forked from D-Net/dnet-hadoop
Merge branch 'beta' into beta
This commit is contained in:
commit
cb3adb90f4
|
@ -28,7 +28,7 @@ public class HdfsSupport {
|
|||
* @param configuration Configuration of hadoop env
|
||||
*/
|
||||
public static boolean exists(String path, Configuration configuration) {
|
||||
logger.info("Removing path: {}", path);
|
||||
logger.info("Checking existence for path: {}", path);
|
||||
return rethrowAsRuntimeException(
|
||||
() -> {
|
||||
Path f = new Path(path);
|
||||
|
|
|
@ -27,8 +27,11 @@ public class GraphCleaningFunctions extends CleaningFunctions {
|
|||
public static final int ORCID_LEN = 19;
|
||||
public static final String CLEANING_REGEX = "(?:\\n|\\r|\\t)";
|
||||
public static final String INVALID_AUTHOR_REGEX = ".*deactivated.*";
|
||||
public static final String TITLE_FILTER_REGEX = "[.*test.*\\W\\d]";
|
||||
public static final int TITLE_FILTER_RESIDUAL_LENGTH = 10;
|
||||
|
||||
public static final String TITLE_TEST = "test";
|
||||
public static final String TITLE_FILTER_REGEX = String.format("(%s)|\\W|\\d", TITLE_TEST);
|
||||
|
||||
public static final int TITLE_FILTER_RESIDUAL_LENGTH = 5;
|
||||
|
||||
public static <T extends Oaf> T fixVocabularyNames(T value) {
|
||||
if (value instanceof Datasource) {
|
||||
|
@ -195,10 +198,16 @@ public class GraphCleaningFunctions extends CleaningFunctions {
|
|||
final String title = sp
|
||||
.getValue()
|
||||
.toLowerCase();
|
||||
final String residual = Unidecode
|
||||
.decode(title)
|
||||
.replaceAll(TITLE_FILTER_REGEX, "");
|
||||
return residual.length() > TITLE_FILTER_RESIDUAL_LENGTH;
|
||||
final String decoded = Unidecode.decode(title);
|
||||
|
||||
if (StringUtils.contains(decoded, TITLE_TEST)) {
|
||||
return decoded
|
||||
.replaceAll(TITLE_FILTER_REGEX, "")
|
||||
.length() > TITLE_FILTER_RESIDUAL_LENGTH;
|
||||
}
|
||||
return !decoded
|
||||
.replaceAll("\\W|\\d", "")
|
||||
.isEmpty();
|
||||
})
|
||||
.map(GraphCleaningFunctions::cleanValue)
|
||||
.collect(Collectors.toList()));
|
||||
|
|
|
@ -4,19 +4,19 @@ package eu.dnetlib.dhp.utils;
|
|||
import java.io.*;
|
||||
import java.nio.charset.StandardCharsets;
|
||||
import java.security.MessageDigest;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Properties;
|
||||
import java.util.zip.GZIPInputStream;
|
||||
import java.util.zip.GZIPOutputStream;
|
||||
import java.util.*;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
import org.apache.commons.codec.binary.Base64;
|
||||
import org.apache.commons.codec.binary.Base64OutputStream;
|
||||
import org.apache.commons.codec.binary.Hex;
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.commons.lang3.StringUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.http.client.methods.CloseableHttpResponse;
|
||||
import org.apache.http.client.methods.HttpGet;
|
||||
import org.apache.http.impl.client.CloseableHttpClient;
|
||||
import org.apache.http.impl.client.HttpClients;
|
||||
import org.apache.spark.sql.Dataset;
|
||||
import org.apache.spark.sql.SaveMode;
|
||||
import org.slf4j.Logger;
|
||||
|
@ -26,6 +26,8 @@ import com.fasterxml.jackson.databind.ObjectMapper;
|
|||
import com.google.common.collect.Maps;
|
||||
import com.jayway.jsonpath.JsonPath;
|
||||
|
||||
import eu.dnetlib.dhp.schema.mdstore.MDStoreWithInfo;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.CleaningFunctions;
|
||||
import net.minidev.json.JSONArray;
|
||||
import scala.collection.JavaConverters;
|
||||
import scala.collection.Seq;
|
||||
|
@ -52,10 +54,56 @@ public class DHPUtils {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieves from the metadata store manager application the list of paths associated with mdstores characterized
|
||||
* by he given format, layout, interpretation
|
||||
* @param mdstoreManagerUrl the URL of the mdstore manager service
|
||||
* @param format the mdstore format
|
||||
* @param layout the mdstore layout
|
||||
* @param interpretation the mdstore interpretation
|
||||
* @param includeEmpty include Empty mdstores
|
||||
* @return the set of hdfs paths
|
||||
* @throws IOException in case of HTTP communication issues
|
||||
*/
|
||||
public static Set<String> mdstorePaths(final String mdstoreManagerUrl,
|
||||
final String format,
|
||||
final String layout,
|
||||
final String interpretation,
|
||||
boolean includeEmpty) throws IOException {
|
||||
final String url = mdstoreManagerUrl + "/mdstores/";
|
||||
final ObjectMapper objectMapper = new ObjectMapper();
|
||||
|
||||
final HttpGet req = new HttpGet(url);
|
||||
|
||||
try (final CloseableHttpClient client = HttpClients.createDefault()) {
|
||||
try (final CloseableHttpResponse response = client.execute(req)) {
|
||||
final String json = IOUtils.toString(response.getEntity().getContent());
|
||||
final MDStoreWithInfo[] mdstores = objectMapper.readValue(json, MDStoreWithInfo[].class);
|
||||
return Arrays
|
||||
.stream(mdstores)
|
||||
.filter(md -> md.getFormat().equalsIgnoreCase(format))
|
||||
.filter(md -> md.getLayout().equalsIgnoreCase(layout))
|
||||
.filter(md -> md.getInterpretation().equalsIgnoreCase(interpretation))
|
||||
.filter(md -> StringUtils.isNotBlank(md.getHdfsPath()))
|
||||
.filter(md -> StringUtils.isNotBlank(md.getCurrentVersion()))
|
||||
.filter(md -> includeEmpty || md.getSize() > 0)
|
||||
.map(md -> md.getHdfsPath() + "/" + md.getCurrentVersion() + "/store")
|
||||
.collect(Collectors.toSet());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static String generateIdentifier(final String originalId, final String nsPrefix) {
|
||||
return String.format("%s::%s", nsPrefix, DHPUtils.md5(originalId));
|
||||
}
|
||||
|
||||
public static String generateUnresolvedIdentifier(final String pid, final String pidType) {
|
||||
|
||||
final String cleanedPid = CleaningFunctions.normalizePidValue(pidType, pid);
|
||||
|
||||
return String.format("unresolved::%s::%s", cleanedPid, pidType.toLowerCase().trim());
|
||||
}
|
||||
|
||||
public static String getJPathString(final String jsonPath, final String json) {
|
||||
try {
|
||||
Object o = JsonPath.read(json, jsonPath);
|
||||
|
|
|
@ -107,7 +107,7 @@
|
|||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.shuffle.partitions=2560
|
||||
--conf spark.sql.shuffle.partitions=5000
|
||||
</spark-opts>
|
||||
<arg>--inputGraphTablePath</arg><arg>${inputGraphRootPath}/publication</arg>
|
||||
<arg>--graphTableClassName</arg><arg>eu.dnetlib.dhp.schema.oaf.Publication</arg>
|
||||
|
@ -159,7 +159,7 @@
|
|||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.shuffle.partitions=2560
|
||||
--conf spark.sql.shuffle.partitions=5000
|
||||
</spark-opts>
|
||||
<arg>--inputGraphTablePath</arg><arg>${workingDir}/publication</arg>
|
||||
<arg>--graphTableClassName</arg><arg>eu.dnetlib.dhp.schema.oaf.Publication</arg>
|
||||
|
|
|
@ -99,7 +99,7 @@
|
|||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.shuffle.partitions=2560
|
||||
--conf spark.sql.shuffle.partitions=5000
|
||||
</spark-opts>
|
||||
<arg>--inputGraphTablePath</arg><arg>${inputGraphRootPath}/relation</arg>
|
||||
<arg>--graphTableClassName</arg><arg>eu.dnetlib.dhp.schema.oaf.Relation</arg>
|
||||
|
|
|
@ -29,6 +29,13 @@
|
|||
<goal>testCompile</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
<execution>
|
||||
<id>scala-doc</id>
|
||||
<phase>process-resources</phase> <!-- or wherever -->
|
||||
<goals>
|
||||
<goal>doc</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
<configuration>
|
||||
<scalaVersion>${scala.version}</scalaVersion>
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import java.util.Optional;
|
||||
|
||||
import org.apache.spark.api.java.function.MapFunction;
|
||||
import org.apache.spark.sql.Dataset;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
|
||||
public class Constants {
|
||||
|
||||
public static final String DOI = "doi";
|
||||
|
||||
public static final String UPDATE_DATA_INFO_TYPE = "update";
|
||||
public static final String UPDATE_SUBJECT_FOS_CLASS_ID = "subject:fos";
|
||||
public static final String UPDATE_CLASS_NAME = "Inferred by OpenAIRE";
|
||||
public static final String UPDATE_MEASURE_BIP_CLASS_ID = "measure:bip";
|
||||
|
||||
public static final String FOS_CLASS_ID = "FOS";
|
||||
public static final String FOS_CLASS_NAME = "Fields of Science and Technology classification";
|
||||
|
||||
public static final String NULL = "NULL";
|
||||
|
||||
public static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
|
||||
private Constants() {
|
||||
}
|
||||
|
||||
public static Boolean isSparkSessionManaged(ArgumentApplicationParser parser) {
|
||||
return Optional
|
||||
.ofNullable(parser.get("isSparkSessionManaged"))
|
||||
.map(Boolean::valueOf)
|
||||
.orElse(Boolean.TRUE);
|
||||
}
|
||||
|
||||
public static <R> Dataset<R> readPath(
|
||||
SparkSession spark, String inputPath, Class<R> clazz) {
|
||||
return spark
|
||||
.read()
|
||||
.textFile(inputPath)
|
||||
.map((MapFunction<String, R>) value -> OBJECT_MAPPER.readValue(value, clazz), Encoders.bean(clazz));
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,77 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.InputStreamReader;
|
||||
import java.io.Serializable;
|
||||
import java.util.Objects;
|
||||
import java.util.Optional;
|
||||
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.common.collection.GetCSV;
|
||||
|
||||
public class GetFOSData implements Serializable {
|
||||
|
||||
private static final Logger log = LoggerFactory.getLogger(GetFOSData.class);
|
||||
|
||||
public static final char DEFAULT_DELIMITER = '\t';
|
||||
|
||||
public static void main(final String[] args) throws Exception {
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(
|
||||
IOUtils
|
||||
.toString(
|
||||
Objects
|
||||
.requireNonNull(
|
||||
GetFOSData.class
|
||||
.getResourceAsStream(
|
||||
"/eu/dnetlib/dhp/actionmanager/createunresolvedentities/get_fos_parameters.json"))));
|
||||
|
||||
parser.parseArgument(args);
|
||||
|
||||
// the path where the original fos csv file is stored
|
||||
final String sourcePath = parser.get("sourcePath");
|
||||
log.info("sourcePath {}", sourcePath);
|
||||
|
||||
// the path where to put the file as json
|
||||
final String outputPath = parser.get("outputPath");
|
||||
log.info("outputPath {}", outputPath);
|
||||
|
||||
final String hdfsNameNode = parser.get("hdfsNameNode");
|
||||
log.info("hdfsNameNode {}", hdfsNameNode);
|
||||
|
||||
final String classForName = parser.get("classForName");
|
||||
log.info("classForName {}", classForName);
|
||||
|
||||
final char delimiter = Optional
|
||||
.ofNullable(parser.get("delimiter"))
|
||||
.map(s -> s.charAt(0))
|
||||
.orElse(DEFAULT_DELIMITER);
|
||||
log.info("delimiter {}", delimiter);
|
||||
|
||||
Configuration conf = new Configuration();
|
||||
conf.set("fs.defaultFS", hdfsNameNode);
|
||||
|
||||
FileSystem fileSystem = FileSystem.get(conf);
|
||||
|
||||
new GetFOSData().doRewrite(sourcePath, outputPath, classForName, delimiter, fileSystem);
|
||||
|
||||
}
|
||||
|
||||
public void doRewrite(String inputPath, String outputFile, String classForName, char delimiter, FileSystem fs)
|
||||
throws IOException, ClassNotFoundException {
|
||||
|
||||
// reads the csv and writes it as its json equivalent
|
||||
try (InputStreamReader reader = new InputStreamReader(fs.open(new Path(inputPath)))) {
|
||||
GetCSV.getCsv(fs, reader, outputFile, classForName, delimiter);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,145 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import static eu.dnetlib.dhp.actionmanager.createunresolvedentities.Constants.*;
|
||||
import static eu.dnetlib.dhp.actionmanager.createunresolvedentities.Constants.UPDATE_CLASS_NAME;
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.hadoop.hdfs.client.HdfsUtils;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.api.java.function.MapFunction;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SaveMode;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.actionmanager.createunresolvedentities.model.BipDeserialize;
|
||||
import eu.dnetlib.dhp.actionmanager.createunresolvedentities.model.BipScore;
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.common.HdfsSupport;
|
||||
import eu.dnetlib.dhp.schema.common.ModelConstants;
|
||||
import eu.dnetlib.dhp.schema.oaf.KeyValue;
|
||||
import eu.dnetlib.dhp.schema.oaf.Measure;
|
||||
import eu.dnetlib.dhp.schema.oaf.Result;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils;
|
||||
import eu.dnetlib.dhp.utils.DHPUtils;
|
||||
|
||||
public class PrepareBipFinder implements Serializable {
|
||||
|
||||
private static final Logger log = LoggerFactory.getLogger(PrepareBipFinder.class);
|
||||
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
|
||||
public static <I extends Result> void main(String[] args) throws Exception {
|
||||
|
||||
String jsonConfiguration = IOUtils
|
||||
.toString(
|
||||
PrepareBipFinder.class
|
||||
.getResourceAsStream(
|
||||
"/eu/dnetlib/dhp/actionmanager/createunresolvedentities/prepare_parameters.json"));
|
||||
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(jsonConfiguration);
|
||||
|
||||
parser.parseArgument(args);
|
||||
|
||||
Boolean isSparkSessionManaged = Optional
|
||||
.ofNullable(parser.get("isSparkSessionManaged"))
|
||||
.map(Boolean::valueOf)
|
||||
.orElse(Boolean.TRUE);
|
||||
|
||||
log.info("isSparkSessionManaged: {}", isSparkSessionManaged);
|
||||
|
||||
final String sourcePath = parser.get("sourcePath");
|
||||
log.info("sourcePath {}: ", sourcePath);
|
||||
|
||||
final String outputPath = parser.get("outputPath");
|
||||
log.info("outputPath {}: ", outputPath);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
|
||||
runWithSparkSession(
|
||||
conf,
|
||||
isSparkSessionManaged,
|
||||
spark -> {
|
||||
HdfsSupport.remove(outputPath, spark.sparkContext().hadoopConfiguration());
|
||||
prepareResults(spark, sourcePath, outputPath);
|
||||
});
|
||||
}
|
||||
|
||||
private static <I extends Result> void prepareResults(SparkSession spark, String inputPath, String outputPath) {
|
||||
|
||||
final JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<BipDeserialize> bipDeserializeJavaRDD = sc
|
||||
.textFile(inputPath)
|
||||
.map(item -> OBJECT_MAPPER.readValue(item, BipDeserialize.class));
|
||||
|
||||
spark
|
||||
.createDataset(bipDeserializeJavaRDD.flatMap(entry -> entry.keySet().stream().map(key -> {
|
||||
BipScore bs = new BipScore();
|
||||
bs.setId(key);
|
||||
bs.setScoreList(entry.get(key));
|
||||
return bs;
|
||||
}).collect(Collectors.toList()).iterator()).rdd(), Encoders.bean(BipScore.class))
|
||||
.map((MapFunction<BipScore, Result>) v -> {
|
||||
Result r = new Result();
|
||||
|
||||
r.setId(DHPUtils.generateUnresolvedIdentifier(v.getId(), DOI));
|
||||
r.setMeasures(getMeasure(v));
|
||||
return r;
|
||||
}, Encoders.bean(Result.class))
|
||||
.write()
|
||||
.mode(SaveMode.Overwrite)
|
||||
.option("compression", "gzip")
|
||||
.json(outputPath + "/bip");
|
||||
}
|
||||
|
||||
private static List<Measure> getMeasure(BipScore value) {
|
||||
return value
|
||||
.getScoreList()
|
||||
.stream()
|
||||
.map(score -> {
|
||||
Measure m = new Measure();
|
||||
m.setId(score.getId());
|
||||
m
|
||||
.setUnit(
|
||||
score
|
||||
.getUnit()
|
||||
.stream()
|
||||
.map(unit -> {
|
||||
KeyValue kv = new KeyValue();
|
||||
kv.setValue(unit.getValue());
|
||||
kv.setKey(unit.getKey());
|
||||
kv
|
||||
.setDataInfo(
|
||||
OafMapperUtils
|
||||
.dataInfo(
|
||||
false,
|
||||
UPDATE_DATA_INFO_TYPE,
|
||||
true,
|
||||
false,
|
||||
OafMapperUtils
|
||||
.qualifier(
|
||||
UPDATE_MEASURE_BIP_CLASS_ID,
|
||||
UPDATE_CLASS_NAME,
|
||||
ModelConstants.DNET_PROVENANCE_ACTIONS,
|
||||
ModelConstants.DNET_PROVENANCE_ACTIONS),
|
||||
""));
|
||||
return kv;
|
||||
})
|
||||
.collect(Collectors.toList()));
|
||||
return m;
|
||||
})
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
}
|
|
@ -0,0 +1,133 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import static eu.dnetlib.dhp.actionmanager.createunresolvedentities.Constants.*;
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.*;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.function.FlatMapFunction;
|
||||
import org.apache.spark.api.java.function.MapFunction;
|
||||
import org.apache.spark.sql.Dataset;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SaveMode;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import eu.dnetlib.dhp.actionmanager.createunresolvedentities.model.FOSDataModel;
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.schema.common.ModelConstants;
|
||||
import eu.dnetlib.dhp.schema.oaf.Result;
|
||||
import eu.dnetlib.dhp.schema.oaf.StructuredProperty;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils;
|
||||
import eu.dnetlib.dhp.utils.DHPUtils;
|
||||
|
||||
public class PrepareFOSSparkJob implements Serializable {
|
||||
private static final Logger log = LoggerFactory.getLogger(PrepareFOSSparkJob.class);
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
String jsonConfiguration = IOUtils
|
||||
.toString(
|
||||
PrepareFOSSparkJob.class
|
||||
.getResourceAsStream(
|
||||
"/eu/dnetlib/dhp/actionmanager/createunresolvedentities/prepare_parameters.json"));
|
||||
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(jsonConfiguration);
|
||||
|
||||
parser.parseArgument(args);
|
||||
|
||||
Boolean isSparkSessionManaged = isSparkSessionManaged(parser);
|
||||
log.info("isSparkSessionManaged: {}", isSparkSessionManaged);
|
||||
|
||||
String sourcePath = parser.get("sourcePath");
|
||||
log.info("sourcePath: {}", sourcePath);
|
||||
|
||||
final String outputPath = parser.get("outputPath");
|
||||
log.info("outputPath: {}", outputPath);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
runWithSparkSession(
|
||||
conf,
|
||||
isSparkSessionManaged,
|
||||
spark -> {
|
||||
distributeFOSdois(
|
||||
spark,
|
||||
sourcePath,
|
||||
|
||||
outputPath);
|
||||
});
|
||||
}
|
||||
|
||||
private static void distributeFOSdois(SparkSession spark, String sourcePath, String outputPath) {
|
||||
Dataset<FOSDataModel> fosDataset = readPath(spark, sourcePath, FOSDataModel.class);
|
||||
|
||||
fosDataset.flatMap((FlatMapFunction<FOSDataModel, FOSDataModel>) v -> {
|
||||
List<FOSDataModel> fosList = new ArrayList<>();
|
||||
final String level1 = v.getLevel1();
|
||||
final String level2 = v.getLevel2();
|
||||
final String level3 = v.getLevel3();
|
||||
Arrays
|
||||
.stream(v.getDoi().split("\u0002"))
|
||||
.forEach(d -> fosList.add(FOSDataModel.newInstance(d, level1, level2, level3)));
|
||||
return fosList.iterator();
|
||||
}, Encoders.bean(FOSDataModel.class))
|
||||
.map((MapFunction<FOSDataModel, Result>) value -> {
|
||||
Result r = new Result();
|
||||
r.setId(DHPUtils.generateUnresolvedIdentifier(value.getDoi(), DOI));
|
||||
r.setSubject(getSubjects(value));
|
||||
return r;
|
||||
}, Encoders.bean(Result.class))
|
||||
.write()
|
||||
.mode(SaveMode.Overwrite)
|
||||
.option("compression", "gzip")
|
||||
.json(outputPath + "/fos");
|
||||
}
|
||||
|
||||
private static List<StructuredProperty> getSubjects(FOSDataModel fos) {
|
||||
return Arrays
|
||||
.asList(getSubject(fos.getLevel1()), getSubject(fos.getLevel2()), getSubject(fos.getLevel3()))
|
||||
.stream()
|
||||
.filter(Objects::nonNull)
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
|
||||
private static StructuredProperty getSubject(String sbj) {
|
||||
if (sbj.equals(NULL))
|
||||
return null;
|
||||
StructuredProperty sp = new StructuredProperty();
|
||||
sp.setValue(sbj);
|
||||
sp
|
||||
.setQualifier(
|
||||
OafMapperUtils
|
||||
.qualifier(
|
||||
FOS_CLASS_ID,
|
||||
FOS_CLASS_NAME,
|
||||
ModelConstants.DNET_SUBJECT_TYPOLOGIES,
|
||||
ModelConstants.DNET_SUBJECT_TYPOLOGIES));
|
||||
sp
|
||||
.setDataInfo(
|
||||
OafMapperUtils
|
||||
.dataInfo(
|
||||
false,
|
||||
UPDATE_DATA_INFO_TYPE,
|
||||
true,
|
||||
false,
|
||||
OafMapperUtils
|
||||
.qualifier(
|
||||
UPDATE_SUBJECT_FOS_CLASS_ID,
|
||||
UPDATE_CLASS_NAME,
|
||||
ModelConstants.DNET_PROVENANCE_ACTIONS,
|
||||
ModelConstants.DNET_PROVENANCE_ACTIONS),
|
||||
""));
|
||||
|
||||
return sp;
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,79 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import static eu.dnetlib.dhp.actionmanager.createunresolvedentities.Constants.*;
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.function.MapFunction;
|
||||
import org.apache.spark.api.java.function.MapGroupsFunction;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SaveMode;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.schema.oaf.Result;
|
||||
|
||||
public class SparkSaveUnresolved implements Serializable {
|
||||
private static final Logger log = LoggerFactory.getLogger(PrepareFOSSparkJob.class);
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
String jsonConfiguration = IOUtils
|
||||
.toString(
|
||||
PrepareFOSSparkJob.class
|
||||
.getResourceAsStream(
|
||||
"/eu/dnetlib/dhp/actionmanager/createunresolvedentities/produce_unresolved_parameters.json"));
|
||||
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(jsonConfiguration);
|
||||
|
||||
parser.parseArgument(args);
|
||||
|
||||
Boolean isSparkSessionManaged = isSparkSessionManaged(parser);
|
||||
log.info("isSparkSessionManaged: {}", isSparkSessionManaged);
|
||||
|
||||
String sourcePath = parser.get("sourcePath");
|
||||
log.info("sourcePath: {}", sourcePath);
|
||||
|
||||
final String outputPath = parser.get("outputPath");
|
||||
log.info("outputPath: {}", outputPath);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
runWithSparkSession(
|
||||
conf,
|
||||
isSparkSessionManaged,
|
||||
spark -> {
|
||||
saveUnresolved(
|
||||
spark,
|
||||
sourcePath,
|
||||
|
||||
outputPath);
|
||||
});
|
||||
}
|
||||
|
||||
private static void saveUnresolved(SparkSession spark, String sourcePath, String outputPath) {
|
||||
|
||||
spark
|
||||
.read()
|
||||
.textFile(sourcePath + "/*")
|
||||
.map(
|
||||
(MapFunction<String, Result>) l -> OBJECT_MAPPER.readValue(l, Result.class),
|
||||
Encoders.bean(Result.class))
|
||||
.groupByKey((MapFunction<Result, String>) r -> r.getId(), Encoders.STRING())
|
||||
.mapGroups((MapGroupsFunction<String, Result, Result>) (k, it) -> {
|
||||
Result ret = it.next();
|
||||
it.forEachRemaining(r -> ret.mergeFrom(r));
|
||||
return ret;
|
||||
}, Encoders.bean(Result.class))
|
||||
.write()
|
||||
.mode(SaveMode.Overwrite)
|
||||
.option("compression", "gzip")
|
||||
.json(outputPath);
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Class that maps the model of the bipFinder! input data.
