue(s, classOf[Software])).filter(r=> r.getDataInfo!= null && r.getDataInfo.getDeletedbyinference == false)
|
||||
spark.createDataset(rddSoftware).as[Software].write.mode(SaveMode.Overwrite).save(s"$entityPath/software")
|
||||
|
||||
log.info("Converting otherresearchproduct")
|
||||
val rddOtherResearchProduct = spark.sparkContext.textFile(s"$sourcePath/otherresearchproduct").map(s => mapper.readValue(s, classOf[OtherResearchProduct]))
|
||||
val rddOtherResearchProduct =spark.sparkContext.textFile(s"$sourcePath/otherresearchproduct").map(s => mapper.readValue(s, classOf[OtherResearchProduct])).filter(r=> r.getDataInfo!= null && r.getDataInfo.getDeletedbyinference == false)
|
||||
spark.createDataset(rddOtherResearchProduct).as[OtherResearchProduct].write.mode(SaveMode.Overwrite).save(s"$entityPath/otherresearchproduct")
|
||||
|
||||
|
||||
log.info("Converting Relation")
|
||||
|
||||
|
||||
val relationSemanticFilter = List("cites", "iscitedby", "merges", "ismergedin")
|
||||
val relationSemanticFilter = List("cites", "iscitedby","merges", "ismergedin", "HasAmongTopNSimilarDocuments","IsAmongTopNSimilarDocuments" )
|
||||
|
||||
val rddRelation = spark.sparkContext.textFile(s"$sourcePath/relation")
|
||||
val rddRelation =spark.sparkContext.textFile(s"$sourcePath/relation")
|
||||
.map(s => mapper.readValue(s, classOf[Relation]))
|
||||
.filter(r => r.getSource.startsWith("50") && r.getTarget.startsWith("50"))
|
||||
.filter(r=> r.getDataInfo!= null && r.getDataInfo.getDeletedbyinference == false)
|
||||
.filter(r=> r.getSource.startsWith("50") && r.getTarget.startsWith("50"))
|
||||
.filter(r => !relationSemanticFilter.exists(k => k.equalsIgnoreCase(r.getRelClass)))
|
||||
spark.createDataset(rddRelation).as[Relation].write.mode(SaveMode.Overwrite).save(s"$relPath")
|
||||
|
||||
|
|
Loading…
Reference in New Issue