|
||||
* Only needed for deserialization purposes
|
||||
*/
|
||||
|
||||
public class BipDeserialize extends HashMap<String, List<Score>> implements Serializable {
|
||||
|
||||
public BipDeserialize() {
|
||||
super();
|
||||
}
|
||||
|
||||
public List<Score> get(String key) {
|
||||
|
||||
if (super.get(key) == null) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
return super.get(key);
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,30 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Rewriting of the bipFinder input data by extracting the identifier of the result (doi)
|
||||
*/
|
||||
|
||||
public class BipScore implements Serializable {
|
||||
private String id; // doi
|
||||
private List<Score> scoreList; // unit as given in the inputfile
|
||||
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
public void setId(String id) {
|
||||
this.id = id;
|
||||
}
|
||||
|
||||
public List<Score> getScoreList() {
|
||||
return scoreList;
|
||||
}
|
||||
|
||||
public void setScoreList(List<Score> scoreList) {
|
||||
this.scoreList = scoreList;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
import com.opencsv.bean.CsvBindByPosition;
|
||||
|
||||
public class FOSDataModel implements Serializable {
|
||||
@CsvBindByPosition(position = 1)
|
||||
// @CsvBindByName(column = "doi")
|
||||
private String doi;
|
||||
|
||||
@CsvBindByPosition(position = 2)
|
||||
// @CsvBindByName(column = "level1")
|
||||
private String level1;
|
||||
|
||||
@CsvBindByPosition(position = 3)
|
||||
// @CsvBindByName(column = "level2")
|
||||
private String level2;
|
||||
|
||||
@CsvBindByPosition(position = 4)
|
||||
// @CsvBindByName(column = "level3")
|
||||
private String level3;
|
||||
|
||||
public FOSDataModel() {
|
||||
|
||||
}
|
||||
|
||||
public FOSDataModel(String doi, String level1, String level2, String level3) {
|
||||
this.doi = doi;
|
||||
this.level1 = level1;
|
||||
this.level2 = level2;
|
||||
this.level3 = level3;
|
||||
}
|
||||
|
||||
public static FOSDataModel newInstance(String d, String level1, String level2, String level3) {
|
||||
return new FOSDataModel(d, level1, level2, level3);
|
||||
}
|
||||
|
||||
public String getDoi() {
|
||||
return doi;
|
||||
}
|
||||
|
||||
public void setDoi(String doi) {
|
||||
this.doi = doi;
|
||||
}
|
||||
|
||||
public String getLevel1() {
|
||||
return level1;
|
||||
}
|
||||
|
||||
public void setLevel1(String level1) {
|
||||
this.level1 = level1;
|
||||
}
|
||||
|
||||
public String getLevel2() {
|
||||
return level2;
|
||||
}
|
||||
|
||||
public void setLevel2(String level2) {
|
||||
this.level2 = level2;
|
||||
}
|
||||
|
||||
public String getLevel3() {
|
||||
return level3;
|
||||
}
|
||||
|
||||
public void setLevel3(String level3) {
|
||||
this.level3 = level3;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,26 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
public class KeyValue implements Serializable {
|
||||
|
||||
private String key;
|
||||
private String value;
|
||||
|
||||
public String getKey() {
|
||||
return key;
|
||||
}
|
||||
|
||||
public void setKey(String key) {
|
||||
this.key = key;
|
||||
}
|
||||
|
||||
public String getValue() {
|
||||
return value;
|
||||
}
|
||||
|
||||
public void setValue(String value) {
|
||||
this.value = value;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,30 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities.model;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* represents the score in the input file
|
||||
*/
|
||||
public class Score implements Serializable {
|
||||
|
||||
private String id;
|
||||
private List<KeyValue> unit;
|
||||
|
||||
public String getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
public void setId(String id) {
|
||||
this.id = id;
|
||||
}
|
||||
|
||||
public List<KeyValue> getUnit() {
|
||||
return unit;
|
||||
}
|
||||
|
||||
public void setUnit(List<KeyValue> unit) {
|
||||
this.unit = unit;
|
||||
}
|
||||
}
|
|
@ -1,41 +0,0 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf
|
||||
import org.apache.hadoop.io.Text
|
||||
import org.apache.hadoop.io.compress.GzipCodec
|
||||
import org.apache.hadoop.mapred.SequenceFileOutputFormat
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
import scala.io.Source
|
||||
|
||||
object ExportActionSetJobNode {
|
||||
|
||||
val log: Logger = LoggerFactory.getLogger(ExportActionSetJobNode.getClass)
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
val conf = new SparkConf
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/actionmanager/datacite/exportDataset_parameters.json")).mkString)
|
||||
parser.parseArgument(args)
|
||||
val master = parser.get("master")
|
||||
val sourcePath = parser.get("sourcePath")
|
||||
val targetPath = parser.get("targetPath")
|
||||
|
||||
val spark: SparkSession = SparkSession.builder().config(conf)
|
||||
.appName(ExportActionSetJobNode.getClass.getSimpleName)
|
||||
.master(master)
|
||||
.getOrCreate()
|
||||
implicit val resEncoder: Encoder[Oaf] = Encoders.kryo[Oaf]
|
||||
implicit val tEncoder:Encoder[(String,String)] = Encoders.tuple(Encoders.STRING,Encoders.STRING)
|
||||
|
||||
spark.read.load(sourcePath).as[Oaf]
|
||||
.map(o =>DataciteToOAFTransformation.toActionSet(o))
|
||||
.filter(o => o!= null)
|
||||
.rdd.map(s => (new Text(s._1), new Text(s._2))).saveAsHadoopFile(s"$targetPath", classOf[Text], classOf[Text], classOf[SequenceFileOutputFormat[Text,Text]], classOf[GzipCodec])
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -1,46 +0,0 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.common.vocabulary.VocabularyGroup
|
||||
import eu.dnetlib.dhp.schema.mdstore.MetadataRecord
|
||||
import eu.dnetlib.dhp.schema.oaf.{Oaf, Result}
|
||||
import eu.dnetlib.dhp.utils.ISLookupClientFactory
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Dataset, Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
import scala.io.Source
|
||||
|
||||
object FilterCrossrefEntitiesSpark {
|
||||
|
||||
val log: Logger = LoggerFactory.getLogger(getClass.getClass)
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
val conf = new SparkConf
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/actionmanager/datacite/filter_crossref_param.json")).mkString)
|
||||
parser.parseArgument(args)
|
||||
val master = parser.get("master")
|
||||
val sourcePath = parser.get("sourcePath")
|
||||
log.info("sourcePath: {}", sourcePath)
|
||||
val targetPath = parser.get("targetPath")
|
||||
log.info("targetPath: {}", targetPath)
|
||||
|
||||
|
||||
|
||||
val spark: SparkSession = SparkSession.builder().config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master(master)
|
||||
.getOrCreate()
|
||||
|
||||
|
||||
|
||||
implicit val oafEncoder: Encoder[Oaf] = Encoders.kryo[Oaf]
|
||||
implicit val resEncoder: Encoder[Result] = Encoders.kryo[Result]
|
||||
|
||||
val d:Dataset[Oaf]= spark.read.load(sourcePath).as[Oaf]
|
||||
|
||||
d.filter(r => r.isInstanceOf[Result]).map(r => r.asInstanceOf[Result]).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,181 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.opencitations;
|
||||
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.Serializable;
|
||||
import java.util.*;
|
||||
|
||||
import org.apache.commons.cli.ParseException;
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.function.FilterFunction;
|
||||
import org.apache.spark.api.java.function.FlatMapFunction;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.schema.action.AtomicAction;
|
||||
import eu.dnetlib.dhp.schema.common.ModelConstants;
|
||||
import eu.dnetlib.dhp.schema.common.ModelSupport;
|
||||
import eu.dnetlib.dhp.schema.oaf.*;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.CleaningFunctions;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.IdentifierFactory;
|
||||
import scala.Tuple2;
|
||||
|
||||
public class CreateActionSetSparkJob implements Serializable {
|
||||
public static final String OPENCITATIONS_CLASSID = "sysimport:crosswalk:opencitations";
|
||||
public static final String OPENCITATIONS_CLASSNAME = "Imported from OpenCitations";
|
||||
private static final String ID_PREFIX = "50|doi_________::";
|
||||
private static final String TRUST = "0.91";
|
||||
|
||||
private static final Logger log = LoggerFactory.getLogger(CreateActionSetSparkJob.class);
|
||||
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
|
||||
public static void main(final String[] args) throws IOException, ParseException {
|
||||
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(
|
||||
IOUtils
|
||||
.toString(
|
||||
Objects
|
||||
.requireNonNull(
|
||||
CreateActionSetSparkJob.class
|
||||
.getResourceAsStream(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/as_parameters.json"))));
|
||||
|
||||
parser.parseArgument(args);
|
||||
|
||||
Boolean isSparkSessionManaged = Optional
|
||||
.ofNullable(parser.get("isSparkSessionManaged"))
|
||||
.map(Boolean::valueOf)
|
||||
.orElse(Boolean.TRUE);
|
||||
|
||||
log.info("isSparkSessionManaged: {}", isSparkSessionManaged);
|
||||
|
||||
final String inputPath = parser.get("inputPath");
|
||||
log.info("inputPath {}", inputPath.toString());
|
||||
|
||||
final String outputPath = parser.get("outputPath");
|
||||
log.info("outputPath {}", outputPath);
|
||||
|
||||
final boolean shouldDuplicateRels = Optional
|
||||
.ofNullable(parser.get("shouldDuplicateRels"))
|
||||
.map(Boolean::valueOf)
|
||||
.orElse(Boolean.FALSE);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
runWithSparkSession(
|
||||
conf,
|
||||
isSparkSessionManaged,
|
||||
spark -> {
|
||||
extractContent(spark, inputPath, outputPath, shouldDuplicateRels);
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
private static void extractContent(SparkSession spark, String inputPath, String outputPath,
|
||||
boolean shouldDuplicateRels) {
|
||||
spark
|
||||
.sqlContext()
|
||||
.createDataset(spark.sparkContext().textFile(inputPath + "/*", 6000), Encoders.STRING())
|
||||
.flatMap(
|
||||
(FlatMapFunction<String, Relation>) value -> createRelation(value, shouldDuplicateRels).iterator(),
|
||||
Encoders.bean(Relation.class))
|
||||
.filter((FilterFunction<Relation>) value -> value != null)
|
||||
.toJavaRDD()
|
||||
.map(p -> new AtomicAction(p.getClass(), p))
|
||||
.mapToPair(
|
||||
aa -> new Tuple2<>(new Text(aa.getClazz().getCanonicalName()),
|
||||
new Text(OBJECT_MAPPER.writeValueAsString(aa))))
|
||||
.saveAsHadoopFile(outputPath, Text.class, Text.class, SequenceFileOutputFormat.class);
|
||||
|
||||
}
|
||||
|
||||
private static List<Relation> createRelation(String value, boolean duplicate) {
|
||||
String[] line = value.split(",");
|
||||
if (!line[1].startsWith("10.")) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
List<Relation> relationList = new ArrayList<>();
|
||||
|
||||
String citing = ID_PREFIX + IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", line[1]));
|
||||
final String cited = ID_PREFIX + IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", line[2]));
|
||||
|
||||
relationList
|
||||
.addAll(
|
||||
getRelations(
|
||||
citing,
|
||||
cited));
|
||||
|
||||
if (duplicate && line[1].endsWith(".refs")) {
|
||||
citing = ID_PREFIX + IdentifierFactory
|
||||
.md5(CleaningFunctions.normalizePidValue("doi", line[1].substring(0, line[1].indexOf(".refs"))));
|
||||
relationList.addAll(getRelations(citing, cited));
|
||||
}
|
||||
|
||||
return relationList;
|
||||
}
|
||||
|
||||
private static Collection<Relation> getRelations(String citing, String cited) {
|
||||
|
||||
return Arrays
|
||||
.asList(
|
||||
getRelation(citing, cited, ModelConstants.CITES),
|
||||
getRelation(cited, citing, ModelConstants.IS_CITED_BY));
|
||||
}
|
||||
|
||||
public static Relation getRelation(
|
||||
String source,
|
||||
String target,
|
||||
String relclass) {
|
||||
Relation r = new Relation();
|
||||
r.setCollectedfrom(getCollectedFrom());
|
||||
r.setSource(source);
|
||||
r.setTarget(target);
|
||||
r.setRelClass(relclass);
|
||||
r.setRelType(ModelConstants.RESULT_RESULT);
|
||||
r.setSubRelType(ModelConstants.CITATION);
|
||||
r
|
||||
.setDataInfo(
|
||||
getDataInfo());
|
||||
return r;
|
||||
}
|
||||
|
||||
public static List<KeyValue> getCollectedFrom() {
|
||||
KeyValue kv = new KeyValue();
|
||||
kv.setKey(ModelConstants.OPENOCITATIONS_ID);
|
||||
kv.setValue(ModelConstants.OPENOCITATIONS_NAME);
|
||||
|
||||
return Arrays.asList(kv);
|
||||
}
|
||||
|
||||
public static DataInfo getDataInfo() {
|
||||
DataInfo di = new DataInfo();
|
||||
di.setInferred(false);
|
||||
di.setDeletedbyinference(false);
|
||||
di.setTrust(TRUST);
|
||||
|
||||
di
|
||||
.setProvenanceaction(
|
||||
getQualifier(OPENCITATIONS_CLASSID, OPENCITATIONS_CLASSNAME, ModelConstants.DNET_PROVENANCE_ACTIONS));
|
||||
return di;
|
||||
}
|
||||
|
||||
public static Qualifier getQualifier(String class_id, String class_name,
|
||||
String qualifierSchema) {
|
||||
Qualifier pa = new Qualifier();
|
||||
pa.setClassid(class_id);
|
||||
pa.setClassname(class_name);
|
||||
pa.setSchemeid(qualifierSchema);
|
||||
pa.setSchemename(qualifierSchema);
|
||||
return pa;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,93 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.opencitations;
|
||||
|
||||
import java.io.*;
|
||||
import java.io.Serializable;
|
||||
import java.util.Objects;
|
||||
import java.util.zip.GZIPOutputStream;
|
||||
import java.util.zip.ZipEntry;
|
||||
import java.util.zip.ZipInputStream;
|
||||
|
||||
import org.apache.commons.cli.ParseException;
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FSDataInputStream;
|
||||
import org.apache.hadoop.fs.FSDataOutputStream;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
|
||||
public class GetOpenCitationsRefs implements Serializable {
|
||||
private static final Logger log = LoggerFactory.getLogger(GetOpenCitationsRefs.class);
|
||||
|
||||
public static void main(final String[] args) throws IOException, ParseException {
|
||||
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(
|
||||
IOUtils
|
||||
.toString(
|
||||
Objects
|
||||
.requireNonNull(
|
||||
GetOpenCitationsRefs.class
|
||||
.getResourceAsStream(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/input_parameters.json"))));
|
||||
|
||||
parser.parseArgument(args);
|
||||
|
||||
final String[] inputFile = parser.get("inputFile").split(";");
|
||||
log.info("inputFile {}", inputFile.toString());
|
||||
|
||||
final String workingPath = parser.get("workingPath");
|
||||
log.info("workingPath {}", workingPath);
|
||||
|
||||
final String hdfsNameNode = parser.get("hdfsNameNode");
|
||||
log.info("hdfsNameNode {}", hdfsNameNode);
|
||||
|
||||
Configuration conf = new Configuration();
|
||||
conf.set("fs.defaultFS", hdfsNameNode);
|
||||
|
||||
FileSystem fileSystem = FileSystem.get(conf);
|
||||
|
||||
GetOpenCitationsRefs ocr = new GetOpenCitationsRefs();
|
||||
|
||||
for (String file : inputFile) {
|
||||
ocr.doExtract(workingPath + "/Original/" + file, workingPath, fileSystem);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private void doExtract(String inputFile, String workingPath, FileSystem fileSystem)
|
||||
throws IOException {
|
||||
|
||||
final Path path = new Path(inputFile);
|
||||
|
||||
FSDataInputStream oc_zip = fileSystem.open(path);
|
||||
|
||||
int count = 1;
|
||||
try (ZipInputStream zis = new ZipInputStream(oc_zip)) {
|
||||
ZipEntry entry = null;
|
||||
while ((entry = zis.getNextEntry()) != null) {
|
||||
|
||||
if (!entry.isDirectory()) {
|
||||
String fileName = entry.getName();
|
||||
fileName = fileName.substring(0, fileName.indexOf("T")) + "_" + count;
|
||||
count++;
|
||||
try (
|
||||
FSDataOutputStream out = fileSystem
|
||||
.create(new Path(workingPath + "/COCI/" + fileName + ".gz"));
|
||||
GZIPOutputStream gzipOs = new GZIPOutputStream(new BufferedOutputStream(out))) {
|
||||
|
||||
IOUtils.copy(zis, gzipOs);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,49 @@
|
|||
package eu.dnetlib.dhp.collection
|
||||
|
||||
import eu.dnetlib.dhp.schema.common.ModelSupport
|
||||
import eu.dnetlib.dhp.schema.oaf.{Oaf, OafEntity, Relation}
|
||||
|
||||
object CollectionUtils {
|
||||
|
||||
/**
|
||||
* This method in pipeline to the transformation phase,
|
||||
* generates relations in both verse, typically it should be a phase of flatMap
|
||||
*
|
||||
* @param i input OAF
|
||||
* @return
|
||||
* If the input OAF is an entity -> List(i)
|
||||
* If the input OAF is a relation -> List(relation, inverseRelation)
|
||||
*
|
||||
*/
|
||||
|
||||
def fixRelations(i: Oaf): List[Oaf] = {
|
||||
if (i.isInstanceOf[OafEntity])
|
||||
return List(i)
|
||||
else {
|
||||
val r: Relation = i.asInstanceOf[Relation]
|
||||
val currentRel = ModelSupport.findRelation(r.getRelClass)
|
||||
if (currentRel != null) {
|
||||
|
||||
// Cleaning relation
|
||||
r.setRelType(currentRel.getRelType)
|
||||
r.setSubRelType(currentRel.getSubReltype)
|
||||
r.setRelClass(currentRel.getRelClass)
|
||||
val inverse = new Relation
|
||||
inverse.setSource(r.getTarget)
|
||||
inverse.setTarget(r.getSource)
|
||||
inverse.setRelType(currentRel.getRelType)
|
||||
inverse.setSubRelType(currentRel.getSubReltype)
|
||||
inverse.setRelClass(currentRel.getInverseRelClass)
|
||||
inverse.setCollectedfrom(r.getCollectedfrom)
|
||||
inverse.setDataInfo(r.getDataInfo)
|
||||
inverse.setProperties(r.getProperties)
|
||||
inverse.setLastupdatetimestamp(r.getLastupdatetimestamp)
|
||||
inverse.setValidated(r.getValidated)
|
||||
inverse.setValidationDate(r.getValidationDate)
|
||||
return List(r, inverse)
|
||||
}
|
||||
}
|
||||
List()
|
||||
}
|
||||
|
||||
}
|
|
@ -1,12 +1,10 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.http.client.config.RequestConfig
|
||||
import org.apache.http.client.methods.{HttpGet, HttpPost, HttpRequestBase, HttpUriRequest}
|
||||
import org.apache.http.client.methods.{HttpGet, HttpPost, HttpUriRequest}
|
||||
import org.apache.http.entity.StringEntity
|
||||
import org.apache.http.impl.client.{HttpClientBuilder, HttpClients}
|
||||
|
||||
import java.io.IOException
|
||||
import org.apache.http.impl.client.HttpClientBuilder
|
||||
|
||||
|
||||
abstract class AbstractRestClient extends Iterator[String] {
|
|
@ -1,7 +1,7 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
import org.json4s.{DefaultFormats, JValue}
|
||||
import org.json4s.jackson.JsonMethods.{compact, parse, render}
|
||||
import org.json4s.{DefaultFormats, JValue}
|
||||
|
||||
class DataciteAPIImporter(timestamp: Long = 0, blocks: Long = 10, until:Long = -1) extends AbstractRestClient {
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.common.vocabulary.VocabularyGroup
|
||||
|
@ -325,8 +325,9 @@ object DataciteToOAFTransformation {
|
|||
val grantId = m.matcher(awardUri).replaceAll("$2")
|
||||
val targetId = s"$p${DHPUtils.md5(grantId)}"
|
||||
List(
|
||||
generateRelation(sourceId, targetId, "isProducedBy", DATACITE_COLLECTED_FROM, dataInfo),
|
||||
generateRelation(targetId, sourceId, "produces", DATACITE_COLLECTED_FROM, dataInfo)
|
||||
generateRelation(sourceId, targetId, "isProducedBy", DATACITE_COLLECTED_FROM, dataInfo)
|
||||
// REMOVED INVERSE RELATION since there is a specific method that should generate later
|
||||
// generateRelation(targetId, sourceId, "produces", DATACITE_COLLECTED_FROM, dataInfo)
|
||||
)
|
||||
}
|
||||
else
|
||||
|
@ -580,11 +581,11 @@ object DataciteToOAFTransformation {
|
|||
rel.setProperties(List(dateProps).asJava)
|
||||
|
||||
rel.setSource(id)
|
||||
rel.setTarget(s"unresolved::${r.relatedIdentifier}::${r.relatedIdentifierType}")
|
||||
rel.setTarget(DHPUtils.generateUnresolvedIdentifier(r.relatedIdentifier,r.relatedIdentifierType))
|
||||
rel.setCollectedfrom(List(DATACITE_COLLECTED_FROM).asJava)
|
||||
rel.getCollectedfrom.asScala.map(c => c.getValue)(collection.breakOut)
|
||||
rel.getCollectedfrom.asScala.map(c => c.getValue).toList
|
||||
rel
|
||||
})(collection breakOut)
|
||||
}).toList
|
||||
}
|
||||
|
||||
def generateDataInfo(trust: String): DataInfo = {
|
|
@ -1,9 +1,14 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.collection.CollectionUtils.fixRelations
|
||||
import eu.dnetlib.dhp.common.Constants.MDSTORE_DATA_PATH
|
||||
import eu.dnetlib.dhp.common.Constants.MDSTORE_SIZE_PATH
|
||||
import eu.dnetlib.dhp.common.vocabulary.VocabularyGroup
|
||||
import eu.dnetlib.dhp.schema.mdstore.MetadataRecord
|
||||
import eu.dnetlib.dhp.schema.mdstore.{MDStoreVersion, MetadataRecord}
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf
|
||||
import eu.dnetlib.dhp.utils.DHPUtils.writeHdfsFile
|
||||
import eu.dnetlib.dhp.utils.ISLookupClientFactory
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
|
@ -17,11 +22,10 @@ object GenerateDataciteDatasetSpark {
|
|||
|
||||
def main(args: Array[String]): Unit = {
|
||||
val conf = new SparkConf
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/actionmanager/datacite/generate_dataset_params.json")).mkString)
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/datacite/generate_dataset_params.json")).mkString)
|
||||
parser.parseArgument(args)
|
||||
val master = parser.get("master")
|
||||
val sourcePath = parser.get("sourcePath")
|
||||
val targetPath = parser.get("targetPath")
|
||||
val exportLinks = "true".equalsIgnoreCase(parser.get("exportLinks"))
|
||||
val isLookupUrl: String = parser.get("isLookupUrl")
|
||||
log.info("isLookupUrl: {}", isLookupUrl)
|
||||
|
@ -33,16 +37,28 @@ object GenerateDataciteDatasetSpark {
|
|||
.master(master)
|
||||
.getOrCreate()
|
||||
|
||||
import spark.implicits._
|
||||
|
||||
implicit val mrEncoder: Encoder[MetadataRecord] = Encoders.kryo[MetadataRecord]
|
||||
|
||||
implicit val resEncoder: Encoder[Oaf] = Encoders.kryo[Oaf]
|
||||
|
||||
import spark.implicits._
|
||||
val mdstoreOutputVersion = parser.get("mdstoreOutputVersion")
|
||||
val mapper = new ObjectMapper()
|
||||
val cleanedMdStoreVersion = mapper.readValue(mdstoreOutputVersion, classOf[MDStoreVersion])
|
||||
val outputBasePath = cleanedMdStoreVersion.getHdfsPath
|
||||
|
||||
log.info("outputBasePath: {}", outputBasePath)
|
||||
val targetPath = s"$outputBasePath/$MDSTORE_DATA_PATH"
|
||||
|
||||
spark.read.load(sourcePath).as[DataciteType]
|
||||
.filter(d => d.isActive)
|
||||
.flatMap(d => DataciteToOAFTransformation.generateOAF(d.json, d.timestamp, d.timestamp, vocabularies, exportLinks))
|
||||
.filter(d => d != null)
|
||||
.flatMap(i => fixRelations(i)).filter(i => i != null)
|
||||
.write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
|
||||
val total_items = spark.read.load(targetPath).as[Oaf].count()
|
||||
writeHdfsFile(spark.sparkContext.hadoopConfiguration, s"$total_items", outputBasePath + MDSTORE_SIZE_PATH)
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,6 +1,5 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
import eu.dnetlib.dhp.actionmanager.datacite.DataciteToOAFTransformation.df_it
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import org.apache.hadoop.conf.Configuration
|
||||
import org.apache.hadoop.fs.{FileSystem, LocalFileSystem, Path}
|
||||
|
@ -9,14 +8,14 @@ import org.apache.hadoop.io.{IntWritable, SequenceFile, Text}
|
|||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.sql.expressions.Aggregator
|
||||
import org.apache.spark.sql.functions.max
|
||||
import org.apache.spark.sql.{Dataset, Encoder, SaveMode, SparkSession}
|
||||
import org.json4s.DefaultFormats
|
||||
import org.json4s.jackson.JsonMethods.parse
|
||||
import org.apache.spark.sql.functions.max
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
import java.time.format.DateTimeFormatter._
|
||||
import java.time.{LocalDate, LocalDateTime, ZoneOffset}
|
||||
import java.time.format.DateTimeFormatter.ISO_DATE_TIME
|
||||
import java.time.{LocalDateTime, ZoneOffset}
|
||||
import scala.io.Source
|
||||
|
||||
object ImportDatacite {
|
||||
|
@ -138,11 +137,11 @@ object ImportDatacite {
|
|||
}
|
||||
}
|
||||
|
||||
private def writeSequenceFile(hdfsTargetPath: Path, timestamp: Long, conf: Configuration, bs:Int): Long = {
|
||||
var from:Long = timestamp * 1000
|
||||
val delta:Long = 100000000L
|
||||
private def writeSequenceFile(hdfsTargetPath: Path, timestamp: Long, conf: Configuration, bs: Int): Long = {
|
||||
var from: Long = timestamp * 1000
|
||||
val delta: Long = 100000000L
|
||||
var client: DataciteAPIImporter = null
|
||||
val now :Long =System.currentTimeMillis()
|
||||
val now: Long = System.currentTimeMillis()
|
||||
var i = 0
|
||||
try {
|
||||
val writer = SequenceFile.createWriter(conf, SequenceFile.Writer.file(hdfsTargetPath), SequenceFile.Writer.keyClass(classOf[IntWritable]), SequenceFile.Writer.valueClass(classOf[Text]))
|
||||
|
@ -168,7 +167,7 @@ object ImportDatacite {
|
|||
start = System.currentTimeMillis
|
||||
}
|
||||
}
|
||||
println(s"updating from value: $from -> ${from+delta}")
|
||||
println(s"updating from value: $from -> ${from + delta}")
|
||||
from = from + delta
|
||||
}
|
||||
} catch {
|
||||
|
@ -183,4 +182,4 @@ object ImportDatacite {
|
|||
i
|
||||
}
|
||||
|
||||
}
|
||||
}
|
|
@ -1,18 +1,14 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.schema.oaf.{Oaf, Result}
|
||||
import org.apache.hadoop.conf.Configuration
|
||||
import org.apache.hadoop.fs.LocalFileSystem
|
||||
import org.apache.hadoop.hdfs.DistributedFileSystem
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
|
||||
import org.apache.spark.sql.functions.max
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
import java.text.SimpleDateFormat
|
||||
import java.util.{Date, Locale}
|
||||
import java.util.Locale
|
||||
import scala.io.Source
|
||||
|
||||
object SparkDownloadUpdateDatacite {
|
||||
|
@ -21,7 +17,7 @@ object SparkDownloadUpdateDatacite {
|
|||
def main(args: Array[String]): Unit = {
|
||||
|
||||
val conf = new SparkConf
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/actionmanager/datacite/generate_dataset_params.json")).mkString)
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/datacite/generate_dataset_params.json")).mkString)
|
||||
parser.parseArgument(args)
|
||||
val master = parser.get("master")
|
||||
val sourcePath = parser.get("sourcePath")
|
||||
|
@ -42,9 +38,9 @@ object SparkDownloadUpdateDatacite {
|
|||
import spark.implicits._
|
||||
|
||||
|
||||
val maxDate:String = spark.read.load(workingPath).as[Oaf].filter(s => s.isInstanceOf[Result]).map(r => r.asInstanceOf[Result].getDateofcollection).select(max("value")).first().getString(0)
|
||||
val maxDate: String = spark.read.load(workingPath).as[Oaf].filter(s => s.isInstanceOf[Result]).map(r => r.asInstanceOf[Result].getDateofcollection).select(max("value")).first().getString(0)
|
||||
val ISO8601FORMAT = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ssZ", Locale.US)
|
||||
val string_to_date =ISO8601FORMAT.parse(maxDate)
|
||||
val string_to_date = ISO8601FORMAT.parse(maxDate)
|
||||
val ts = string_to_date.getTime
|
||||
|
||||
|
|
@ -3,6 +3,7 @@ package eu.dnetlib.dhp.sx.bio
|
|||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf
|
||||
import BioDBToOAF.ScholixResolved
|
||||
import eu.dnetlib.dhp.collection.CollectionUtils
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
|
@ -35,13 +36,13 @@ object SparkTransformBioDatabaseToOAF {
|
|||
import spark.implicits._
|
||||
database.toUpperCase() match {
|
||||
case "UNIPROT" =>
|
||||
spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.uniprotToOAF(i))).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.uniprotToOAF(i))).flatMap(i=> CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
case "PDB" =>
|
||||
spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.pdbTOOaf(i))).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
spark.createDataset(sc.textFile(dbPath).flatMap(i => BioDBToOAF.pdbTOOaf(i))).flatMap(i=> CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
case "SCHOLIX" =>
|
||||
spark.read.load(dbPath).as[ScholixResolved].map(i => BioDBToOAF.scholixResolvedToOAF(i)).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
spark.read.load(dbPath).as[ScholixResolved].map(i => BioDBToOAF.scholixResolvedToOAF(i)).flatMap(i=> CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
case "CROSSREF_LINKS" =>
|
||||
spark.createDataset(sc.textFile(dbPath).map(i => BioDBToOAF.crossrefLinksToOaf(i))).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
spark.createDataset(sc.textFile(dbPath).map(i => BioDBToOAF.crossrefLinksToOaf(i))).flatMap(i=> CollectionUtils.fixRelations(i)).filter(i => i != null).write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ import eu.dnetlib.dhp.schema.oaf.Oaf
|
|||
import eu.dnetlib.dhp.sx.bio.BioDBToOAF
|
||||
import eu.dnetlib.dhp.sx.bio.BioDBToOAF.EBILinkItem
|
||||
import BioDBToOAF.EBILinkItem
|
||||
import eu.dnetlib.dhp.collection.CollectionUtils
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql._
|
||||
|
@ -37,6 +38,7 @@ object SparkEBILinksToOaf {
|
|||
ebLinks.flatMap(j => BioDBToOAF.parse_ebi_links(j.links))
|
||||
.filter(p => BioDBToOAF.EBITargetLinksFilter(p))
|
||||
.flatMap(p => BioDBToOAF.convertEBILinksToOaf(p))
|
||||
.flatMap(i=> CollectionUtils.fixRelations(i)).filter(i => i != null)
|
||||
.write.mode(SaveMode.Overwrite).save(targetPath)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -5,94 +5,249 @@ import java.io.Serializable;
|
|||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* This class represent an instance of Pubmed Article extracted from the native XML
|
||||
*
|
||||
* @author Sandro La Bruzzo
|
||||
*/
|
||||
|
||||
public class PMArticle implements Serializable {
|
||||
|
||||
/**
|
||||
* the Pubmed Identifier
|
||||
*/
|
||||
private String pmid;
|
||||
/**
|
||||
* the DOI
|
||||
*/
|
||||
private String doi;
|
||||
/**
|
||||
* the Pubmed Date extracted from <PubmedPubDate> Specifies a date significant to either the article's history or the citation's processing.
|
||||
* All <History> dates will have a <Year>, <Month>, and <Day> elements. Some may have an <Hour>, <Minute>, and <Second> element(s).
|
||||
*/
|
||||
private String date;
|
||||
/**
|
||||
* This is an 'envelop' element that contains various elements describing the journal cited; i.e., ISSN, Volume, Issue, and PubDate and author name(s), however, it does not contain data itself.
|
||||
*/
|
||||
private PMJournal journal;
|
||||
/**
|
||||
* The full journal title (taken from NLM cataloging data following NLM rules for how to compile a serial name) is exported in this element. Some characters that are not part of the NLM MEDLINE/PubMed Character Set reside in a relatively small number of full journal titles. The NLM journal title abbreviation is exported in the <MedlineTA> element.
|
||||
*/
|
||||
private String title;
|
||||
/**
|
||||
* English-language abstracts are taken directly from the published article.
|
||||
* If the article does not have a published abstract, the National Library of Medicine does not create one,
|
||||
* thus the record lacks the <Abstract> and <AbstractText> elements. However, in the absence of a formally
|
||||
* labeled abstract in the published article, text from a substantive "summary", "summary and conclusions" or "conclusions and summary" may be used.
|
||||
*/
|
||||
private String description;
|
||||
/**
|
||||
* the language in which an article was published is recorded in <Language>.
|
||||
* All entries are three letter abbreviations stored in lower case, such as eng, fre, ger, jpn, etc. When a single
|
||||
* record contains more than one language value the XML export program extracts the languages in alphabetic order by the 3-letter language value.
|
||||
* Some records provided by collaborating data producers may contain the value und to identify articles whose language is undetermined.
|
||||
*/
|
||||
private String language;
|
||||
|
||||
/**
|
||||
* NLM controlled vocabulary, Medical Subject Headings (MeSH®), is used to characterize the content of the articles represented by MEDLINE citations. *
|
||||
*/
|
||||
private final List<PMSubject> subjects = new ArrayList<>();
|
||||
/**
|
||||
* This element is used to identify the type of article indexed for MEDLINE;
|
||||
* it characterizes the nature of the information or the manner in which it is conveyed as well as the type of
|
||||
* research support received (e.g., Review, Letter, Retracted Publication, Clinical Conference, Research Support, N.I.H., Extramural).
|
||||
*/
|
||||
private final List<PMSubject> publicationTypes = new ArrayList<>();
|
||||
/**
|
||||
* Personal and collective (corporate) author names published with the article are found in <AuthorList>.
|
||||
*/
|
||||
private List<PMAuthor> authors = new ArrayList<>();
|
||||
|
||||
public List<PMSubject> getPublicationTypes() {
|
||||
return publicationTypes;
|
||||
}
|
||||
|
||||
/**
|
||||
* <GrantID> contains the research grant or contract number (or both) that designates financial support by any agency of the United States Public Health Service
|
||||
* or any institute of the National Institutes of Health. Additionally, beginning in late 2005, grant numbers are included for many other US and non-US funding agencies and organizations.
|
||||
*/
|
||||
private final List<PMGrant> grants = new ArrayList<>();
|
||||
|
||||
public List<PMGrant> getGrants() {
|
||||
return grants;
|
||||
}
|
||||
|
||||
/**
|
||||
* get the DOI
|
||||
* @return a DOI
|
||||
*/
|
||||
public String getDoi() {
|
||||
return doi;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the DOI
|
||||
* @param doi a DOI
|
||||
*/
|
||||
public void setDoi(String doi) {
|
||||
this.doi = doi;
|
||||
}
|
||||
|
||||
/**
|
||||
* get the Pubmed Identifier
|
||||
* @return the PMID
|
||||
*/
|
||||
public String getPmid() {
|
||||
return pmid;
|
||||
}
|
||||
|
||||
/**
|
||||
* set the Pubmed Identifier
|
||||
* @param pmid the Pubmed Identifier
|
||||
*/
|
||||
public void setPmid(String pmid) {
|
||||
this.pmid = pmid;
|
||||
}
|
||||
|
||||
/**
|
||||
* the Pubmed Date extracted from <PubmedPubDate> Specifies a date significant to either the article's history or the citation's processing.
|
||||
* All <History> dates will have a <Year>, <Month>, and <Day> elements. Some may have an <Hour>, <Minute>, and <Second> element(s).
|
||||
*
|
||||
* @return the Pubmed Date
|
||||
*/
|
||||
public String getDate() {
|
||||
return date;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the pubmed Date
|
||||
* @param date
|
||||
*/
|
||||
public void setDate(String date) {
|
||||
this.date = date;
|
||||
}
|
||||
|
||||
/**
|
||||
* The full journal title (taken from NLM cataloging data following NLM rules for how to compile a serial name) is exported in this element.
|
||||
* Some characters that are not part of the NLM MEDLINE/PubMed Character Set reside in a relatively small number of full journal titles.
|
||||
* The NLM journal title abbreviation is exported in the <MedlineTA> element.
|
||||
*
|
||||
* @return the pubmed Journal Extracted
|
||||
*/
|
||||
public PMJournal getJournal() {
|
||||
return journal;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the mapped pubmed Journal
|
||||
* @param journal
|
||||
*/
|
||||
public void setJournal(PMJournal journal) {
|
||||
this.journal = journal;
|
||||
}
|
||||
|
||||
/**
|
||||
* English-language abstracts are taken directly from the published article.
|
||||
* If the article does not have a published abstract, the National Library of Medicine does not create one,
|
||||
* thus the record lacks the <Abstract> and <AbstractText> elements. However, in the absence of a formally
|
||||
* labeled abstract in the published article, text from a substantive "summary", "summary and conclusions" or "conclusions and summary" may be used.
|
||||
*
|
||||
* @return the extracted pubmed Title
|
||||
*/
|
||||
public String getTitle() {
|
||||
return title;
|
||||
}
|
||||
|
||||
/**
|
||||
* set the pubmed title
|
||||
* @param title
|
||||
*/
|
||||
public void setTitle(String title) {
|
||||
this.title = title;
|
||||
}
|
||||
|
||||
/**
|
||||
* English-language abstracts are taken directly from the published article.
|
||||
* If the article does not have a published abstract, the National Library of Medicine does not create one,
|
||||
* thus the record lacks the <Abstract> and <AbstractText> elements. However, in the absence of a formally
|
||||
* labeled abstract in the published article, text from a substantive "summary", "summary and conclusions" or "conclusions and summary" may be used.
|
||||
*
|
||||
* @return the Mapped Pubmed Article Abstracts
|
||||
*/
|
||||
public String getDescription() {
|
||||
return description;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the Mapped Pubmed Article Abstracts
|
||||
* @param description
|
||||
*/
|
||||
public void setDescription(String description) {
|
||||
this.description = description;
|
||||
}
|
||||
|
||||
/**
|
||||
* Personal and collective (corporate) author names published with the article are found in <AuthorList>.
|
||||
*
|
||||
* @return get the Mapped Authors lists
|
||||
*/
|
||||
public List<PMAuthor> getAuthors() {
|
||||
return authors;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the Mapped Authors lists
|
||||
* @param authors
|
||||
*/
|
||||
public void setAuthors(List<PMAuthor> authors) {
|
||||
this.authors = authors;
|
||||
}
|
||||
|
||||
/**
|
||||
* This element is used to identify the type of article indexed for MEDLINE;
|
||||
* it characterizes the nature of the information or the manner in which it is conveyed as well as the type of
|
||||
* research support received (e.g., Review, Letter, Retracted Publication, Clinical Conference, Research Support, N.I.H., Extramural).
|
||||
*
|
||||
* @return the mapped Subjects
|
||||
*/
|
||||
public List<PMSubject> getSubjects() {
|
||||
return subjects;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* the language in which an article was published is recorded in <Language>.
|
||||
* All entries are three letter abbreviations stored in lower case, such as eng, fre, ger, jpn, etc. When a single
|
||||
* record contains more than one language value the XML export program extracts the languages in alphabetic order by the 3-letter language value.
|
||||
* Some records provided by collaborating data producers may contain the value und to identify articles whose language is undetermined.
|
||||
*
|
||||
* @return The mapped Language
|
||||
*/
|
||||
public String getLanguage() {
|
||||
return language;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Set The mapped Language
|
||||
*
|
||||
* @param language the mapped Language
|
||||
*/
|
||||
public void setLanguage(String language) {
|
||||
this.language = language;
|
||||
}
|
||||
|
||||
/**
|
||||
* This element is used to identify the type of article indexed for MEDLINE;
|
||||
* it characterizes the nature of the information or the manner in which it is conveyed as well as the type of
|
||||
* research support received (e.g., Review, Letter, Retracted Publication, Clinical Conference, Research Support, N.I.H., Extramural).
|
||||
*
|
||||
* @return the mapped Publication Type
|
||||
*/
|
||||
public List<PMSubject> getPublicationTypes() {
|
||||
return publicationTypes;
|
||||
}
|
||||
|
||||
/**
|
||||
* <GrantID> contains the research grant or contract number (or both) that designates financial support by any agency of the United States Public Health Service
|
||||
* or any institute of the National Institutes of Health. Additionally, beginning in late 2005, grant numbers are included for many other US and non-US funding agencies and organizations.
|
||||
* @return the mapped grants
|
||||
*/
|
||||
|
||||
public List<PMGrant> getGrants() {
|
||||
return grants;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,27 +3,57 @@ package eu.dnetlib.dhp.sx.bio.pubmed;
|
|||
|
||||
import java.io.Serializable;
|
||||
|
||||
/**
|
||||
* The type Pubmed author.
|
||||
*
|
||||
* @author Sandro La Bruzzo
|
||||
*/
|
||||
public class PMAuthor implements Serializable {
|
||||
|
||||
private String lastName;
|
||||
private String foreName;
|
||||
|
||||
/**
|
||||
* Gets last name.
|
||||
*
|
||||
* @return the last name
|
||||
*/
|
||||
public String getLastName() {
|
||||
return lastName;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets last name.
|
||||
*
|
||||
* @param lastName the last name
|
||||
*/
|
||||
public void setLastName(String lastName) {
|
||||
this.lastName = lastName;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets fore name.
|
||||
*
|
||||
* @return the fore name
|
||||
*/
|
||||
public String getForeName() {
|
||||
return foreName;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets fore name.
|
||||
*
|
||||
* @param foreName the fore name
|
||||
*/
|
||||
public void setForeName(String foreName) {
|
||||
this.foreName = foreName;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets full name.
|
||||
*
|
||||
* @return the full name
|
||||
*/
|
||||
public String getFullName() {
|
||||
return String
|
||||
.format("%s, %s", this.foreName != null ? this.foreName : "", this.lastName != null ? this.lastName : "");
|
||||
|
|
|
@ -1,41 +1,86 @@
|
|||
|
||||
package eu.dnetlib.dhp.sx.bio.pubmed;
|
||||
|
||||
/**
|
||||
* The type Pm grant.
|
||||
*
|
||||
* @author Sandro La Bruzzo
|
||||
*/
|
||||
public class PMGrant {
|
||||
|
||||
private String grantID;
|
||||
private String agency;
|
||||
private String country;
|
||||
|
||||
/**
|
||||
* Instantiates a new Pm grant.
|
||||
*/
|
||||
public PMGrant() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Instantiates a new Pm grant.
|
||||
*
|
||||
* @param grantID the grant id
|
||||
* @param agency the agency
|
||||
* @param country the country
|
||||
*/
|
||||
public PMGrant(String grantID, String agency, String country) {
|
||||
this.grantID = grantID;
|
||||
this.agency = agency;
|
||||
this.country = country;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets grant id.
|
||||
*
|
||||
* @return the grant id
|
||||
*/
|
||||
public String getGrantID() {
|
||||
return grantID;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets grant id.
|
||||
*
|
||||
* @param grantID the grant id
|
||||
*/
|
||||
public void setGrantID(String grantID) {
|
||||
this.grantID = grantID;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets agency.
|
||||
*
|
||||
* @return the agency
|
||||
*/
|
||||
public String getAgency() {
|
||||
return agency;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets agency.
|
||||
*
|
||||
* @param agency the agency
|
||||
*/
|
||||
public void setAgency(String agency) {
|
||||
this.agency = agency;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets country.
|
||||
*
|
||||
* @return the country
|
||||
*/
|
||||
public String getCountry() {
|
||||
return country;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets country.
|
||||
*
|
||||
* @param country the country
|
||||
*/
|
||||
public void setCountry(String country) {
|
||||
this.country = country;
|
||||
}
|
||||
|
|
|
@ -3,6 +3,11 @@ package eu.dnetlib.dhp.sx.bio.pubmed;
|
|||
|
||||
import java.io.Serializable;
|
||||
|
||||
/**
|
||||
* The type Pm journal.
|
||||
*
|
||||
* @author Sandro La Bruzzo
|
||||
*/
|
||||
public class PMJournal implements Serializable {
|
||||
|
||||
private String issn;
|
||||
|
@ -11,42 +16,92 @@ public class PMJournal implements Serializable {
|
|||
private String date;
|
||||
private String title;
|
||||
|
||||
/**
|
||||
* Gets issn.
|
||||
*
|
||||
* @return the issn
|
||||
*/
|
||||
public String getIssn() {
|
||||
return issn;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets issn.
|
||||
*
|
||||
* @param issn the issn
|
||||
*/
|
||||
public void setIssn(String issn) {
|
||||
this.issn = issn;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets volume.
|
||||
*
|
||||
* @return the volume
|
||||
*/
|
||||
public String getVolume() {
|
||||
return volume;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets volume.
|
||||
*
|
||||
* @param volume the volume
|
||||
*/
|
||||
public void setVolume(String volume) {
|
||||
this.volume = volume;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets issue.
|
||||
*
|
||||
* @return the issue
|
||||
*/
|
||||
public String getIssue() {
|
||||
return issue;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets issue.
|
||||
*
|
||||
* @param issue the issue
|
||||
*/
|
||||
public void setIssue(String issue) {
|
||||
this.issue = issue;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets date.
|
||||
*
|
||||
* @return the date
|
||||
*/
|
||||
public String getDate() {
|
||||
return date;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets date.
|
||||
*
|
||||
* @param date the date
|
||||
*/
|
||||
public void setDate(String date) {
|
||||
this.date = date;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets title.
|
||||
*
|
||||
* @return the title
|
||||
*/
|
||||
public String getTitle() {
|
||||
return title;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets title.
|
||||
*
|
||||
* @param title the title
|
||||
*/
|
||||
public void setTitle(String title) {
|
||||
this.title = title;
|
||||
}
|
||||
|
|
|
@ -2,6 +2,12 @@ package eu.dnetlib.dhp.sx.bio.pubmed
|
|||
|
||||
import scala.xml.MetaData
|
||||
import scala.xml.pull.{EvElemEnd, EvElemStart, EvText, XMLEventReader}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param xml
|
||||
*/
|
||||
class PMParser(xml:XMLEventReader) extends Iterator[PMArticle] {
|
||||
|
||||
var currentArticle:PMArticle = generateNextArticle()
|
||||
|
|
|
@ -1,40 +1,83 @@
|
|||
|
||||
package eu.dnetlib.dhp.sx.bio.pubmed;
|
||||
|
||||
/**
|
||||
* The type Pubmed subject.
|
||||
*/
|
||||
public class PMSubject {
|
||||
private String value;
|
||||
private String meshId;
|
||||
private String registryNumber;
|
||||
|
||||
/**
|
||||
* Instantiates a new Pm subject.
|
||||
*/
|
||||
public PMSubject() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Instantiates a new Pm subject.
|
||||
*
|
||||
* @param value the value
|
||||
* @param meshId the mesh id
|
||||
* @param registryNumber the registry number
|
||||
*/
|
||||
public PMSubject(String value, String meshId, String registryNumber) {
|
||||
this.value = value;
|
||||
this.meshId = meshId;
|
||||
this.registryNumber = registryNumber;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets value.
|
||||
*
|
||||
* @return the value
|
||||
*/
|
||||
public String getValue() {
|
||||
return value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets value.
|
||||
*
|
||||
* @param value the value
|
||||
*/
|
||||
public void setValue(String value) {
|
||||
this.value = value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets mesh id.
|
||||
*
|
||||
* @return the mesh id
|
||||
*/
|
||||
public String getMeshId() {
|
||||
return meshId;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets mesh id.
|
||||
*
|
||||
* @param meshId the mesh id
|
||||
*/
|
||||
public void setMeshId(String meshId) {
|
||||
this.meshId = meshId;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets registry number.
|
||||
*
|
||||
* @return the registry number
|
||||
*/
|
||||
public String getRegistryNumber() {
|
||||
return registryNumber;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets registry number.
|
||||
*
|
||||
* @param registryNumber the registry number
|
||||
*/
|
||||
public void setRegistryNumber(String registryNumber) {
|
||||
this.registryNumber = registryNumber;
|
||||
}
|
||||
|
|
|
@ -8,6 +8,9 @@ import scala.collection.JavaConverters._
|
|||
|
||||
import java.util.regex.Pattern
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
object PubMedToOaf {
|
||||
|
||||
val SUBJ_CLASS = "keywords"
|
||||
|
@ -15,7 +18,17 @@ object PubMedToOaf {
|
|||
"pmid" -> "https://pubmed.ncbi.nlm.nih.gov/",
|
||||
"doi" -> "https://dx.doi.org/"
|
||||
)
|
||||
val dataInfo: DataInfo = OafMapperUtils.dataInfo(false, null, false, false, ModelConstants.PROVENANCE_ACTION_SET_QUALIFIER, "0.9")
|
||||
val collectedFrom: KeyValue = OafMapperUtils.keyValue(ModelConstants.EUROPE_PUBMED_CENTRAL_ID, "Europe PubMed Central")
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Cleaning the DOI Applying regex in order to
|
||||
* remove doi starting with URL
|
||||
* @param doi input DOI
|
||||
* @return cleaned DOI
|
||||
*/
|
||||
def cleanDoi(doi: String): String = {
|
||||
|
||||
val regex = "^10.\\d{4,9}\\/[\\[\\]\\-\\<\\>._;()\\/:A-Z0-9]+$"
|
||||
|
@ -30,6 +43,15 @@ object PubMedToOaf {
|
|||
null
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* Create an instance of class extends Result
|
||||
* starting from OAF instanceType value
|
||||
*
|
||||
* @param cobjQualifier OAF instance type
|
||||
* @param vocabularies All dnet vocabularies
|
||||
* @return the correct instance
|
||||
*/
|
||||
def createResult(cobjQualifier: Qualifier, vocabularies: VocabularyGroup): Result = {
|
||||
val result_typologies = getVocabularyTerm(ModelConstants.DNET_RESULT_TYPOLOGIES, vocabularies, cobjQualifier.getClassid)
|
||||
result_typologies.getClassid match {
|
||||
|
@ -42,6 +64,12 @@ object PubMedToOaf {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Mapping the Pubmedjournal info into the OAF Journale
|
||||
*
|
||||
* @param j the pubmedJournal
|
||||
* @return the OAF Journal
|
||||
*/
|
||||
def mapJournal(j: PMJournal): Journal = {
|
||||
if (j == null)
|
||||
return null
|
||||
|
@ -49,6 +77,7 @@ object PubMedToOaf {
|
|||
|
||||
journal.setDataInfo(dataInfo)
|
||||
journal.setName(j.getTitle)
|
||||
journal.setConferencedate(j.getDate)
|
||||
journal.setVol(j.getVolume)
|
||||
journal.setIssnPrinted(j.getIssn)
|
||||
journal.setIss(j.getIssue)
|
||||
|
@ -57,25 +86,43 @@ object PubMedToOaf {
|
|||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* Find vocabulary term into synonyms and term in the vocabulary
|
||||
*
|
||||
* @param vocabularyName the input vocabulary name
|
||||
* @param vocabularies all the vocabularies
|
||||
* @param term the term to find
|
||||
*
|
||||
* @return the cleaned term value
|
||||
*/
|
||||
def getVocabularyTerm(vocabularyName: String, vocabularies: VocabularyGroup, term: String): Qualifier = {
|
||||
val a = vocabularies.getSynonymAsQualifier(vocabularyName, term)
|
||||
val b = vocabularies.getTermAsQualifier(vocabularyName, term)
|
||||
if (a == null) b else a
|
||||
}
|
||||
|
||||
val dataInfo: DataInfo = OafMapperUtils.dataInfo(false, null, false, false, ModelConstants.PROVENANCE_ACTION_SET_QUALIFIER, "0.9")
|
||||
val collectedFrom: KeyValue = OafMapperUtils.keyValue(ModelConstants.EUROPE_PUBMED_CENTRAL_ID, "Europe PubMed Central")
|
||||
|
||||
/**
|
||||
* Map the Pubmed Article into the OAF instance
|
||||
*
|
||||
*
|
||||
* @param article the pubmed articles
|
||||
* @param vocabularies the vocabularies
|
||||
* @return The OAF instance if the mapping did not fail
|
||||
*/
|
||||
def convert(article: PMArticle, vocabularies: VocabularyGroup): Result = {
|
||||
|
||||
if (article.getPublicationTypes == null)
|
||||
return null
|
||||
val i = new Instance
|
||||
|
||||
|
||||
// MAP PMID into pid with classid = classname = pmid
|
||||
val pidList: List[StructuredProperty] = List(OafMapperUtils.structuredProperty(article.getPmid, PidType.pmid.toString, PidType.pmid.toString, ModelConstants.DNET_PID_TYPES, ModelConstants.DNET_PID_TYPES, dataInfo))
|
||||
if (pidList == null)
|
||||
return null
|
||||
|
||||
// MAP //ArticleId[./@IdType="doi"] into alternateIdentifier with classid = classname = doi
|
||||
var alternateIdentifier: StructuredProperty = null
|
||||
if (article.getDoi != null) {
|
||||
val normalizedPid = cleanDoi(article.getDoi)
|
||||
|
@ -83,43 +130,64 @@ object PubMedToOaf {
|
|||
alternateIdentifier = OafMapperUtils.structuredProperty(normalizedPid, PidType.doi.toString, PidType.doi.toString, ModelConstants.DNET_PID_TYPES, ModelConstants.DNET_PID_TYPES, dataInfo)
|
||||
}
|
||||
|
||||
// INSTANCE MAPPING
|
||||
//--------------------------------------------------------------------------------------
|
||||
|
||||
// If the article contains the typology Journal Article then we apply this type
|
||||
//else We have to find a terms that match the vocabulary otherwise we discard it
|
||||
val ja = article.getPublicationTypes.asScala.find(s => "Journal Article".equalsIgnoreCase(s.getValue))
|
||||
val pubmedInstance = new Instance
|
||||
if (ja.isDefined) {
|
||||
val cojbCategory = getVocabularyTerm(ModelConstants.DNET_PUBLICATION_RESOURCE, vocabularies, ja.get.getValue)
|
||||
i.setInstancetype(cojbCategory)
|
||||
pubmedInstance.setInstancetype(cojbCategory)
|
||||
} else {
|
||||
val i_type = article.getPublicationTypes.asScala
|
||||
.map(s => getVocabularyTerm(ModelConstants.DNET_PUBLICATION_RESOURCE, vocabularies, s.getValue))
|
||||
.find(q => q != null)
|
||||
if (i_type.isDefined)
|
||||
i.setInstancetype(i_type.get)
|
||||
pubmedInstance.setInstancetype(i_type.get)
|
||||
else
|
||||
return null
|
||||
}
|
||||
val result = createResult(i.getInstancetype, vocabularies)
|
||||
val result = createResult(pubmedInstance.getInstancetype, vocabularies)
|
||||
if (result == null)
|
||||
return result
|
||||
result.setDataInfo(dataInfo)
|
||||
i.setPid(pidList.asJava)
|
||||
pubmedInstance.setPid(pidList.asJava)
|
||||
if (alternateIdentifier != null)
|
||||
i.setAlternateIdentifier(List(alternateIdentifier).asJava)
|
||||
result.setInstance(List(i).asJava)
|
||||
i.getPid.asScala.filter(p => "pmid".equalsIgnoreCase(p.getQualifier.getClassid)).map(p => p.getValue)(collection.breakOut)
|
||||
pubmedInstance.setAlternateIdentifier(List(alternateIdentifier).asJava)
|
||||
result.setInstance(List(pubmedInstance).asJava)
|
||||
pubmedInstance.getPid.asScala.filter(p => "pmid".equalsIgnoreCase(p.getQualifier.getClassid)).map(p => p.getValue)(collection.breakOut)
|
||||
//CREATE URL From pmid
|
||||
val urlLists: List[String] = pidList
|
||||
.map(s => (urlMap.getOrElse(s.getQualifier.getClassid, ""), s.getValue))
|
||||
.filter(t => t._1.nonEmpty)
|
||||
.map(t => t._1 + t._2)
|
||||
if (urlLists != null)
|
||||
i.setUrl(urlLists.asJava)
|
||||
i.setDateofacceptance(OafMapperUtils.field(GraphCleaningFunctions.cleanDate(article.getDate), dataInfo))
|
||||
i.setCollectedfrom(collectedFrom)
|
||||
pubmedInstance.setUrl(urlLists.asJava)
|
||||
|
||||
//ASSIGN DateofAcceptance
|
||||
pubmedInstance.setDateofacceptance(OafMapperUtils.field(GraphCleaningFunctions.cleanDate(article.getDate), dataInfo))
|
||||
//ASSIGN COLLECTEDFROM
|
||||
pubmedInstance.setCollectedfrom(collectedFrom)
|
||||
result.setPid(pidList.asJava)
|
||||
|
||||
//END INSTANCE MAPPING
|
||||
//--------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
// JOURNAL MAPPING
|
||||
//--------------------------------------------------------------------------------------
|
||||
if (article.getJournal != null && result.isInstanceOf[Publication])
|
||||
result.asInstanceOf[Publication].setJournal(mapJournal(article.getJournal))
|
||||
result.setCollectedfrom(List(collectedFrom).asJava)
|
||||
//END JOURNAL MAPPING
|
||||
//--------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
// RESULT MAPPING
|
||||
//--------------------------------------------------------------------------------------
|
||||
result.setDateofacceptance(OafMapperUtils.field(GraphCleaningFunctions.cleanDate(article.getDate), dataInfo))
|
||||
|
||||
if (article.getTitle == null || article.getTitle.isEmpty)
|
||||
|
@ -159,6 +227,9 @@ object PubMedToOaf {
|
|||
|
||||
result.setId(article.getPmid)
|
||||
|
||||
|
||||
// END RESULT MAPPING
|
||||
//--------------------------------------------------------------------------------------
|
||||
val id = IdentifierFactory.createIdentifier(result)
|
||||
if (article.getPmid.equalsIgnoreCase(id))
|
||||
return null
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
[
|
||||
{
|
||||
"paramName":"s",
|
||||
"paramLongName":"sourcePath",
|
||||
"paramDescription": "the path of the sequencial file to read",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName":"out",
|
||||
"paramLongName":"outputPath",
|
||||
"paramDescription": "the output path",
|
||||
"paramRequired": true
|
||||
},
|
||||
|
||||
{
|
||||
"paramName": "ssm",
|
||||
"paramLongName": "isSparkSessionManaged",
|
||||
"paramDescription": "true if the spark session is managed, false otherwise",
|
||||
"paramRequired": false
|
||||
},
|
||||
{
|
||||
"paramName": "hnn",
|
||||
"paramLongName": "hdfsNameNode",
|
||||
"paramDescription": "the path used to store the HostedByMap",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "cfn",
|
||||
"paramLongName": "classForName",
|
||||
"paramDescription": "the path used to store the HostedByMap",
|
||||
"paramRequired": true
|
||||
}
|
||||
]
|
|
@ -12,12 +12,19 @@
|
|||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.action.sharelib.for.spark</name>
|
||||
<value>spark2</value>
|
||||
<name>hiveMetastoreUris</name>
|
||||
<value>thrift://iis-cdh5-test-m3.ocean.icm.edu.pl:9083</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hiveJdbcUrl</name>
|
||||
<value>jdbc:hive2://iis-cdh5-test-m3.ocean.icm.edu.pl:10000</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hiveDbName</name>
|
||||
<value>openaire</value>
|
||||
</property>
|
||||
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
</configuration>
|
||||
</configuration>
|
|
@ -0,0 +1,174 @@
|
|||
|
||||
<workflow-app name="UnresolvedEntities" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>fosPath</name>
|
||||
<description>the input path of the resources to be extended</description>
|
||||
</property>
|
||||
|
||||
<property>
|
||||
<name>bipScorePath</name>
|
||||
<description>the path where to find the bipFinder scores</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>outputPath</name>
|
||||
<description>the path where to store the actionset</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkDriverMemory</name>
|
||||
<description>memory for driver process</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkExecutorMemory</name>
|
||||
<description>memory for individual executor</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkExecutorCores</name>
|
||||
<description>number of cores used by single executor</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozieActionShareLibForSpark2</name>
|
||||
<description>oozie action sharelib for spark 2.*</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2ExtraListeners</name>
|
||||
<value>com.cloudera.spark.lineage.NavigatorAppListener</value>
|
||||
<description>spark 2.* extra listeners classname</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2SqlQueryExecutionListeners</name>
|
||||
<value>com.cloudera.spark.lineage.NavigatorQueryListener</value>
|
||||
<description>spark 2.* sql query execution listeners classname</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2YarnHistoryServerAddress</name>
|
||||
<description>spark 2.* yarn history server address</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2EventLogDir</name>
|
||||
<description>spark 2.* event log dir location</description>
|
||||
</property>
|
||||
</parameters>
|
||||
|
||||
<global>
|
||||
<job-tracker>${jobTracker}</job-tracker>
|
||||
<name-node>${nameNode}</name-node>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>mapreduce.job.queuename</name>
|
||||
<value>${queueName}</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.launcher.mapred.job.queue.name</name>
|
||||
<value>${oozieLauncherQueueName}</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.action.sharelib.for.spark</name>
|
||||
<value>${oozieActionShareLibForSpark2}</value>
|
||||
</property>
|
||||
|
||||
</configuration>
|
||||
</global>
|
||||
<start to="prepareInfo"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
|
||||
<fork name="prepareInfo">
|
||||
<path start="prepareBip"/>
|
||||
<path start="getFOS"/>
|
||||
</fork>
|
||||
|
||||
<action name="prepareBip">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Produces the unresolved from bip finder!</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.createunresolvedentities.PrepareBipFinder</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.warehouse.dir=${sparkSqlWarehouseDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${bipScorePath}</arg>
|
||||
<arg>--outputPath</arg><arg>${workingDir}/prepared</arg>
|
||||
</spark>
|
||||
<ok to="join"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="getFOS">
|
||||
<java>
|
||||
<main-class>eu.dnetlib.dhp.actionmanager.createunresolvedentities.GetFOSData</main-class>
|
||||
<arg>--hdfsNameNode</arg><arg>${nameNode}</arg>
|
||||
<arg>--sourcePath</arg><arg>${fosPath}</arg>
|
||||
<arg>--outputPath</arg><arg>${workingDir}/input/fos</arg>
|
||||
<arg>--classForName</arg><arg>eu.dnetlib.dhp.actionmanager.createunresolvedentities.model.FOSDataModel</arg>
|
||||
</java>
|
||||
<ok to="prepareFos"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="prepareFos">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Produces the unresolved from FOS!</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.createunresolvedentities.PrepareFOSSparkJob</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.warehouse.dir=${sparkSqlWarehouseDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${workingDir}/input/fos</arg>
|
||||
<arg>--outputPath</arg><arg>${workingDir}/prepared</arg>
|
||||
|
||||
</spark>
|
||||
<ok to="join"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
|
||||
|
||||
<join name="join" to="produceUnresolved"/>
|
||||
|
||||
<action name="produceUnresolved">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Saves the result produced for bip and fos by grouping results with the same id</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.createunresolvedentities.SparkSaveUnresolved</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.warehouse.dir=${sparkSqlWarehouseDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${workingDir}/prepared</arg>
|
||||
<arg>--outputPath</arg><arg>${outputPath}</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -0,0 +1,20 @@
|
|||
[
|
||||
{
|
||||
"paramName": "issm",
|
||||
"paramLongName": "isSparkSessionManaged",
|
||||
"paramDescription": "when true will stop SparkSession after job execution",
|
||||
"paramRequired": false
|
||||
},
|
||||
{
|
||||
"paramName": "sp",
|
||||
"paramLongName": "sourcePath",
|
||||
"paramDescription": "the URL from where to get the programme file",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "o",
|
||||
"paramLongName": "outputPath",
|
||||
"paramDescription": "the path of the new ActionSet",
|
||||
"paramRequired": true
|
||||
}
|
||||
]
|
|
@ -0,0 +1,20 @@
|
|||
[
|
||||
{
|
||||
"paramName": "issm",
|
||||
"paramLongName": "isSparkSessionManaged",
|
||||
"paramDescription": "when true will stop SparkSession after job execution",
|
||||
"paramRequired": false
|
||||
},
|
||||
{
|
||||
"paramName": "sp",
|
||||
"paramLongName": "sourcePath",
|
||||
"paramDescription": "the URL from where to get the programme file",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "o",
|
||||
"paramLongName": "outputPath",
|
||||
"paramDescription": "the path of the new ActionSet",
|
||||
"paramRequired": true
|
||||
}
|
||||
]
|
|
@ -1,81 +0,0 @@
|
|||
<workflow-app name="Import_Datacite_and_transform_to_OAF" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>mainPath</name>
|
||||
<description>the working path of Datacite stores</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>isLookupUrl</name>
|
||||
<description>The IS lookUp service endopoint</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>blocksize</name>
|
||||
<value>100</value>
|
||||
<description>The request block size</description>
|
||||
</property>
|
||||
|
||||
</parameters>
|
||||
|
||||
<start to="ImportDatacite"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
|
||||
<action name="ImportDatacite">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>ImportDatacite</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.datacite.ImportDatacite</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--targetPath</arg><arg>${mainPath}/datacite_update</arg>
|
||||
<arg>--dataciteDumpPath</arg><arg>${mainPath}/datacite_dump</arg>
|
||||
<arg>--namenode</arg><arg>${nameNode}</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
<arg>--blocksize</arg><arg>${blocksize}</arg>
|
||||
</spark>
|
||||
<ok to="TransformJob"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
|
||||
<action name="TransformJob">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>TransformJob</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.datacite.GenerateDataciteDatasetSpark</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.sql.shuffle.partitions=3840
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${mainPath}/datacite_dump</arg>
|
||||
<arg>--targetPath</arg><arg>${mainPath}/datacite_oaf</arg>
|
||||
<arg>--isLookupUrl</arg><arg>${isLookupUrl}</arg>
|
||||
<arg>--exportLinks</arg><arg>false</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -1,84 +0,0 @@
|
|||
<workflow-app name="Generate_Datacite_and_Crossref_dump_for_Scholexplorer" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>datacitePath</name>
|
||||
<description>the path of Datacite spark dataset</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>isLookupUrl</name>
|
||||
<description>The IS lookUp service endopoint</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>crossrefPath</name>
|
||||
<description>the path of Crossref spark dataset</description>
|
||||
</property>
|
||||
|
||||
<property>
|
||||
<name>targetPath</name>
|
||||
<description>the path of Crossref spark dataset</description>
|
||||
</property>
|
||||
|
||||
</parameters>
|
||||
|
||||
<start to="ImportDatacite"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
|
||||
<action name="ImportDatacite">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>ImportDatacite</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.datacite.GenerateDataciteDatasetSpark</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.sql.shuffle.partitions=3840
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${datacitePath}</arg>
|
||||
<arg>--targetPath</arg><arg>${targetPath}/datacite_oaf</arg>
|
||||
<arg>--isLookupUrl</arg><arg>${isLookupUrl}</arg>
|
||||
<arg>--exportLinks</arg><arg>true</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
</spark>
|
||||
<ok to="FilterCrossrefEntities"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
|
||||
<action name="FilterCrossrefEntities">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>FilterCrossrefEntities</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.datacite.FilterCrossrefEntitiesSpark</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.sql.shuffle.partitions=3840
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${crossrefPath}</arg>
|
||||
<arg>--targetPath</arg><arg>${targetPath}/crossref_oaf</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -0,0 +1,25 @@
|
|||
[
|
||||
{
|
||||
"paramName": "ip",
|
||||
"paramLongName": "inputPath",
|
||||
"paramDescription": "the zipped opencitations file",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "op",
|
||||
"paramLongName": "outputPath",
|
||||
"paramDescription": "the working path",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "issm",
|
||||
"paramLongName": "isSparkSessionManaged",
|
||||
"paramDescription": "the hdfs name node",
|
||||
"paramRequired": false
|
||||
}, {
|
||||
"paramName": "sdr",
|
||||
"paramLongName": "shouldDuplicateRels",
|
||||
"paramDescription": "the hdfs name node",
|
||||
"paramRequired": false
|
||||
}
|
||||
]
|
|
@ -0,0 +1,20 @@
|
|||
[
|
||||
{
|
||||
"paramName": "if",
|
||||
"paramLongName": "inputFile",
|
||||
"paramDescription": "the zipped opencitations file",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "wp",
|
||||
"paramLongName": "workingPath",
|
||||
"paramDescription": "the working path",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "hnn",
|
||||
"paramLongName": "hdfsNameNode",
|
||||
"paramDescription": "the hdfs name node",
|
||||
"paramRequired": true
|
||||
}
|
||||
]
|
|
@ -0,0 +1,58 @@
|
|||
<configuration>
|
||||
<property>
|
||||
<name>jobTracker</name>
|
||||
<value>yarnRM</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>nameNode</name>
|
||||
<value>hdfs://nameservice1</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.use.system.libpath</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.action.sharelib.for.spark</name>
|
||||
<value>spark2</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hive_metastore_uris</name>
|
||||
<value>thrift://iis-cdh5-test-m3.ocean.icm.edu.pl:9083</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2YarnHistoryServerAddress</name>
|
||||
<value>http://iis-cdh5-test-gw.ocean.icm.edu.pl:18089</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2ExtraListeners</name>
|
||||
<value>com.cloudera.spark.lineage.NavigatorAppListener</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2SqlQueryExecutionListeners</name>
|
||||
<value>com.cloudera.spark.lineage.NavigatorQueryListener</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkExecutorNumber</name>
|
||||
<value>4</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>spark2EventLogDir</name>
|
||||
<value>/user/spark/spark2ApplicationHistory</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkDriverMemory</name>
|
||||
<value>15G</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkExecutorMemory</name>
|
||||
<value>6G</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>sparkExecutorCores</name>
|
||||
<value>1</value>
|
||||
</property>
|
||||
</configuration>
|
|
@ -0,0 +1,2 @@
|
|||
#!/bin/bash
|
||||
for file in $(echo $1 | tr ";" "\n"); do curl -L $(echo $file | cut -d '@' -f 1 ) | hdfs dfs -put - $2/$(echo $file | cut -d '@' -f 2) ; done;
|
|
@ -0,0 +1,91 @@
|
|||
<workflow-app name="OpenCitations Integration" xmlns="uri:oozie:workflow:0.5">
|
||||
|
||||
<global>
|
||||
<job-tracker>${jobTracker}</job-tracker>
|
||||
<name-node>${nameNode}</name-node>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>mapreduce.job.queuename</name>
|
||||
<value>${queueName}</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.launcher.mapred.job.queue.name</name>
|
||||
<value>${oozieLauncherQueueName}</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>oozie.action.sharelib.for.spark</name>
|
||||
<value>${oozieActionShareLibForSpark2}</value>
|
||||
</property>
|
||||
|
||||
</configuration>
|
||||
</global>
|
||||
|
||||
<start to="resume_from"/>
|
||||
|
||||
<decision name="resume_from">
|
||||
<switch>
|
||||
<case to="download">${wf:conf('resumeFrom') eq 'DownloadDump'}</case>
|
||||
<case to="extract">${wf:conf('resumeFrom') eq 'ExtractContent'}</case>
|
||||
<default to="create_actionset"/> <!-- first action to be done when downloadDump is to be performed -->
|
||||
</switch>
|
||||
</decision>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
<action name="download">
|
||||
<shell xmlns="uri:oozie:shell-action:0.2">
|
||||
<job-tracker>${jobTracker}</job-tracker>
|
||||
<name-node>${nameNode}</name-node>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>mapred.job.queue.name</name>
|
||||
<value>${queueName}</value>
|
||||
</property>
|
||||
</configuration>
|
||||
<exec>download.sh</exec>
|
||||
<argument>${filelist}</argument>
|
||||
<argument>${workingPath}/Original</argument>
|
||||
<env-var>HADOOP_USER_NAME=${wf:user()}</env-var>
|
||||
<file>download.sh</file>
|
||||
<capture-output/>
|
||||
</shell>
|
||||
<ok to="extract"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
<action name="extract">
|
||||
<java>
|
||||
<main-class>eu.dnetlib.dhp.actionmanager.opencitations.GetOpenCitationsRefs</main-class>
|
||||
<arg>--hdfsNameNode</arg><arg>${nameNode}</arg>
|
||||
<arg>--inputFile</arg><arg>${inputFile}</arg>
|
||||
<arg>--workingPath</arg><arg>${workingPath}</arg>
|
||||
</java>
|
||||
<ok to="create_actionset"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="create_actionset">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Produces the AS for OC</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.opencitations.CreateActionSetSparkJob</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.warehouse.dir=${sparkSqlWarehouseDir}
|
||||
</spark-opts>
|
||||
<arg>--inputPath</arg><arg>${workingPath}/COCI</arg>
|
||||
<arg>--outputPath</arg><arg>${outputPath}</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -0,0 +1,8 @@
|
|||
[
|
||||
{"paramName":"n", "paramLongName":"hdfsServerUri", "paramDescription": "the server uri", "paramRequired": true},
|
||||
{"paramName":"w", "paramLongName":"workingPath", "paramDescription": "the default work path", "paramRequired": true},
|
||||
{"paramName":"f", "paramLongName":"opencitationFile", "paramDescription": "the name of the file", "paramRequired": true},
|
||||
{"paramName":"issm", "paramLongName":"isSparkSessionManaged", "paramDescription": "the name of the activities orcid file", "paramRequired": false},
|
||||
{"paramName":"o", "paramLongName":"outputPath", "paramDescription": "the name of the activities orcid file", "paramRequired": true}
|
||||
|
||||
]
|
|
@ -1,46 +1,52 @@
|
|||
<workflow-app name="Datacite_to_ActionSet_Workflow" xmlns="uri:oozie:workflow:0.5">
|
||||
<workflow-app name="Collect_Datacite" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>sourcePath</name>
|
||||
<name>mainPath</name>
|
||||
<description>the working path of Datacite stores</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>outputPath</name>
|
||||
<description>the path of Datacite ActionSet</description>
|
||||
<name>isLookupUrl</name>
|
||||
<description>The IS lookUp service endopoint</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>blocksize</name>
|
||||
<value>100</value>
|
||||
<description>The request block size</description>
|
||||
</property>
|
||||
|
||||
</parameters>
|
||||
|
||||
<start to="ExportDataset"/>
|
||||
<start to="ImportDatacite"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
|
||||
<action name="ExportDataset">
|
||||
<action name="ImportDatacite">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>ExportDataset</name>
|
||||
<class>eu.dnetlib.dhp.actionmanager.datacite.ExportActionSetJobNode</class>
|
||||
<name>ImportDatacite</name>
|
||||
<class>eu.dnetlib.dhp.datacite.ImportDatacite</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.sql.shuffle.partitions=3840
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${sourcePath}</arg>
|
||||
<arg>--targetPath</arg><arg>${outputPath}</arg>
|
||||
<arg>--targetPath</arg><arg>${mainPath}/datacite_update</arg>
|
||||
<arg>--dataciteDumpPath</arg><arg>${mainPath}/datacite_dump</arg>
|
||||
<arg>--namenode</arg><arg>${nameNode}</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
<arg>--blocksize</arg><arg>${blocksize}</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -7,8 +7,8 @@
|
|||
},
|
||||
|
||||
{
|
||||
"paramName": "t",
|
||||
"paramLongName": "targetPath",
|
||||
"paramName": "mo",
|
||||
"paramLongName": "mdstoreOutputVersion",
|
||||
"paramDescription": "the target mdstore path",
|
||||
"paramRequired": true
|
||||
},
|
|
@ -0,0 +1,126 @@
|
|||
<workflow-app name="transform_Datacite" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>mainPath</name>
|
||||
<description>the working path of Datacite stores</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>isLookupUrl</name>
|
||||
<description>The IS lookUp service endopoint</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>mdStoreOutputId</name>
|
||||
<description>the identifier of the cleaned MDStore</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>mdStoreManagerURI</name>
|
||||
<description>the path of the cleaned mdstore</description>
|
||||
</property>
|
||||
</parameters>
|
||||
|
||||
<start to="StartTransaction"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
<action name="StartTransaction">
|
||||
<java>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
</configuration>
|
||||
<main-class>eu.dnetlib.dhp.aggregation.mdstore.MDStoreActionNode</main-class>
|
||||
<arg>--action</arg><arg>NEW_VERSION</arg>
|
||||
<arg>--mdStoreID</arg><arg>${mdStoreOutputId}</arg>
|
||||
<arg>--mdStoreManagerURI</arg><arg>${mdStoreManagerURI}</arg>
|
||||
<capture-output/>
|
||||
</java>
|
||||
<ok to="TransformJob"/>
|
||||
<error to="EndReadRollBack"/>
|
||||
</action>
|
||||
|
||||
<action name="TransformJob">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>TransformJob</name>
|
||||
<class>eu.dnetlib.dhp.datacite.GenerateDataciteDatasetSpark</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.sql.shuffle.partitions=3840
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${mainPath}/datacite_dump</arg>
|
||||
<arg>--mdstoreOutputVersion</arg><arg>${wf:actionData('StartTransaction')['mdStoreVersion']}</arg>
|
||||
<arg>--isLookupUrl</arg><arg>${isLookupUrl}</arg>
|
||||
<arg>--exportLinks</arg><arg>true</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
</spark>
|
||||
<ok to="CommitVersion"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="CommitVersion">
|
||||
<java>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
</configuration>
|
||||
<main-class>eu.dnetlib.dhp.aggregation.mdstore.MDStoreActionNode</main-class>
|
||||
<arg>--action</arg><arg>COMMIT</arg>
|
||||
<arg>--namenode</arg><arg>${nameNode}</arg>
|
||||
<arg>--mdStoreVersion</arg><arg>${wf:actionData('StartTransaction')['mdStoreVersion']}</arg>
|
||||
<arg>--mdStoreManagerURI</arg><arg>${mdStoreManagerURI}</arg>
|
||||
</java>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="EndReadRollBack">
|
||||
<java>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
</configuration>
|
||||
<main-class>eu.dnetlib.dhp.aggregation.mdstore.MDStoreActionNode</main-class>
|
||||
<arg>--action</arg><arg>READ_UNLOCK</arg>
|
||||
<arg>--mdStoreManagerURI</arg><arg>${mdStoreManagerURI}</arg>
|
||||
<arg>--readMDStoreId</arg><arg>${wf:actionData('BeginRead')['mdStoreReadLockVersion']}</arg>
|
||||
<capture-output/>
|
||||
</java>
|
||||
<ok to="RollBack"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="RollBack">
|
||||
<java>
|
||||
<configuration>
|
||||
<property>
|
||||
<name>oozie.launcher.mapreduce.user.classpath.first</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
</configuration>
|
||||
<main-class>eu.dnetlib.dhp.aggregation.mdstore.MDStoreActionNode</main-class>
|
||||
<arg>--action</arg><arg>ROLLBACK</arg>
|
||||
<arg>--mdStoreVersion</arg><arg>${wf:actionData('StartTransaction')['mdStoreVersion']}</arg>
|
||||
<arg>--mdStoreManagerURI</arg><arg>${mdStoreManagerURI}</arg>
|
||||
</java>
|
||||
<ok to="Kill"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -52,7 +52,7 @@
|
|||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Incremental Download EBI Links</name>
|
||||
<class>eu.dnetllib.dhp.sx.bio.ebi.SparkDownloadEBILinks</class>
|
||||
<class>eu.dnetlib.dhp.sx.bio.ebi.SparkDownloadEBILinks</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
|
@ -85,7 +85,7 @@
|
|||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Create OAF DataSet</name>
|
||||
<class>eu.dnetllib.dhp.sx.bio.ebi.SparkEBILinksToOaf</class>
|
||||
<class>eu.dnetlib.dhp.sx.bio.ebi.SparkEBILinksToOaf</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
|
|
|
@ -30,7 +30,7 @@
|
|||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Convert Baseline to OAF Dataset</name>
|
||||
<class>eu.dnetllib.dhp.sx.bio.ebi.SparkCreateBaselineDataFrame</class>
|
||||
<class>eu.dnetlib.dhp.sx.bio.ebi.SparkCreateBaselineDataFrame</class>
|
||||
<jar>dhp-aggregation-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
##DHP-Aggregation
|
||||
|
||||
This module defines a set of oozie workflows for the **collection** and **transformation** of metadata records.
|
||||
|
||||
Both workflows interact with the Metadata Store Manager (MdSM) to handle the logical transactions required to ensure
|
||||
the consistency of the read/write operations on the data as the MdSM in fact keeps track of the logical-physical mapping
|
||||
of each MDStore.
|
||||
|
||||
It defines [mappings](mappings.md) for transformation of different datasource (See mapping section).
|
|
@ -0,0 +1,7 @@
|
|||
##DHP-Aggregation
|
||||
|
||||
This module defines a set of oozie workflows for the **collection** and **transformation** of metadata records.
|
||||
|
||||
Both workflows interact with the Metadata Store Manager (MdSM) to handle the logical transactions required to ensure
|
||||
the consistency of the read/write operations on the data as the MdSM in fact keeps track of the logical-physical mapping
|
||||
of each MDStore.
|
|
@ -0,0 +1,18 @@
|
|||
DHP Aggregation
|
||||
===============
|
||||
|
||||
DHP-Aggregations contains different mappings from original data format into OAF Data Format,
|
||||
which converge in the graph in different ways:
|
||||
|
||||
- Via Action Manager
|
||||
- Direct in the MdStore on Hadoop
|
||||
|
||||
Below the list of the implemented mapping
|
||||
|
||||
|
||||
Mappings
|
||||
=======
|
||||
|
||||
1. [PubMed](pubmed.md)
|
||||
2. [Datacite](datacite.md)
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
#Pubmed Mapping
|
||||
This section describes the mapping implemented for [MEDLINE/PubMed](https://pubmed.ncbi.nlm.nih.gov/).
|
||||
|
||||
Collection
|
||||
---------
|
||||
The native data is collected from [ftp baseline](https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/) containing XML with
|
||||
the following [shcema](https://www.nlm.nih.gov/bsd/licensee/elements_descriptions.html)
|
||||
|
||||
|
||||
Parsing
|
||||
-------
|
||||
The resposible class of parsing is [PMParser](./scaladocs/#eu.dnetlib.dhp.sx.bio.pubmed.PMParser) that generates
|
||||
an intermediate mapping of PubMed Article defined [here](/apidocs/eu/dnetlib/dhp/sx/bio/pubmed/package-summary.html)
|
||||
|
||||
|
||||
Mapping
|
||||
-------
|
||||
|
||||
The table below describes the mapping from the XML Native to the OAF mapping
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
| Xpath Source | Oaf Field | Notes |
|
||||
| ----------- | ----------- | ----------- |
|
||||
| //PMID | pid | classid = classname = pmid
|
||||
| | **Instance Mapping** | |
|
||||
|//PublicationType | InstanceType | If the article contains the typology **Journal Article** then we apply this type else We have to find a terms that match the vocabulary otherwise we discard it
|
||||
|//PMID | instance/PID | Map the pmid also in the pid in the instance |
|
||||
| //ArticleId[./@IdType="doi" | instance/alternateIdentifier |classid = classname = doi
|
||||
|//PMID | instance/URL | prepend to the PMId the base url https://pubmed.ncbi.nlm.nih.gov/
|
||||
| //PubmedPubDate | instance/Dateofacceptance | apply the function GraphCleaningFunctions.cleanDate before assign it
|
||||
| FOR ALL INSTANCE | CollectedFrom | datasourceName: *Europe PubMed Central* DatasourceId:
|
||||
| | **Journal Mapping** | |
|
||||
|//Journal/PubDate| Journal/Conferencedate | map the date of the Journal
|
||||
|//Journal/Title| Journal/Name | |
|
||||
|//Journal/Volume| Journal/Vol | |
|
||||
|//Journal/ISSN| Journal/issPrinted | |
|
||||
|//Journal/Issue| Journal/Iss | |
|
||||
| | **Publication Mapping** | |
|
||||
| //PubmedPubDate | Dateofacceptance | apply the function GraphCleaningFunctions.cleanDate before assign it
|
||||
| //Title | title | with qualifier ModelConstants.MAIN_TITLE_QUALIFIER
|
||||
| //AbstractText | Description ||
|
||||
|//Language| Language| cleaning vocabulary -> dnet:languages
|
||||
|//DescriptorName| Subject | classId, className = keyword
|
||||
| | **Author Mapping** | |
|
||||
|//Author/LastName| author.Surname| |
|
||||
|//Author/ForeName| author.Forename| |
|
||||
|//Author/FullName| author.Forename| Concatenation of forname + lastName if exist |
|
||||
|FOR ALL AUTHOR | author.rank| sequential number starting from 1|
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
|
@ -0,0 +1,32 @@
|
|||
<?xml version="1.0" encoding="ISO-8859-1"?>
|
||||
<project xmlns="http://maven.apache.org/DECORATION/1.8.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/DECORATION/1.8.0 https://maven.apache.org/xsd/decoration-1.8.0.xsd"
|
||||
name="DHP-Aggregation">
|
||||
<skin>
|
||||
<groupId>org.apache.maven.skins</groupId>
|
||||
<artifactId>maven-fluido-skin</artifactId>
|
||||
<version>1.8</version>
|
||||
</skin>
|
||||
<poweredBy>
|
||||
<logo name="OpenAIRE Research Graph" href="https://graph.openaire.eu/"
|
||||
img="https://graph.openaire.eu/assets/common-assets/logo-large-graph.png"/>
|
||||
</poweredBy>
|
||||
<body>
|
||||
<links>
|
||||
<item name="Code" href="https://code-repo.d4science.org/" />
|
||||
</links>
|
||||
<menu name="Documentation">
|
||||
<item name="Mappings" href="mappings.html" collapse="true">
|
||||
<item name="Pubmed" href="pubmed.html"/>
|
||||
<item name="Datacite" href="datacite.html"/>
|
||||
</item>
|
||||
<item name="Release Notes" href="release-notes.html" />
|
||||
<item name="General Information" href="about.html"/>
|
||||
|
||||
<item name="JavaDoc" href="apidocs/" />
|
||||
<item name="ScalaDoc" href="scaladocs/" />
|
||||
|
||||
</menu>
|
||||
<menu ref="reports"/>
|
||||
</body>
|
||||
</project>
|
|
@ -0,0 +1,250 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
import java.io.BufferedReader;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStreamReader;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
import org.apache.commons.io.FileUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.LocalFileSystem;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.junit.jupiter.api.AfterAll;
|
||||
import org.junit.jupiter.api.Assertions;
|
||||
import org.junit.jupiter.api.BeforeAll;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.actionmanager.createunresolvedentities.model.FOSDataModel;
|
||||
import eu.dnetlib.dhp.common.collection.CollectorException;
|
||||
import eu.dnetlib.dhp.schema.oaf.Result;
|
||||
|
||||
public class PrepareTest {
|
||||
|
||||
private static final Logger log = LoggerFactory.getLogger(ProduceTest.class);
|
||||
|
||||
private static Path workingDir;
|
||||
private static SparkSession spark;
|
||||
private static LocalFileSystem fs;
|
||||
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
|
||||
@BeforeAll
|
||||
public static void beforeAll() throws IOException {
|
||||
workingDir = Files.createTempDirectory(PrepareTest.class.getSimpleName());
|
||||
|
||||
fs = FileSystem.getLocal(new Configuration());
|
||||
log.info("using work dir {}", workingDir);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
conf.setAppName(ProduceTest.class.getSimpleName());
|
||||
|
||||
conf.setMaster("local[*]");
|
||||
conf.set("spark.driver.host", "localhost");
|
||||
conf.set("hive.metastore.local", "true");
|
||||
conf.set("spark.ui.enabled", "false");
|
||||
conf.set("spark.sql.warehouse.dir", workingDir.toString());
|
||||
conf.set("hive.metastore.warehouse.dir", workingDir.resolve("warehouse").toString());
|
||||
|
||||
spark = SparkSession
|
||||
.builder()
|
||||
.appName(PrepareTest.class.getSimpleName())
|
||||
.config(conf)
|
||||
.getOrCreate();
|
||||
}
|
||||
|
||||
@AfterAll
|
||||
public static void afterAll() throws IOException {
|
||||
FileUtils.deleteDirectory(workingDir.toFile());
|
||||
spark.stop();
|
||||
}
|
||||
|
||||
@Test
|
||||
void bipPrepareTest() throws Exception {
|
||||
final String sourcePath = getClass()
|
||||
.getResource("/eu/dnetlib/dhp/actionmanager/createunresolvedentities/bip/bip.json")
|
||||
.getPath();
|
||||
|
||||
PrepareBipFinder
|
||||
.main(
|
||||
new String[] {
|
||||
"--isSparkSessionManaged", Boolean.FALSE.toString(),
|
||||
"--sourcePath", sourcePath,
|
||||
"--outputPath", workingDir.toString() + "/work"
|
||||
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Result> tmp = sc
|
||||
.textFile(workingDir.toString() + "/work/bip")
|
||||
.map(item -> OBJECT_MAPPER.readValue(item, Result.class));
|
||||
|
||||
Assertions.assertEquals(86, tmp.count());
|
||||
|
||||
String doi1 = "unresolved::10.0000/096020199389707::doi";
|
||||
|
||||
Assertions.assertEquals(1, tmp.filter(r -> r.getId().equals(doi1)).count());
|
||||
Assertions.assertEquals(3, tmp.filter(r -> r.getId().equals(doi1)).collect().get(0).getMeasures().size());
|
||||
Assertions
|
||||
.assertEquals(
|
||||
"6.34596412687e-09", tmp
|
||||
.filter(r -> r.getId().equals(doi1))
|
||||
.collect()
|
||||
.get(0)
|
||||
.getMeasures()
|
||||
.stream()
|
||||
.filter(sl -> sl.getId().equals("influence"))
|
||||
.collect(Collectors.toList())
|
||||
.get(0)
|
||||
.getUnit()
|
||||
.get(0)
|
||||
.getValue());
|
||||
Assertions
|
||||
.assertEquals(
|
||||
"0.641151896994", tmp
|
||||
.filter(r -> r.getId().equals(doi1))
|
||||
.collect()
|
||||
.get(0)
|
||||
.getMeasures()
|
||||
.stream()
|
||||
.filter(sl -> sl.getId().equals("popularity_alt"))
|
||||
.collect(Collectors.toList())
|
||||
.get(0)
|
||||
.getUnit()
|
||||
.get(0)
|
||||
.getValue());
|
||||
Assertions
|
||||
.assertEquals(
|
||||
"2.33375102921e-09", tmp
|
||||
.filter(r -> r.getId().equals(doi1))
|
||||
.collect()
|
||||
.get(0)
|
||||
.getMeasures()
|
||||
.stream()
|
||||
.filter(sl -> sl.getId().equals("popularity"))
|
||||
.collect(Collectors.toList())
|
||||
.get(0)
|
||||
.getUnit()
|
||||
.get(0)
|
||||
.getValue());
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void getFOSFileTest() throws IOException, ClassNotFoundException {
|
||||
|
||||
final String sourcePath = getClass()
|
||||
.getResource("/eu/dnetlib/dhp/actionmanager/createunresolvedentities/fos/h2020_fos_sbs.csv")
|
||||
.getPath();
|
||||
final String outputPath = workingDir.toString() + "/fos.json";
|
||||
|
||||
new GetFOSData()
|
||||
.doRewrite(
|
||||
sourcePath, outputPath, "eu.dnetlib.dhp.actionmanager.createunresolvedentities.model.FOSDataModel",
|
||||
'\t', fs);
|
||||
|
||||
BufferedReader in = new BufferedReader(
|
||||
new InputStreamReader(fs.open(new org.apache.hadoop.fs.Path(outputPath))));
|
||||
|
||||
String line;
|
||||
int count = 0;
|
||||
while ((line = in.readLine()) != null) {
|
||||
FOSDataModel fos = new ObjectMapper().readValue(line, FOSDataModel.class);
|
||||
|
||||
System.out.println(new ObjectMapper().writeValueAsString(fos));
|
||||
count += 1;
|
||||
}
|
||||
|
||||
assertEquals(38, count);
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void fosPrepareTest() throws Exception {
|
||||
final String sourcePath = getClass()
|
||||
.getResource("/eu/dnetlib/dhp/actionmanager/createunresolvedentities/fos/fos.json")
|
||||
.getPath();
|
||||
|
||||
PrepareFOSSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"--isSparkSessionManaged", Boolean.FALSE.toString(),
|
||||
"--sourcePath", sourcePath,
|
||||
|
||||
"-outputPath", workingDir.toString() + "/work"
|
||||
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Result> tmp = sc
|
||||
.textFile(workingDir.toString() + "/work/fos")
|
||||
.map(item -> OBJECT_MAPPER.readValue(item, Result.class));
|
||||
|
||||
String doi1 = "unresolved::10.3390/s18072310::doi";
|
||||
|
||||
assertEquals(50, tmp.count());
|
||||
assertEquals(1, tmp.filter(row -> row.getId().equals(doi1)).count());
|
||||
assertTrue(
|
||||
tmp
|
||||
.filter(r -> r.getId().equals(doi1))
|
||||
.flatMap(r -> r.getSubject().iterator())
|
||||
.map(sbj -> sbj.getValue())
|
||||
.collect()
|
||||
.contains("engineering and technology"));
|
||||
|
||||
assertTrue(
|
||||
tmp
|
||||
.filter(r -> r.getId().equals(doi1))
|
||||
.flatMap(r -> r.getSubject().iterator())
|
||||
.map(sbj -> sbj.getValue())
|
||||
.collect()
|
||||
.contains("nano-technology"));
|
||||
assertTrue(
|
||||
tmp
|
||||
.filter(r -> r.getId().equals(doi1))
|
||||
.flatMap(r -> r.getSubject().iterator())
|
||||
.map(sbj -> sbj.getValue())
|
||||
.collect()
|
||||
.contains("nanoscience & nanotechnology"));
|
||||
|
||||
String doi = "unresolved::10.1111/1365-2656.12831::doi";
|
||||
assertEquals(1, tmp.filter(row -> row.getId().equals(doi)).count());
|
||||
assertTrue(
|
||||
tmp
|
||||
.filter(r -> r.getId().equals(doi))
|
||||
.flatMap(r -> r.getSubject().iterator())
|
||||
.map(sbj -> sbj.getValue())
|
||||
.collect()
|
||||
.contains("psychology and cognitive sciences"));
|
||||
|
||||
assertTrue(
|
||||
tmp
|
||||
.filter(r -> r.getId().equals(doi))
|
||||
.flatMap(r -> r.getSubject().iterator())
|
||||
.map(sbj -> sbj.getValue())
|
||||
.collect()
|
||||
.contains("social sciences"));
|
||||
assertFalse(
|
||||
tmp
|
||||
.filter(r -> r.getId().equals(doi))
|
||||
.flatMap(r -> r.getSubject().iterator())
|
||||
.map(sbj -> sbj.getValue())
|
||||
.collect()
|
||||
.contains("NULL"));
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,234 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.createunresolvedentities;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.util.List;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
import org.apache.commons.io.FileUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.LocalFileSystem;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.junit.jupiter.api.AfterAll;
|
||||
import org.junit.jupiter.api.Assertions;
|
||||
import org.junit.jupiter.api.BeforeAll;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.schema.common.ModelConstants;
|
||||
import eu.dnetlib.dhp.schema.oaf.*;
|
||||
|
||||
public class ProduceTest {
|
||||
private static final Logger log = LoggerFactory.getLogger(ProduceTest.class);
|
||||
|
||||
private static Path workingDir;
|
||||
private static SparkSession spark;
|
||||
private static LocalFileSystem fs;
|
||||
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
private static final String ID_PREFIX = "50|doi_________";
|
||||
|
||||
@BeforeAll
|
||||
public static void beforeAll() throws IOException {
|
||||
workingDir = Files.createTempDirectory(ProduceTest.class.getSimpleName());
|
||||
|
||||
fs = FileSystem.getLocal(new Configuration());
|
||||
log.info("using work dir {}", workingDir);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
conf.setAppName(ProduceTest.class.getSimpleName());
|
||||
|
||||
conf.setMaster("local[*]");
|
||||
conf.set("spark.driver.host", "localhost");
|
||||
conf.set("hive.metastore.local", "true");
|
||||
conf.set("spark.ui.enabled", "false");
|
||||
conf.set("spark.sql.warehouse.dir", workingDir.toString());
|
||||
conf.set("hive.metastore.warehouse.dir", workingDir.resolve("warehouse").toString());
|
||||
|
||||
spark = SparkSession
|
||||
.builder()
|
||||
.appName(ProduceTest.class.getSimpleName())
|
||||
.config(conf)
|
||||
.getOrCreate();
|
||||
}
|
||||
|
||||
@AfterAll
|
||||
public static void afterAll() throws IOException {
|
||||
FileUtils.deleteDirectory(workingDir.toFile());
|
||||
spark.stop();
|
||||
}
|
||||
|
||||
@Test
|
||||
void produceTest() throws Exception {
|
||||
|
||||
final String bipPath = getClass()
|
||||
.getResource("/eu/dnetlib/dhp/actionmanager/createunresolvedentities/bip/bip.json")
|
||||
.getPath();
|
||||
|
||||
PrepareBipFinder
|
||||
.main(
|
||||
new String[] {
|
||||
"--isSparkSessionManaged", Boolean.FALSE.toString(),
|
||||
"--sourcePath", bipPath,
|
||||
"--outputPath", workingDir.toString() + "/work"
|
||||
|
||||
});
|
||||
final String fosPath = getClass()
|
||||
.getResource("/eu/dnetlib/dhp/actionmanager/createunresolvedentities/fos/fos.json")
|
||||
.getPath();
|
||||
|
||||
PrepareFOSSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"--isSparkSessionManaged", Boolean.FALSE.toString(),
|
||||
"--sourcePath", fosPath,
|
||||
"-outputPath", workingDir.toString() + "/work"
|
||||
});
|
||||
|
||||
SparkSaveUnresolved.main(new String[] {
|
||||
"--isSparkSessionManaged", Boolean.FALSE.toString(),
|
||||
"--sourcePath", workingDir.toString() + "/work",
|
||||
|
||||
"-outputPath", workingDir.toString() + "/unresolved"
|
||||
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Result> tmp = sc
|
||||
.textFile(workingDir.toString() + "/unresolved")
|
||||
.map(item -> OBJECT_MAPPER.readValue(item, Result.class));
|
||||
|
||||
Assertions.assertEquals(135, tmp.count());
|
||||
|
||||
Assertions.assertEquals(1, tmp.filter(row -> row.getId().equals("unresolved::10.3390/s18072310::doi")).count());
|
||||
|
||||
Assertions
|
||||
.assertEquals(
|
||||
3, tmp
|
||||
.filter(row -> row.getId().equals("unresolved::10.3390/s18072310::doi"))
|
||||
.collect()
|
||||
.get(0)
|
||||
.getSubject()
|
||||
.size());
|
||||
|
||||
Assertions
|
||||
.assertEquals(
|
||||
3, tmp
|
||||
.filter(row -> row.getId().equals("unresolved::10.3390/s18072310::doi"))
|
||||
.collect()
|
||||
.get(0)
|
||||
.getMeasures()
|
||||
.size());
|
||||
|
||||
List<StructuredProperty> sbjs = tmp
|
||||
.filter(row -> row.getId().equals("unresolved::10.3390/s18072310::doi"))
|
||||
.flatMap(row -> row.getSubject().iterator())
|
||||
.collect();
|
||||
|
||||
sbjs.forEach(sbj -> Assertions.assertEquals("FOS", sbj.getQualifier().getClassid()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions
|
||||
.assertEquals(
|
||||
"Fields of Science and Technology classification", sbj.getQualifier().getClassname()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions
|
||||
.assertEquals(ModelConstants.DNET_SUBJECT_TYPOLOGIES, sbj.getQualifier().getSchemeid()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions
|
||||
.assertEquals(ModelConstants.DNET_SUBJECT_TYPOLOGIES, sbj.getQualifier().getSchemename()));
|
||||
|
||||
sbjs.forEach(sbj -> Assertions.assertEquals(false, sbj.getDataInfo().getDeletedbyinference()));
|
||||
sbjs.forEach(sbj -> Assertions.assertEquals(true, sbj.getDataInfo().getInferred()));
|
||||
sbjs.forEach(sbj -> Assertions.assertEquals(false, sbj.getDataInfo().getInvisible()));
|
||||
sbjs.forEach(sbj -> Assertions.assertEquals("", sbj.getDataInfo().getTrust()));
|
||||
sbjs.forEach(sbj -> Assertions.assertEquals("update", sbj.getDataInfo().getInferenceprovenance()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions.assertEquals("subject:fos", sbj.getDataInfo().getProvenanceaction().getClassid()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions
|
||||
.assertEquals("Inferred by OpenAIRE", sbj.getDataInfo().getProvenanceaction().getClassname()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions
|
||||
.assertEquals(
|
||||
ModelConstants.DNET_PROVENANCE_ACTIONS, sbj.getDataInfo().getProvenanceaction().getSchemeid()));
|
||||
sbjs
|
||||
.forEach(
|
||||
sbj -> Assertions
|
||||
.assertEquals(
|
||||
ModelConstants.DNET_PROVENANCE_ACTIONS,
|
||||
sbj.getDataInfo().getProvenanceaction().getSchemename()));
|
||||
|
||||
sbjs.stream().anyMatch(sbj -> sbj.getValue().equals("engineering and technology"));
|
||||
sbjs.stream().anyMatch(sbj -> sbj.getValue().equals("nano-technology"));
|
||||
sbjs.stream().anyMatch(sbj -> sbj.getValue().equals("nanoscience & nanotechnology"));
|
||||
|
||||
List<Measure> measures = tmp
|
||||
.filter(row -> row.getId().equals("unresolved::10.3390/s18072310::doi"))
|
||||
.flatMap(row -> row.getMeasures().iterator())
|
||||
.collect();
|
||||
Assertions
|
||||
.assertEquals(
|
||||
"7.5597134689e-09", measures
|
||||
.stream()
|
||||
.filter(mes -> mes.getId().equals("influence"))
|
||||
.collect(Collectors.toList())
|
||||
.get(0)
|
||||
.getUnit()
|
||||
.get(0)
|
||||
.getValue());
|
||||
|
||||
Assertions
|
||||
.assertEquals(
|
||||
"4.903880192", measures
|
||||
.stream()
|
||||
.filter(mes -> mes.getId().equals("popularity_alt"))
|
||||
.collect(Collectors.toList())
|
||||
.get(0)
|
||||
.getUnit()
|
||||
.get(0)
|
||||
.getValue());
|
||||
|
||||
Assertions
|
||||
.assertEquals(
|
||||
"1.17977512835e-08", measures
|
||||
.stream()
|
||||
.filter(mes -> mes.getId().equals("popularity"))
|
||||
.collect(Collectors.toList())
|
||||
.get(0)
|
||||
.getUnit()
|
||||
.get(0)
|
||||
.getValue());
|
||||
|
||||
Assertions
|
||||
.assertEquals(
|
||||
49, tmp
|
||||
.filter(row -> !row.getId().equals("unresolved::10.3390/s18072310::doi"))
|
||||
.filter(row -> row.getSubject() != null)
|
||||
.count());
|
||||
|
||||
Assertions
|
||||
.assertEquals(
|
||||
85,
|
||||
tmp
|
||||
.filter(row -> !row.getId().equals("unresolved::10.3390/s18072310::doi"))
|
||||
.filter(r -> r.getMeasures() != null)
|
||||
.count());
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,335 @@
|
|||
|
||||
package eu.dnetlib.dhp.actionmanager.opencitations;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
|
||||
import org.apache.commons.io.FileUtils;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.sql.Dataset;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.Row;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.junit.jupiter.api.AfterAll;
|
||||
import org.junit.jupiter.api.Assertions;
|
||||
import org.junit.jupiter.api.BeforeAll;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.schema.action.AtomicAction;
|
||||
import eu.dnetlib.dhp.schema.common.ModelConstants;
|
||||
import eu.dnetlib.dhp.schema.oaf.Publication;
|
||||
import eu.dnetlib.dhp.schema.oaf.Relation;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.CleaningFunctions;
|
||||
import eu.dnetlib.dhp.schema.oaf.utils.IdentifierFactory;
|
||||
|
||||
public class CreateOpenCitationsASTest {
|
||||
|
||||
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
|
||||
private static SparkSession spark;
|
||||
|
||||
private static Path workingDir;
|
||||
private static final Logger log = LoggerFactory
|
||||
.getLogger(CreateOpenCitationsASTest.class);
|
||||
|
||||
@BeforeAll
|
||||
public static void beforeAll() throws IOException {
|
||||
workingDir = Files
|
||||
.createTempDirectory(CreateOpenCitationsASTest.class.getSimpleName());
|
||||
log.info("using work dir {}", workingDir);
|
||||
|
||||
SparkConf conf = new SparkConf();
|
||||
conf.setAppName(CreateOpenCitationsASTest.class.getSimpleName());
|
||||
|
||||
conf.setMaster("local[*]");
|
||||
conf.set("spark.driver.host", "localhost");
|
||||
conf.set("hive.metastore.local", "true");
|
||||
conf.set("spark.ui.enabled", "false");
|
||||
conf.set("spark.sql.warehouse.dir", workingDir.toString());
|
||||
conf.set("hive.metastore.warehouse.dir", workingDir.resolve("warehouse").toString());
|
||||
|
||||
spark = SparkSession
|
||||
.builder()
|
||||
.appName(CreateOpenCitationsASTest.class.getSimpleName())
|
||||
.config(conf)
|
||||
.getOrCreate();
|
||||
}
|
||||
|
||||
@AfterAll
|
||||
public static void afterAll() throws IOException {
|
||||
FileUtils.deleteDirectory(workingDir.toFile());
|
||||
spark.stop();
|
||||
}
|
||||
|
||||
@Test
|
||||
void testNumberofRelations() throws Exception {
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-shouldDuplicateRels",
|
||||
Boolean.TRUE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
assertEquals(60, tmp.count());
|
||||
|
||||
// tmp.foreach(r -> System.out.println(OBJECT_MAPPER.writeValueAsString(r)));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testNumberofRelations2() throws Exception {
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
assertEquals(44, tmp.count());
|
||||
|
||||
// tmp.foreach(r -> System.out.println(OBJECT_MAPPER.writeValueAsString(r)));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testRelationsCollectedFrom() throws Exception {
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
tmp.foreach(r -> {
|
||||
assertEquals(ModelConstants.OPENOCITATIONS_NAME, r.getCollectedfrom().get(0).getValue());
|
||||
assertEquals(ModelConstants.OPENOCITATIONS_ID, r.getCollectedfrom().get(0).getKey());
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testRelationsDataInfo() throws Exception {
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
tmp.foreach(r -> {
|
||||
assertEquals(false, r.getDataInfo().getInferred());
|
||||
assertEquals(false, r.getDataInfo().getDeletedbyinference());
|
||||
assertEquals("0.91", r.getDataInfo().getTrust());
|
||||
assertEquals(
|
||||
CreateActionSetSparkJob.OPENCITATIONS_CLASSID, r.getDataInfo().getProvenanceaction().getClassid());
|
||||
assertEquals(
|
||||
CreateActionSetSparkJob.OPENCITATIONS_CLASSNAME, r.getDataInfo().getProvenanceaction().getClassname());
|
||||
assertEquals(ModelConstants.DNET_PROVENANCE_ACTIONS, r.getDataInfo().getProvenanceaction().getSchemeid());
|
||||
assertEquals(ModelConstants.DNET_PROVENANCE_ACTIONS, r.getDataInfo().getProvenanceaction().getSchemename());
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testRelationsSemantics() throws Exception {
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
tmp.foreach(r -> {
|
||||
assertEquals("citation", r.getSubRelType());
|
||||
assertEquals("resultResult", r.getRelType());
|
||||
});
|
||||
assertEquals(22, tmp.filter(r -> r.getRelClass().equals("Cites")).count());
|
||||
assertEquals(22, tmp.filter(r -> r.getRelClass().equals("IsCitedBy")).count());
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testRelationsSourceTargetPrefix() throws Exception {
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
tmp.foreach(r -> {
|
||||
assertEquals("50|doi_________::", r.getSource().substring(0, 17));
|
||||
assertEquals("50|doi_________::", r.getTarget().substring(0, 17));
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
void testRelationsSourceTargetCouple() throws Exception {
|
||||
final String doi1 = "50|doi_________::"
|
||||
+ IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", "10.1007/s10854-015-3684-x"));
|
||||
final String doi2 = "50|doi_________::"
|
||||
+ IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", "10.1111/j.1551-2916.2008.02408.x"));
|
||||
final String doi3 = "50|doi_________::"
|
||||
+ IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", "10.1007/s10854-014-2114-9"));
|
||||
final String doi4 = "50|doi_________::"
|
||||
+ IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", "10.1016/j.ceramint.2013.09.069"));
|
||||
final String doi5 = "50|doi_________::"
|
||||
+ IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", "10.1007/s10854-009-9913-4"));
|
||||
final String doi6 = "50|doi_________::"
|
||||
+ IdentifierFactory.md5(CleaningFunctions.normalizePidValue("doi", "10.1016/0038-1098(72)90370-5"));
|
||||
|
||||
String inputPath = getClass()
|
||||
.getResource(
|
||||
"/eu/dnetlib/dhp/actionmanager/opencitations/inputFiles")
|
||||
.getPath();
|
||||
|
||||
CreateActionSetSparkJob
|
||||
.main(
|
||||
new String[] {
|
||||
"-isSparkSessionManaged",
|
||||
Boolean.FALSE.toString(),
|
||||
"-inputPath",
|
||||
inputPath,
|
||||
"-outputPath",
|
||||
workingDir.toString() + "/actionSet"
|
||||
});
|
||||
|
||||
final JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
|
||||
|
||||
JavaRDD<Relation> tmp = sc
|
||||
.sequenceFile(workingDir.toString() + "/actionSet", Text.class, Text.class)
|
||||
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
|
||||
.map(aa -> ((Relation) aa.getPayload()));
|
||||
|
||||
JavaRDD<Relation> check = tmp.filter(r -> r.getSource().equals(doi1) || r.getTarget().equals(doi1));
|
||||
|
||||
assertEquals(10, check.count());
|
||||
|
||||
check.foreach(r -> {
|
||||
if (r.getSource().equals(doi2) || r.getSource().equals(doi3) || r.getSource().equals(doi4) ||
|
||||
r.getSource().equals(doi5) || r.getSource().equals(doi6)) {
|
||||
assertEquals(ModelConstants.IS_CITED_BY, r.getRelClass());
|
||||
assertEquals(doi1, r.getTarget());
|
||||
}
|
||||
});
|
||||
|
||||
assertEquals(5, check.filter(r -> r.getSource().equals(doi1)).count());
|
||||
check.filter(r -> r.getSource().equals(doi1)).foreach(r -> assertEquals(ModelConstants.CITES, r.getRelClass()));
|
||||
|
||||
}
|
||||
}
|
|
@ -1,8 +1,7 @@
|
|||
package eu.dnetlib.dhp.actionmanager.datacite
|
||||
package eu.dnetlib.dhp.datacite
|
||||
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import com.fasterxml.jackson.databind.SerializationFeature
|
||||
import com.fasterxml.jackson.databind.{ObjectMapper, SerializationFeature}
|
||||
import eu.dnetlib.dhp.aggregation.AbstractVocabularyTest
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf
|
||||
import org.junit.jupiter.api.extension.ExtendWith
|
|
@ -0,0 +1,86 @@
|
|||
{"10.3390/s18072310": [{"id": "influence", "unit": [{"value": "7.5597134689e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "4.903880192", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "1.17977512835e-08", "key": "score"}]}]}
|
||||
{"10.0000/096020199389707": [{"id": "influence", "unit": [{"value": "6.34596412687e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.641151896994", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "2.33375102921e-09", "key": "score"}]}]}
|
||||
{"10.00000/jpmc.2017.106": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "5.39172290649e-09", "key": "score"}]}]}
|
||||
{"10.0000/9781845416881": [{"id": "influence", "unit": [{"value": "5.96492048955e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "1.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "1.12641925838e-08", "key": "score"}]}]}
|
||||
{"10.0000/anziamj.v0i0.266": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "3.76260934675e-10", "key": "score"}]}]}
|
||||
{"10.0000/anziamj.v48i0.79": [{"id": "influence", "unit": [{"value": "6.93311506443e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.002176782336", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "1.7668105708e-09", "key": "score"}]}]}
|
||||
{"10.0000/anziamj.v50i0.1472": [{"id": "influence", "unit": [{"value": "6.26777280882e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.406656", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "3.39745193285e-09", "key": "score"}]}]}
|
||||
{"10.0000/cja5553": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.16": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.17": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "3.47956715615e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.18": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "3.47956715615e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.20": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.21": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "3.47956715615e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.28": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "3.47956715615e-09", "key": "score"}]}]}
|
||||
{"10.0000/czastest.60": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/czt.2019.1.2.15": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v4i02.36": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v4i02.37": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v4i02.38": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v5i01.32": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v6i01.24": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v6i01.27": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v6i02.41": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v6i02.44": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i01.40": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.01810569717e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i01.42": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i01.47": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i01.51": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i01.52": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i02.86": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i02.88": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v7i02.91": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v8i01.129": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v8i01.180": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "5.39172290649e-09", "key": "score"}]}]}
|
||||
{"10.0000/geoekonomi.v8i01.87": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "4.65008652949e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2004w010": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w001": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w002": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w003": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w004": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w005": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w006": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2101w007": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2102w001": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hbv2102w010": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "9.88840807598e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i1.13207": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i1.13208": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "5.39172290649e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i1.13209": [{"id": "influence", "unit": [{"value": "6.32078461509e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "1.6", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.3168486939e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i1.13210": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i1.13211": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "5.39172290649e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i1.13212": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "5.39172290649e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v1i2.13231": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i2.28782": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i2.28783": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i2.28784": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i2.28786": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i2.28787": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i2.28788": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i3.28234": [{"id": "influence", "unit": [{"value": "6.40470414877e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.6", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.89465099068e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i3.28236": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i3.28238": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i3.28239": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i3.28242": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v2i3.28243": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "6.26204125721e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i4.38186": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i4.38187": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i4.38190": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i4.38207": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i4.38209": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i5.41163": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i5.41166": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i5.41167": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i5.41168": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "7.28336930301e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v3i5.41229": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.36360": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.40796": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.41153": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.42511": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.42555": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.42752": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.42768": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i6.42795": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i7.41295": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i7.42830": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i7.42861": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
||||
{"10.0000/hoplos.v4i7.43096": [{"id": "influence", "unit": [{"value": "5.91019644836e-09", "key": "score"}]}, {"id": "popularity_alt", "unit": [{"value": "0.0", "key": "score"}]}, {"id": "popularity", "unit": [{"value": "8.48190886761e-09", "key": "score"}]}]}
|
|
@ -0,0 +1,38 @@
|
|||
{"doi":"10.3390/s18072310","level1":"engineering and technology","level2":"nano-technology","level3":"nanoscience & nanotechnology"}
|
||||
{"doi":"10.1111/1365-2656.12831\u000210.17863/cam.24369","level1":"social sciences","level2":"psychology and cognitive sciences","level3":"NULL"}
|
||||
{"doi":"10.3929/ethz-b-000187584\u000210.1002/chem.201701644","level1":"natural sciences","level2":"NULL","level3":"NULL"}
|
||||
{"doi":"10.1080/01913123.2017.1367361","level1":"medical and health sciences","level2":"clinical medicine","level3":"oncology & carcinogenesis"}
|
||||
{"doi":"10.1051/e3sconf/20199207011","level1":"natural sciences","level2":"earth and related environmental sciences","level3":"environmental sciences"}
|
||||
{"doi":"10.1038/onc.2015.333","level1":"medical and health sciences","level2":"clinical medicine","level3":"oncology & carcinogenesis"}
|
||||
{"doi":"10.1093/mnras/staa256","level1":"natural sciences","level2":"physical sciences","level3":"NULL"}
|
||||
{"doi":"10.1016/j.jclepro.2018.07.166","level1":"engineering and technology","level2":"other engineering and technologies","level3":"building & construction"}
|
||||
{"doi":"10.1103/physrevlett.125.037403","level1":"natural sciences","level2":"physical sciences","level3":"nuclear & particles physics"}
|
||||
{"doi":"10.1080/03602532.2017.1316285","level1":"natural sciences","level2":"NULL","level3":"NULL"}
|
||||
{"doi":"10.1001/jamanetworkopen.2019.1868","level1":"medical and health sciences","level2":"other medical science","level3":"health policy & services"}
|
||||
{"doi":"10.1128/mra.00874-18","level1":"natural sciences","level2":"biological sciences","level3":"plant biology & botany"}
|
||||
{"doi":"10.1016/j.nancom.2018.03.001","level1":"engineering and technology","level2":"NULL","level3":"NULL"}
|
||||
{"doi":"10.1112/topo.12174","level1":"natural sciences","level2":"NULL","level3":"NULL"}
|
||||
{"doi":"10.12688/wellcomeopenres.15846.1","level1":"medical and health sciences","level2":"health sciences","level3":"NULL"}
|
||||
{"doi":"10.21468/scipostphys.3.1.001","level1":"natural sciences","level2":"physical sciences","level3":"NULL"}
|
||||
{"doi":"10.1088/1741-4326/ab6c77","level1":"natural sciences","level2":"physical sciences","level3":"nuclear & particles physics"}
|
||||
{"doi":"10.1109/tpwrs.2019.2944747","level1":"engineering and technology","level2":"electrical engineering, electronic engineering, information engineering","level3":"electrical & electronic engineering"}
|
||||
{"doi":"10.1016/j.expthermflusci.2019.109994\u000210.17863/cam.46212","level1":"engineering and technology","level2":"mechanical engineering","level3":"mechanical engineering & transports"}
|
||||
{"doi":"10.1109/tc.2018.2860012","level1":"engineering and technology","level2":"electrical engineering, electronic engineering, information engineering","level3":"computer hardware & architecture"}
|
||||
{"doi":"10.1002/mma.6622","level1":"natural sciences","level2":"mathematics","level3":"numerical & computational mathematics"}
|
||||
{"doi":"10.1051/radiopro/2020020","level1":"natural sciences","level2":"chemical sciences","level3":"NULL"}
|
||||
{"doi":"10.1007/s12268-019-1003-4","level1":"medical and health sciences","level2":"basic medicine","level3":"NULL"}
|
||||
{"doi":"10.3390/cancers12010236","level1":"medical and health sciences","level2":"health sciences","level3":"biochemistry & molecular biology"}
|
||||
{"doi":"10.6084/m9.figshare.9912614\u000210.6084/m9.figshare.9912614.v1\u000210.1080/00268976.2019.1665199","level1":"natural sciences","level2":"chemical sciences","level3":"physical chemistry"}
|
||||
{"doi":"10.1175/jpo-d-17-0239.1","level1":"natural sciences","level2":"biological sciences","level3":"marine biology & hydrobiology"}
|
||||
{"doi":"10.1007/s13218-020-00674-7","level1":"engineering and technology","level2":"industrial biotechnology","level3":"industrial engineering & automation"}
|
||||
{"doi":"10.1016/j.psyneuen.2016.02.003\u000210.1016/j.psyneuen.2016.02.00310.7892/boris.78886\u000210.7892/boris.78886","level1":"medical and health sciences","level2":"basic medicine","level3":"NULL"}
|
||||
{"doi":"10.1109/ted.2018.2813542","level1":"engineering and technology","level2":"electrical engineering, electronic engineering, information engineering","level3":"electrical & electronic engineering"}
|
||||
{"doi":"10.3989/scimar.04739.25a","level1":"natural sciences","level2":"biological sciences","level3":"NULL"}
|
||||
{"doi":"10.3390/su12187503","level1":"natural sciences","level2":"earth and related environmental sciences","level3":"NULL"}
|
||||
{"doi":"10.1016/j.ccell.2018.08.017","level1":"medical and health sciences","level2":"basic medicine","level3":"biochemistry & molecular biology"}
|
||||
{"doi":"10.1103/physrevresearch.2.023322","level1":"natural sciences","level2":"physical sciences","level3":"nuclear & particles physics"}
|
||||
{"doi":"10.1039/c8cp03234c","level1":"natural sciences","level2":"NULL","level3":"NULL"}
|
||||
{"doi":"10.5281/zenodo.3696557\u000210.5281/zenodo.3696556\u000210.1109/jsac.2016.2545384","level1":"engineering and technology","level2":"electrical engineering, electronic engineering, information engineering","level3":"networking & telecommunications"}
|
||||
{"doi":"10.1038/ng.3667\u000210.1038/ng.3667.\u000210.17615/tct6-4m26\u000210.17863/cam.15649","level1":"medical and health sciences","level2":"health sciences","level3":"genetics & heredity"}
|
||||
{"doi":"10.1016/j.jclepro.2019.119065","level1":"engineering and technology","level2":"other engineering and technologies","level3":"building & construction"}
|
||||
{"doi":"10.1111/pce.13392","level1":"agricultural and veterinary sciences","level2":"agriculture, forestry, and fisheries","level3":"agronomy & agriculture"}
|
|
@ -0,0 +1,38 @@
|
|||
dedup_wf_001::ddcc7a56fa13e49bcc59c6bdd19ad26c 10.3390/s18072310 engineering and technology nano-technology nanoscience & nanotechnology
|
||||
dedup_wf_001::b76062d56e28224eac56111a4e1e5ecf 10.1111/1365-2656.1283110.17863/cam.24369 social sciences psychology and cognitive sciences NULL
|
||||
dedup_wf_001::bb752acb8f403a25fa7851a302f7b7ac 10.3929/ethz-b-00018758410.1002/chem.201701644 natural sciences NULL NULL
|
||||
dedup_wf_001::2f1435a9201ecf5cbbcb12c9b2d971cd 10.1080/01913123.2017.1367361 medical and health sciences clinical medicine oncology & carcinogenesis
|
||||
dedup_wf_001::fc9e47ec16c67b101724320d4b030514 10.1051/e3sconf/20199207011 natural sciences earth and related environmental sciences environmental sciences
|
||||
dedup_wf_001::caa1e5b4de387cb31751552f4f0f5d72 10.1038/onc.2015.333 medical and health sciences clinical medicine oncology & carcinogenesis
|
||||
dedup_wf_001::c2a98df5637d69bf0524eaf40fe6bf11 10.1093/mnras/staa256 natural sciences physical sciences NULL
|
||||
dedup_wf_001::c221262bdc77cbfd59859a402f0e3991 10.1016/j.jclepro.2018.07.166 engineering and technology other engineering and technologies building & construction
|
||||
doiboost____::d56d9dc21f317b3e009d5b6c8ea87212 10.1103/physrevlett.125.037403 natural sciences physical sciences nuclear & particles physics
|
||||
dedup_wf_001::8a7269c8ee6470b2fb4fd384bc389e08 10.1080/03602532.2017.1316285 natural sciences NULL NULL
|
||||
dedup_wf_001::28342ebbc19833e4e1f4a2b23cf5ee20 10.1001/jamanetworkopen.2019.1868 medical and health sciences other medical science health policy & services
|
||||
dedup_wf_001::c1e1daf2b55dd9ec8e1c7c7458bbc7bc 10.1128/mra.00874-18 natural sciences biological sciences plant biology & botany
|
||||
dedup_wf_001::a2ef4a2720c71907180750e5871298ef 10.1016/j.nancom.2018.03.001 engineering and technology NULL NULL
|
||||
dedup_wf_001::676f46a31519e83a89efcb1c626286fb 10.1112/topo.12174 natural sciences NULL NULL
|
||||
dedup_wf_001::6f2761642f1e39313388e2c4060657dd 10.12688/wellcomeopenres.15846.1 medical and health sciences health sciences NULL
|
||||
dedup_wf_001::e414c1dec599521a9635a60de0f6755b 10.21468/scipostphys.3.1.001 natural sciences physical sciences NULL
|
||||
dedup_wf_001::f3395fe0f330164ea424dc61c86c9a3d 10.1088/1741-4326/ab6c77 natural sciences physical sciences nuclear & particles physics
|
||||
dedup_wf_001::a4f32a97a783117012f1de11797e73f2 10.1109/tpwrs.2019.2944747 engineering and technology electrical engineering, electronic engineering, information engineering electrical & electronic engineering
|
||||
dedup_wf_001::313ae1cd083ae1696d12dd1909f97df8 10.1016/j.expthermflusci.2019.10999410.17863/cam.46212 engineering and technology mechanical engineering mechanical engineering & transports
|
||||
dedup_wf_001::2a300a7d3ca7347791ebcef986bc0682 10.1109/tc.2018.2860012 engineering and technology electrical engineering, electronic engineering, information engineering computer hardware & architecture
|
||||
doiboost____::5b79bd7bd9f87361b4a4abc3cbb2df75 10.1002/mma.6622 natural sciences mathematics numerical & computational mathematics
|
||||
dedup_wf_001::6a3f61f217a2519fbaddea1094e3bfc2 10.1051/radiopro/2020020 natural sciences chemical sciences NULL
|
||||
dedup_wf_001::a3f0430309a639f4234a0e57b10f2dee 10.1007/s12268-019-1003-4 medical and health sciences basic medicine NULL
|
||||
dedup_wf_001::b6b8a3a1cccbee459cf3343485efdb12 10.3390/cancers12010236 medical and health sciences health sciences biochemistry & molecular biology
|
||||
dedup_wf_001::dd06ee7974730e7b09a4f03c83b3f9bd 10.6084/m9.figshare.991261410.6084/m9.figshare.9912614.v110.1080/00268976.2019.1665199 natural sciences chemical sciences physical chemistry
|
||||
dedup_wf_001::027c78bef6f972b5e26dfea55d30fbe3 10.1175/jpo-d-17-0239.1 natural sciences biological sciences marine biology & hydrobiology
|
||||
dedup_wf_001::43edc179aa9e1fbaf582c5203b18b519 10.1007/s13218-020-00674-7 engineering and technology industrial biotechnology industrial engineering & automation
|
||||
dedup_wf_001::e7770e11cd6eb514bb52c07b5a8a80f0 10.1016/j.psyneuen.2016.02.00310.1016/j.psyneuen.2016.02.00310.7892/boris.7888610.7892/boris.78886 medical and health sciences basic medicine NULL
|
||||
dedup_wf_001::80bc15d69bdc589149631f3439dde5aa 10.1109/ted.2018.2813542 engineering and technology electrical engineering, electronic engineering, information engineering electrical & electronic engineering
|
||||
dedup_wf_001::42c1cfa33e7872944b920cff90f4d99e 10.3989/scimar.04739.25a natural sciences biological sciences NULL
|
||||
dedup_wf_001::9bacdbbaa9da3658b7243d5de8e3ce14 10.3390/su12187503 natural sciences earth and related environmental sciences NULL
|
||||
dedup_wf_001::59e43d3527dcfecb6097fbd5740c8950 10.1016/j.ccell.2018.08.017 medical and health sciences basic medicine biochemistry & molecular biology
|
||||
doiboost____::e024d1b738df3b24bc58fa0228542571 10.1103/physrevresearch.2.023322 natural sciences physical sciences nuclear & particles physics
|
||||
dedup_wf_001::66e9a3237fa8178886d26d3c2d5b9e66 10.1039/c8cp03234c natural sciences NULL NULL
|
||||
dedup_wf_001::83737ab4205bae751571bb3b166efa18 10.5281/zenodo.369655710.5281/zenodo.369655610.1109/jsac.2016.2545384 engineering and technology electrical engineering, electronic engineering, information engineering networking & telecommunications
|
||||
dedup_wf_001::e3f892db413a689e572dd256acad55fe 10.1038/ng.366710.1038/ng.3667.10.17615/tct6-4m2610.17863/cam.15649 medical and health sciences health sciences genetics & heredity
|
||||
dedup_wf_001::14ba594e8fd081847bc3f50f56335003 10.1016/j.jclepro.2019.119065 engineering and technology other engineering and technologies building & construction
|
||||
dedup_wf_001::08ac7b33a41bcea2d055ecd8585d632e 10.1111/pce.13392 agricultural and veterinary sciences agriculture, forestry, and fisheries agronomy & agriculture
|
|
|
@ -0,0 +1,8 @@
|
|||
oci,citing,cited,creation,timespan,journal_sc,author_sc
|
||||
02001000007362801000805046300010563030608046333-0200101010136193701050501630209010637020000083700020400083733,10.1007/s10854-015-3684-x,10.1111/j.1551-2916.2008.02408.x,2015-09-01,P7Y2M,no,no
|
||||
02001000007362801000805046300010563030608046333-02001000007362801000805046300010463020101046309,10.1007/s10854-015-3684-x,10.1007/s10854-014-2114-9,2015-09-01,P1Y2M4D,yes,no
|
||||
02001000007362801000805046300010563030608046333-020010001063619371214271022182329370200010337000937000609,10.1007/s10854-015-3684-x,10.1016/j.ceramint.2013.09.069,2015-09-01,P1Y6M,no,no
|
||||
02001000007362801000805046300010563030608046333-02001000007362801000805046300000963090901036304,10.1007/s10854-015-3684-x,10.1007/s10854-009-9913-4,2015-09-01,P6Y3M10D,yes,no
|
||||
02001000007362801000805046300010563030608046333-02001000106360000030863010009085807025909000307006305,10.1007/s10854-015-3684-x,10.1016/0038-1098(72)90370-5,2015-09-01,P43Y8M,no,no
|
||||
02001000007362801000805046300010563030608056309-02001000106361937281010370200010437000937000308,10.1007/s10854-015-3685-9,10.1016/j.saa.2014.09.038,2015-09-03,P0Y7M,no,no
|
||||
02001000007362801000805046300010563030608056309-0200100010636193722102912171027370200010537000437000106,10.1007/s10854-015-3685-9,10.1016/j.matchar.2015.04.016,2015-09-03,P0Y2M,no,no
|
|
@ -0,0 +1,8 @@
|
|||
oci,citing,cited,creation,timespan,journal_sc,author_sc
|
||||
02001000308362804010509076300010963000003086301-0200100020936020001003227000009010004,10.1038/s41597-019-0038-1,10.1029/2010wr009104,2019-04-15,P8Y1M,no,no
|
||||
02001000308362804010509076300010963000003086301-0200100010636280103060463080105025800015900000006006303,10.1038/s41597-019-0038-1,10.1016/s1364-8152(01)00060-3,2019-04-15,P17Y3M,no,no
|
||||
02001000308362804010509076300010963000003086301-02001000007362800000407076300010063000401066333,10.1038/s41597-019-0038-1,10.1007/s00477-010-0416-x,2019-04-15,P8Y9M6D,no,no
|
||||
02001000308362804010509076300010963000003086301-02001000007362800000700046300010363000905016308,10.1038/s41597-019-0038-1,10.1007/s00704-013-0951-8,2019-04-15,P5Y9M23D,no,no
|
||||
02001000308362804010509076300010963000003086301-02001000002361924123705070707,10.1038/s41597-019-0038-1,10.1002/joc.5777,2019-04-15,P0Y8M1D,no,no
|
||||
02001000308362804010509076300010963000003086301-02005010904361714282863020263040504076302000108,10.1038/s41597-019-0038-1,10.5194/hess-22-4547-2018,2019-04-15,P0Y7M18D,no,no
|
||||
02001000308362804010509076300010963000003086301-02001000002361924123703050404,10.1038/s41597-019-0038-1,10.1002/joc.3544,2019-04-15,P6Y9M6D,no,no
|
|
@ -0,0 +1,9 @@
|
|||
oci,citing,cited,creation,timespan,journal_sc,author_sc
|
||||
0200100000236090708010101090307000202023727141528-020050302063600040000010307,10.1002/9781119370222.refs,10.5326/0400137,2020-06-22,P16Y3M,no,no
|
||||
0200100000236090708010101090307000202023727141528-0200101010136193701050302630905003337020000073700000301093733,10.1002/9781119370222.refs,10.1111/j.1532-950x.2007.00319.x,2020-06-22,P12Y8M,no,no
|
||||
0200100000236090708010101090307000202023727141528-0200101010136312830370102030509,10.1002/9781119370222.refs,10.1111/vsu.12359,2020-06-22,P4Y10M29D,no,no
|
||||
0200100000236090708010101090307000202023727141528-020050302063600030900020904,10.1002/9781119370222.refs,10.5326/0390294,2020-06-22,P17Y1M,no,no
|
||||
0200100000236090708010101090307000202023727141528-020050302063600040200030701,10.1002/9781119370222.refs,10.5326/0420371,2020-06-22,P13Y9M,no,no
|
||||
0200100000236090708010101090307000202023727141528-0200101010136193701050302630905003337020001033701020000003733,10.1002/9781119370222.refs,10.1111/j.1532-950x.2013.12000.x,2020-06-22,P7Y2M,no,no
|
||||
0200100000236090708010101090307000202023727141528-020010008003600000408000106093702000006370306070200,10.1002/9781119370222.refs,10.1080/00480169.2006.36720,2020-06-22,P13Y6M,no,no
|
||||
0200100000236090708010101090307000202023727141528-0200101010136193701070501630008010337020000063700000003033733,10.1002/9781119370222.refs,10.1111/j.1751-0813.2006.00033.x,2020-06-22,P13Y8M,no,no
|
|
@ -89,7 +89,7 @@
|
|||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.shuffle.partitions=7680
|
||||
--conf spark.sql.shuffle.partitions=15000
|
||||
</spark-opts>
|
||||
<arg>--graphBasePath</arg><arg>${graphBasePath}</arg>
|
||||
<arg>--o</arg><arg>${graphOutputPath}</arg>
|
||||
|
@ -114,7 +114,7 @@
|
|||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
--conf spark.sql.shuffle.partitions=7680
|
||||
--conf spark.sql.shuffle.partitions=15000
|
||||
</spark-opts>
|
||||
<arg>--graphInputPath</arg><arg>${graphBasePath}</arg>
|
||||
<arg>--outputPath</arg><arg>${workingPath}/grouped_entities</arg>
|
||||
|
|
|
@ -70,7 +70,7 @@ case object Crossref2Oaf {
|
|||
"reference-book" -> "0002 Book",
|
||||
"monograph" -> "0002 Book",
|
||||
"journal-article" -> "0001 Article",
|
||||
"dissertation" -> "0006 Doctoral thesis",
|
||||
"dissertation" -> "0044 Thesis",
|
||||
"other" -> "0038 Other literature type",
|
||||
"peer-review" -> "0015 Review",
|
||||
"proceedings" -> "0004 Conference object",
|
||||
|
@ -206,11 +206,16 @@ case object Crossref2Oaf {
|
|||
else {
|
||||
instance.setDateofacceptance(asField(createdDate.getValue))
|
||||
}
|
||||
val s: String = (json \ "URL").extract[String]
|
||||
val links: List[String] = ((for {JString(url) <- json \ "link" \ "URL"} yield url) ::: List(s)).filter(p => p != null).distinct
|
||||
if (links.nonEmpty) {
|
||||
instance.setUrl(links.asJava)
|
||||
}
|
||||
val s: List[String] = List("https://doi.org/" + doi)
|
||||
// val links: List[String] = ((for {JString(url) <- json \ "link" \ "URL"} yield url) ::: List(s)).filter(p => p != null && p.toLowerCase().contains(doi.toLowerCase())).distinct
|
||||
// if (links.nonEmpty) {
|
||||
// instance.setUrl(links.asJava)
|
||||
// }
|
||||
if(s.nonEmpty)
|
||||
{
|
||||
instance.setUrl(s.asJava)
|
||||
}
|
||||
|
||||
result.setInstance(List(instance).asJava)
|
||||
|
||||
//IMPORTANT
|
||||
|
|
|
@ -111,26 +111,9 @@ object SparkProcessMAG {
|
|||
.map(item => ConversionUtil.updatePubsWithConferenceInfo(item))
|
||||
.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/merge_step_2_conference")
|
||||
|
||||
|
||||
magPubs= spark.read.load(s"$workingPath/merge_step_2_conference").as[Publication]
|
||||
.map(p => (ConversionUtil.extractMagIdentifier(p.getOriginalId.asScala), p)).as[(String, Publication)]
|
||||
|
||||
val paperUrlDataset = spark.read.load(s"$sourcePath/PaperUrls").as[MagPaperUrl].groupBy("PaperId").agg(collect_list(struct("sourceUrl")).as("instances")).as[MagUrl]
|
||||
|
||||
|
||||
logger.info("Phase 5) enrich publication with URL and Instances")
|
||||
magPubs.joinWith(paperUrlDataset, col("_1").equalTo(paperUrlDataset("PaperId")), "left")
|
||||
.map { a: ((String, Publication), MagUrl) => ConversionUtil.addInstances((a._1._2, a._2)) }
|
||||
.write.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/merge_step_3")
|
||||
|
||||
|
||||
// logger.info("Phase 6) Enrich Publication with description")
|
||||
// val pa = spark.read.load(s"${parser.get("sourcePath")}/PaperAbstractsInvertedIndex").as[MagPaperAbstract]
|
||||
// pa.map(ConversionUtil.transformPaperAbstract).write.mode(SaveMode.Overwrite).save(s"${parser.get("targetPath")}/PaperAbstract")
|
||||
|
||||
val paperAbstract = spark.read.load((s"$workingPath/PaperAbstract")).as[MagPaperAbstract]
|
||||
|
||||
|
||||
|
@ -162,12 +145,14 @@ object SparkProcessMAG {
|
|||
.write.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/mag_publication")
|
||||
|
||||
spark.read.load(s"$workingPath/mag_publication").as[Publication]
|
||||
.filter(p => p.getId == null)
|
||||
.groupByKey(p => p.getId)
|
||||
.reduceGroups((a:Publication, b:Publication) => ConversionUtil.mergePublication(a,b))
|
||||
.map(_._2)
|
||||
.write.mode(SaveMode.Overwrite).save(s"$targetPath/magPublication")
|
||||
|
||||
val s:RDD[Publication] = spark.read.load(s"$workingPath/mag_publication").as[Publication]
|
||||
.map(p=>Tuple2(p.getId, p)).rdd.reduceByKey((a:Publication, b:Publication) => ConversionUtil.mergePublication(a,b))
|
||||
.map(_._2)
|
||||
|
||||
spark.createDataset(s).as[Publication].write.mode(SaveMode.Overwrite).save(s"$targetPath/magPublication")
|
||||
|
||||
}
|
||||
}
|
||||
|
|
|
@ -612,4 +612,26 @@ class CrossrefMappingTest {
|
|||
|
||||
}
|
||||
|
||||
@Test
|
||||
def testMultipleURLs() :Unit = {
|
||||
val json = Source.fromInputStream(getClass.getResourceAsStream("multiple_urls.json")).mkString
|
||||
|
||||
|
||||
assertNotNull(json)
|
||||
assertFalse(json.isEmpty);
|
||||
|
||||
val resultList: List[Oaf] = Crossref2Oaf.convert(json)
|
||||
|
||||
assertTrue(resultList.nonEmpty)
|
||||
|
||||
|
||||
val item : Result = resultList.filter(p => p.isInstanceOf[Result]).head.asInstanceOf[Result]
|
||||
|
||||
assertEquals(1, item.getInstance().size())
|
||||
assertEquals(1, item.getInstance().get(0).getUrl().size())
|
||||
assertEquals("https://doi.org/10.1016/j.jas.2019.105013", item.getInstance().get(0).getUrl().get(0))
|
||||
//println(mapper.writeValueAsString(item))
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -0,0 +1,614 @@
|
|||
|
||||
{
|
||||
"indexed": {
|
||||
"date-parts": [
|
||||
[
|
||||
2021,
|
||||
10,
|
||||
31
|
||||
]
|
||||
],
|
||||
"date-time": "2021-10-31T15:48:01Z",
|
||||
"timestamp": 1635695281393
|
||||
},
|
||||
"reference-count": 39,
|
||||
"publisher": "Elsevier BV",
|
||||
"license": [
|
||||
{
|
||||
"start": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
12,
|
||||
1
|
||||
]
|
||||
],
|
||||
"date-time": "2019-12-01T00:00:00Z",
|
||||
"timestamp": 1575158400000
|
||||
},
|
||||
"content-version": "tdm",
|
||||
"delay-in-days": 0,
|
||||
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/"
|
||||
},
|
||||
{
|
||||
"start": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
9,
|
||||
13
|
||||
]
|
||||
],
|
||||
"date-time": "2019-09-13T00:00:00Z",
|
||||
"timestamp": 1568332800000
|
||||
},
|
||||
"content-version": "vor",
|
||||
"delay-in-days": 0,
|
||||
"URL": "http://creativecommons.org/licenses/by/4.0/"
|
||||
}
|
||||
],
|
||||
"funder": [
|
||||
{
|
||||
"DOI": "10.13039/100001182",
|
||||
"name": "INSTAP",
|
||||
"doi-asserted-by": "publisher"
|
||||
},
|
||||
{
|
||||
"DOI": "10.13039/100014440",
|
||||
"name": "Ministry of Science, Innovation and Universities",
|
||||
"doi-asserted-by": "publisher",
|
||||
"award": [
|
||||
"RYC-2016-19637"
|
||||
]
|
||||
},
|
||||
{
|
||||
"DOI": "10.13039/100010661",
|
||||
"name": "European Union’s Horizon 2020",
|
||||
"doi-asserted-by": "publisher",
|
||||
"award": [
|
||||
"746446"
|
||||
]
|
||||
}
|
||||
],
|
||||
"content-domain": {
|
||||
"domain": [
|
||||
"elsevier.com",
|
||||
"sciencedirect.com"
|
||||
],
|
||||
"crossmark-restriction": true
|
||||
},
|
||||
"short-container-title": [
|
||||
"Journal of Archaeological Science"
|
||||
],
|
||||
"published-print": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
12
|
||||
]
|
||||
]
|
||||
},
|
||||
"DOI": "10.1016/j.jas.2019.105013",
|
||||
"type": "journal-article",
|
||||
"created": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
9,
|
||||
25
|
||||
]
|
||||
],
|
||||
"date-time": "2019-09-25T20:05:08Z",
|
||||
"timestamp": 1569441908000
|
||||
},
|
||||
"page": "105013",
|
||||
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
|
||||
"source": "Crossref",
|
||||
"is-referenced-by-count": 21,
|
||||
"title": [
|
||||
"A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery"
|
||||
],
|
||||
"prefix": "10.1016",
|
||||
"volume": "112",
|
||||
"author": [
|
||||
{
|
||||
"given": "H.A.",
|
||||
"family": "Orengo",
|
||||
"sequence": "first",
|
||||
"affiliation": [
|
||||
|
||||
]
|
||||
},
|
||||
{
|
||||
"given": "A.",
|
||||
"family": "Garcia-Molsosa",
|
||||
"sequence": "additional",
|
||||
"affiliation": [
|
||||
|
||||
]
|
||||
}
|
||||
],
|
||||
"member": "78",
|
||||
"reference": [
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib1",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "85",
|
||||
"DOI": "10.1080/17538947.2016.1250829",
|
||||
"article-title": "Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications",
|
||||
"volume": "10",
|
||||
"author": "Agapiou",
|
||||
"year": "2017",
|
||||
"journal-title": "Int. J. Digit. Earth"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib2",
|
||||
"series-title": "Extracting Meaning from Ploughsoil Assemblages",
|
||||
"first-page": "1",
|
||||
"article-title": "Extracting meaning from ploughsoil assemblages: assessments of the past, strategies for the future",
|
||||
"author": "Alcock",
|
||||
"year": "2000"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib3",
|
||||
"series-title": "Side-by-Side Survey. Comparative Regional Studies in the Mediterranean World",
|
||||
"first-page": "1",
|
||||
"article-title": "Introduction",
|
||||
"author": "Alcock",
|
||||
"year": "2004"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib4",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "93",
|
||||
"DOI": "10.1111/j.1538-4632.1995.tb00338.x",
|
||||
"article-title": "Local indicators of spatial association—LISA",
|
||||
"volume": "27",
|
||||
"author": "Anselin",
|
||||
"year": "1995",
|
||||
"journal-title": "Geogr. Anal."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib5",
|
||||
"series-title": "Archaeological Survey",
|
||||
"author": "Banning",
|
||||
"year": "2002"
|
||||
},
|
||||
{
|
||||
"issue": "1/2",
|
||||
"key": "10.1016/j.jas.2019.105013_bib6",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "123",
|
||||
"DOI": "10.2307/3181488",
|
||||
"article-title": "GIS, archaeological survey and landscape archaeology on the island of Kythera, Greece",
|
||||
"volume": "29",
|
||||
"author": "Bevan",
|
||||
"year": "2004",
|
||||
"journal-title": "J. Field Archaeol."
|
||||
},
|
||||
{
|
||||
"issue": "1",
|
||||
"key": "10.1016/j.jas.2019.105013_bib8",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "5",
|
||||
"DOI": "10.1023/A:1010933404324",
|
||||
"article-title": "Random forests",
|
||||
"volume": "45",
|
||||
"author": "Breiman",
|
||||
"year": "2001",
|
||||
"journal-title": "Mach. Learn."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib9",
|
||||
"series-title": "Sampling in Contemporary British Archaeology",
|
||||
"author": "Cherry",
|
||||
"year": "1978"
|
||||
},
|
||||
{
|
||||
"issue": "3",
|
||||
"key": "10.1016/j.jas.2019.105013_bib10",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "273",
|
||||
"DOI": "10.1016/0734-189X(84)90197-X",
|
||||
"article-title": "Segmentation of a high-resolution urban scene using texture operators",
|
||||
"volume": "25",
|
||||
"author": "Conners",
|
||||
"year": "1984",
|
||||
"journal-title": "Comput. Vis. Graph Image Process"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib11",
|
||||
"first-page": "31",
|
||||
"article-title": "Old land surfaces and modern ploughsoil: implications of recent work at Maxey, Cambridgeshire",
|
||||
"volume": "2",
|
||||
"author": "Crowther",
|
||||
"year": "1983",
|
||||
"journal-title": "Scott. Archaeol. Rev."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib12",
|
||||
"series-title": "Settlement Pattern Studies in the Americas: Fifty Years since Virú",
|
||||
"first-page": "203",
|
||||
"article-title": "Conclusions: the settlement pattern concept from an Americanist perspective",
|
||||
"author": "Fish",
|
||||
"year": "1999"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib13",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "21",
|
||||
"DOI": "10.3390/geosciences9010021",
|
||||
"article-title": "Remote sensing and historical morphodynamics of alluvial plains. The 1909 indus flood and the city of Dera Gazhi Khan (province of Punjab, Pakistan)",
|
||||
"volume": "9",
|
||||
"author": "Garcia",
|
||||
"year": "2019",
|
||||
"journal-title": "Geosciences"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib14",
|
||||
"unstructured": "Georgiadis, M.; Garcia-Molsosa, A.; Orengo, H.A.; Kefalidou, E. and Kallintzi, K. In Preparation. APAX Project 2015-2018: A Preliminary Report. (Hesperia)."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib15",
|
||||
"series-title": "Geographical Information Systems and Landscape Archaeology",
|
||||
"first-page": "35",
|
||||
"article-title": "Regional survey and GIS: the boeotia project",
|
||||
"author": "Gillings",
|
||||
"year": "1999"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib16",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "18",
|
||||
"DOI": "10.1016/j.rse.2017.06.031",
|
||||
"article-title": "Google Earth engine: planetary-scale geospatial analysis for everyone",
|
||||
"volume": "202",
|
||||
"author": "Gorelick",
|
||||
"year": "2017",
|
||||
"journal-title": "Remote Sens. Environ."
|
||||
},
|
||||
{
|
||||
"issue": "107",
|
||||
"key": "10.1016/j.jas.2019.105013_bib17",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "177",
|
||||
"DOI": "10.1111/j.0031-868X.2004.00278.x",
|
||||
"article-title": "Photogrammetric reconstruction of the great buddha of Bamiyan, Afghanistan",
|
||||
"volume": "19",
|
||||
"author": "Grün",
|
||||
"year": "2004",
|
||||
"journal-title": "Photogramm. Rec."
|
||||
},
|
||||
{
|
||||
"issue": "6",
|
||||
"key": "10.1016/j.jas.2019.105013_bib18",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "610",
|
||||
"DOI": "10.1109/TSMC.1973.4309314",
|
||||
"article-title": "Textural features for image classification",
|
||||
"author": "Haralick",
|
||||
"year": "1973",
|
||||
"journal-title": "IEEE Trans. Syst., Man, Cybernet., SMC-3"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib19",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "76",
|
||||
"DOI": "10.1558/jmea.v14i1.76",
|
||||
"article-title": "Excavating to excess? Implications of the last decade of archaeology in Israel",
|
||||
"volume": "14",
|
||||
"author": "Kletter",
|
||||
"year": "2001",
|
||||
"journal-title": "J. Mediterr. Archaeol."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib20",
|
||||
"first-page": "299",
|
||||
"article-title": "Testing Google Earth Engine for the automatic identification and vectorization of archaeological features: a case study from Faynan, Jordan",
|
||||
"volume": "15",
|
||||
"author": "Liss",
|
||||
"year": "2017",
|
||||
"journal-title": "J. Archaeol. Sci.: Report"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib21",
|
||||
"series-title": "Geographical Information Systems and Landscape Archaeology",
|
||||
"first-page": "55",
|
||||
"article-title": "Towards a methodology for modelling surface survey data: the sangro valley project",
|
||||
"author": "Lock",
|
||||
"year": "1999"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib22",
|
||||
"series-title": "Extracting Meaning from Ploughsoil Assemblages",
|
||||
"first-page": "5",
|
||||
"article-title": "Methods of collection recording and quantification",
|
||||
"author": "Mattingly",
|
||||
"year": "2000"
|
||||
},
|
||||
{
|
||||
"issue": "14",
|
||||
"key": "10.1016/j.jas.2019.105013_bib23",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "E778",
|
||||
"DOI": "10.1073/pnas.1115472109",
|
||||
"article-title": "Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale",
|
||||
"volume": "109",
|
||||
"author": "Menze",
|
||||
"year": "2012",
|
||||
"journal-title": "Proc. Natl. Acad. Sci."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib24",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "80",
|
||||
"DOI": "10.1016/j.jas.2015.04.002",
|
||||
"article-title": "A supervised machine-learning approach towards geochemical predictive modelling in archaeology",
|
||||
"volume": "59",
|
||||
"author": "Oonk",
|
||||
"year": "2015",
|
||||
"journal-title": "J. Archaeol. Sci."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib25",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "49",
|
||||
"DOI": "10.1016/j.isprsjprs.2012.07.005",
|
||||
"article-title": "Combining terrestrial stereophotogrammetry, DGPS and GIS-based 3D voxel modelling in the volumetric recording of archaeological features",
|
||||
"volume": "76",
|
||||
"author": "Orengo",
|
||||
"year": "2013",
|
||||
"journal-title": "ISPRS J. Photogrammetry Remote Sens."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib26",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "100",
|
||||
"DOI": "10.1016/j.jas.2015.10.008",
|
||||
"article-title": "Photogrammetric re-discovery of the Eastern Thessalian hidden long-term landscapes",
|
||||
"volume": "64",
|
||||
"author": "Orengo",
|
||||
"year": "2015",
|
||||
"journal-title": "J. Archaeol. Sci."
|
||||
},
|
||||
{
|
||||
"issue": "3",
|
||||
"key": "10.1016/j.jas.2019.105013_bib27",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "479",
|
||||
"DOI": "10.3764/aja.122.3.0479",
|
||||
"article-title": "Towards a definition of Minoan agro-pastoral landscapes: results of the survey at Palaikastro (Crete)",
|
||||
"volume": "122",
|
||||
"author": "Orengo",
|
||||
"year": "2018",
|
||||
"journal-title": "Am. J. Archaeol."
|
||||
},
|
||||
{
|
||||
"issue": "7",
|
||||
"key": "10.1016/j.jas.2019.105013_bib28",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "735",
|
||||
"DOI": "10.3390/rs9070735",
|
||||
"article-title": "Large-scale, multi-temporal remote sensing of palaeo-river networks: a case study from Northwest India and its implications for the Indus civilisation",
|
||||
"volume": "9",
|
||||
"author": "Orengo",
|
||||
"year": "2017",
|
||||
"journal-title": "Remote Sens."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib29",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "1361",
|
||||
"DOI": "10.1002/esp.4317",
|
||||
"article-title": "Multi-scale relief model (MSRM): a new algorithm for the visualization of subtle topographic change of variable size in digital elevation models",
|
||||
"volume": "43",
|
||||
"author": "Orengo",
|
||||
"year": "2018",
|
||||
"journal-title": "Earth Surf. Process. Landforms"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib30",
|
||||
"series-title": "Submitted to Proceedings of the National Academy of Sciences",
|
||||
"article-title": "Living on the edge of the desert: automated detection of archaeological mounds in Cholistan (Pakistan) using machine learning classification of multi-sensor multi-temporal satellite data",
|
||||
"author": "Orengo",
|
||||
"year": "2019"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib31",
|
||||
"first-page": "154",
|
||||
"article-title": "How many trees in a random forest?",
|
||||
"volume": "vol. 7376",
|
||||
"author": "Oshiro",
|
||||
"year": "2012"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib32",
|
||||
"article-title": "Decision-making in modern surveys",
|
||||
"volume": "ume 1",
|
||||
"author": "Plog",
|
||||
"year": "1978"
|
||||
},
|
||||
{
|
||||
"issue": "4",
|
||||
"key": "10.1016/j.jas.2019.105013_bib33",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "100",
|
||||
"DOI": "10.3390/geosciences7040100",
|
||||
"article-title": "From above and on the ground: geospatial methods for recording endangered archaeology in the Middle East and north africa",
|
||||
"volume": "7",
|
||||
"author": "Rayne",
|
||||
"year": "2017",
|
||||
"journal-title": "Geosciences"
|
||||
},
|
||||
{
|
||||
"issue": "1",
|
||||
"key": "10.1016/j.jas.2019.105013_bib34",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "1",
|
||||
"DOI": "10.1080/00438243.1978.9979712",
|
||||
"article-title": "The design of archaeological surveys",
|
||||
"volume": "10",
|
||||
"author": "Schiffer",
|
||||
"year": "1978",
|
||||
"journal-title": "World Archaeol."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib35",
|
||||
"series-title": "Experiments in the Collection and Analysis of Archaeological Survey Data: the East Hampshire Survey",
|
||||
"author": "Shennan",
|
||||
"year": "1985"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib36",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "1066",
|
||||
"DOI": "10.1016/j.culher.2016.06.006",
|
||||
"article-title": "Drones over Mediterranean landscapes. The potential of small UAV's (drones) for site detection and heritage management in archaeological survey projects: a case study from Le Pianelle in the Tappino Valley, Molise (Italy)",
|
||||
"volume": "22",
|
||||
"author": "Stek",
|
||||
"year": "2016",
|
||||
"journal-title": "J. Cult. Herit."
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib37",
|
||||
"series-title": "Side-by-Side Survey. Comparative Regional Studies in the Mediterranean World",
|
||||
"first-page": "65",
|
||||
"article-title": "Side-by-side and back to front: exploring intra-regional latitudinal and longitudinal comparability in survey data. Three case studies from Metaponto, southern Italy",
|
||||
"author": "Thomson",
|
||||
"year": "2004"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib38",
|
||||
"series-title": "Digital Discovery. Exploring New Frontiers in Human Heritage. Computer Applications and Quantitative Methods in Archaeology",
|
||||
"article-title": "Computer vision and machine learning for archaeology",
|
||||
"author": "van der Maaten",
|
||||
"year": "2007"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib39",
|
||||
"doi-asserted-by": "crossref",
|
||||
"first-page": "1114",
|
||||
"DOI": "10.1111/j.1475-4754.2012.00667.x",
|
||||
"article-title": "Computer vision-based orthophoto mapping of complex archaeological sites: the ancient quarry of Pitaranha (Portugal-Spain)",
|
||||
"volume": "54",
|
||||
"author": "Verhoeven",
|
||||
"year": "2012",
|
||||
"journal-title": "Archaeometry"
|
||||
},
|
||||
{
|
||||
"key": "10.1016/j.jas.2019.105013_bib40",
|
||||
"series-title": "A Guide for Salvage Archeology",
|
||||
"author": "Wendorf",
|
||||
"year": "1962"
|
||||
}
|
||||
],
|
||||
"container-title": [
|
||||
"Journal of Archaeological Science"
|
||||
],
|
||||
"original-title": [
|
||||
|
||||
],
|
||||
"language": "en",
|
||||
"link": [
|
||||
{
|
||||
"URL": "https://api.elsevier.com/content/article/PII:S0305440319301001?httpAccept=text/xml",
|
||||
"content-type": "text/xml",
|
||||
"content-version": "vor",
|
||||
"intended-application": "text-mining"
|
||||
},
|
||||
{
|
||||
"URL": "https://api.elsevier.com/content/article/PII:S0305440319301001?httpAccept=text/plain",
|
||||
"content-type": "text/plain",
|
||||
"content-version": "vor",
|
||||
"intended-application": "text-mining"
|
||||
}
|
||||
],
|
||||
"deposited": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
11,
|
||||
25
|
||||
]
|
||||
],
|
||||
"date-time": "2019-11-25T06:46:34Z",
|
||||
"timestamp": 1574664394000
|
||||
},
|
||||
"score": 1,
|
||||
"subtitle": [
|
||||
|
||||
],
|
||||
"short-title": [
|
||||
|
||||
],
|
||||
"issued": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
12
|
||||
]
|
||||
]
|
||||
},
|
||||
"references-count": 39,
|
||||
"alternative-id": [
|
||||
"S0305440319301001"
|
||||
],
|
||||
"URL": "http://dx.doi.org/10.1016/j.jas.2019.105013",
|
||||
"relation": {
|
||||
|
||||
},
|
||||
"ISSN": [
|
||||
"0305-4403"
|
||||
],
|
||||
"issn-type": [
|
||||
{
|
||||
"value": "0305-4403",
|
||||
"type": "print"
|
||||
}
|
||||
],
|
||||
"subject": [
|
||||
"Archaeology",
|
||||
"Archaeology"
|
||||
],
|
||||
"published": {
|
||||
"date-parts": [
|
||||
[
|
||||
2019,
|
||||
12
|
||||
]
|
||||
]
|
||||
},
|
||||
"assertion": [
|
||||
{
|
||||
"value": "Elsevier",
|
||||
"name": "publisher",
|
||||
"label": "This article is maintained by"
|
||||
},
|
||||
{
|
||||
"value": "A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery",
|
||||
"name": "articletitle",
|
||||
"label": "Article Title"
|
||||
},
|
||||
{
|
||||
"value": "Journal of Archaeological Science",
|
||||
"name": "journaltitle",
|
||||
"label": "Journal Title"
|
||||
},
|
||||
{
|
||||
"value": "https://doi.org/10.1016/j.jas.2019.105013",
|
||||
"name": "articlelink",
|
||||
"label": "CrossRef DOI link to publisher maintained version"
|
||||
},
|
||||
{
|
||||
"value": "article",
|
||||
"name": "content_type",
|
||||
"label": "Content Type"
|
||||
},
|
||||
{
|
||||
"value": "© 2019 The Authors. Published by Elsevier Ltd.",
|
||||
"name": "copyright",
|
||||
"label": "Copyright"
|
||||
}
|
||||
],
|
||||
"article-number": "105013"
|
||||
}
|
|
@ -25,6 +25,24 @@ public class PropagationConstant {
|
|||
private PropagationConstant() {
|
||||
}
|
||||
|
||||
public static final String DOI = "doi";
|
||||
public static final String REF_DOI = ".refs";
|
||||
|
||||
public static final String UPDATE_DATA_INFO_TYPE = "update";
|
||||
public static final String UPDATE_SUBJECT_FOS_CLASS_ID = "subject:fos";
|
||||
public static final String UPDATE_CLASS_NAME = "Inferred by OpenAIRE";
|
||||
public static final String UPDATE_MEASURE_BIP_CLASS_ID = "measure:bip";
|
||||
|
||||
public static final String FOS_CLASS_ID = "FOS";
|
||||
public static final String FOS_CLASS_NAME = "Fields of Science and Technology classification";
|
||||
|
||||
public static final String OPENCITATIONS_CLASSID = "sysimport:crosswalk:opencitations";
|
||||
public static final String OPENCITATIONS_CLASSNAME = "Imported from OpenCitations";
|
||||
public static final String ID_PREFIX = "50|doi_________::";
|
||||
public static final String OC_TRUST = "0.91";
|
||||
|
||||
public final static String NULL = "NULL";
|
||||
|
||||
public static final String INSTITUTIONAL_REPO_TYPE = "pubsrepository::institutional";
|
||||
|
||||
public static final String PROPAGATION_DATA_INFO_TYPE = "propagation";
|
||||
|
@ -75,10 +93,25 @@ public class PropagationConstant {
|
|||
|
||||
public static DataInfo getDataInfo(
|
||||
String inference_provenance, String inference_class_id, String inference_class_name, String qualifierSchema) {
|
||||
|
||||
return getDataInfo(inference_provenance, inference_class_id, inference_class_name, qualifierSchema, "0.85");
|
||||
}
|
||||
|
||||
public static DataInfo getDataInfo(
|
||||
String inference_provenance, String inference_class_id, String inference_class_name, String qualifierSchema,
|
||||
String trust) {
|
||||
return getDataInfo(
|
||||
inference_provenance, inference_class_id, inference_class_name, qualifierSchema, trust, true);
|
||||
|
||||
}
|
||||
|
||||
public static DataInfo getDataInfo(
|
||||
String inference_provenance, String inference_class_id, String inference_class_name, String qualifierSchema,
|
||||
String trust, boolean inferred) {
|
||||
DataInfo di = new DataInfo();
|
||||
di.setInferred(true);
|
||||
di.setInferred(inferred);
|
||||
di.setDeletedbyinference(false);
|
||||
di.setTrust("0.85");
|
||||
di.setTrust(trust);
|
||||
di.setInferenceprovenance(inference_provenance);
|
||||
di.setProvenanceaction(getQualifier(inference_class_id, inference_class_name, qualifierSchema));
|
||||
return di;
|
||||
|
|
|
@ -127,13 +127,6 @@ public class MergeGraphTableSparkJob {
|
|||
}
|
||||
}, Encoders.bean(p_clazz))
|
||||
.filter((FilterFunction<P>) Objects::nonNull)
|
||||
.filter((FilterFunction<P>) o -> {
|
||||
HashSet<String> collectedFromNames = Optional
|
||||
.ofNullable(o.getCollectedfrom())
|
||||
.map(c -> c.stream().map(KeyValue::getValue).collect(Collectors.toCollection(HashSet::new)))
|
||||
.orElse(new HashSet<>());
|
||||
return !collectedFromNames.contains("Datacite");
|
||||
})
|
||||
.write()
|
||||
.mode(SaveMode.Overwrite)
|
||||
.option("compression", "gzip")
|
||||
|
|
|
@ -1,136 +0,0 @@
|
|||
|
||||
package eu.dnetlib.dhp.oa.graph.raw;
|
||||
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.api.java.function.FilterFunction;
|
||||
import org.apache.spark.api.java.function.FlatMapFunction;
|
||||
import org.apache.spark.api.java.function.MapFunction;
|
||||
import org.apache.spark.sql.Dataset;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SaveMode;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.clearspring.analytics.util.Lists;
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.common.HdfsSupport;
|
||||
import eu.dnetlib.dhp.common.vocabulary.VocabularyGroup;
|
||||
import eu.dnetlib.dhp.oa.graph.raw.common.AbstractMigrationApplication;
|
||||
import eu.dnetlib.dhp.schema.common.EntityType;
|
||||
import eu.dnetlib.dhp.schema.common.ModelSupport;
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf;
|
||||
import eu.dnetlib.dhp.schema.oaf.Relation;
|
||||
import eu.dnetlib.dhp.utils.ISLookupClientFactory;
|
||||
import eu.dnetlib.enabling.is.lookup.rmi.ISLookUpService;
|
||||
|
||||
public class CopyHdfsOafApplication extends AbstractMigrationApplication {
|
||||
|
||||
private static final Logger log = LoggerFactory.getLogger(CopyHdfsOafApplication.class);
|
||||
|
||||
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
|
||||
|
||||
public static void main(final String[] args) throws Exception {
|
||||
final ArgumentApplicationParser parser = new ArgumentApplicationParser(
|
||||
IOUtils
|
||||
.toString(
|
||||
CopyHdfsOafApplication.class
|
||||
.getResourceAsStream("/eu/dnetlib/dhp/oa/graph/copy_hdfs_oaf_parameters.json")));
|
||||
parser.parseArgument(args);
|
||||
|
||||
final Boolean isSparkSessionManaged = Optional
|
||||
.ofNullable(parser.get("isSparkSessionManaged"))
|
||||
.map(Boolean::valueOf)
|
||||
.orElse(Boolean.TRUE);
|
||||
log.info("isSparkSessionManaged: {}", isSparkSessionManaged);
|
||||
|
||||
final String mdstoreManagerUrl = parser.get("mdstoreManagerUrl");
|
||||
log.info("mdstoreManagerUrl: {}", mdstoreManagerUrl);
|
||||
|
||||
final String mdFormat = parser.get("mdFormat");
|
||||
log.info("mdFormat: {}", mdFormat);
|
||||
|
||||
final String mdLayout = parser.get("mdLayout");
|
||||
log.info("mdLayout: {}", mdLayout);
|
||||
|
||||
final String mdInterpretation = parser.get("mdInterpretation");
|
||||
log.info("mdInterpretation: {}", mdInterpretation);
|
||||
|
||||
final String hdfsPath = parser.get("hdfsPath");
|
||||
log.info("hdfsPath: {}", hdfsPath);
|
||||
|
||||
final String isLookupUrl = parser.get("isLookupUrl");
|
||||
log.info("isLookupUrl: {}", isLookupUrl);
|
||||
|
||||
final ISLookUpService isLookupService = ISLookupClientFactory.getLookUpService(isLookupUrl);
|
||||
final VocabularyGroup vocs = VocabularyGroup.loadVocsFromIS(isLookupService);
|
||||
|
||||
final Set<String> paths = mdstorePaths(mdstoreManagerUrl, mdFormat, mdLayout, mdInterpretation);
|
||||
|
||||
final SparkConf conf = new SparkConf();
|
||||
runWithSparkSession(conf, isSparkSessionManaged, spark -> processPaths(spark, vocs, hdfsPath, paths));
|
||||
}
|
||||
|
||||
public static void processPaths(final SparkSession spark,
|
||||
final VocabularyGroup vocs,
|
||||
final String outputPath,
|
||||
final Set<String> paths) {
|
||||
|
||||
final JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
|
||||
|
||||
log.info("Found {} mdstores", paths.size());
|
||||
paths.forEach(log::info);
|
||||
|
||||
final String[] validPaths = paths
|
||||
.stream()
|
||||
.filter(p -> HdfsSupport.exists(p, sc.hadoopConfiguration()))
|
||||
.toArray(String[]::new);
|
||||
log.info("Non empty mdstores {}", validPaths.length);
|
||||
|
||||
if (validPaths.length > 0) {
|
||||
// load the dataset
|
||||
Dataset<Oaf> oaf = spark
|
||||
.read()
|
||||
.load(validPaths)
|
||||
.as(Encoders.kryo(Oaf.class));
|
||||
|
||||
// dispatch each entity type individually in the respective graph subdirectory in append mode
|
||||
for (Map.Entry<String, Class> e : ModelSupport.oafTypes.entrySet()) {
|
||||
oaf
|
||||
.filter((FilterFunction<Oaf>) o -> o.getClass().getSimpleName().toLowerCase().equals(e.getKey()))
|
||||
.map((MapFunction<Oaf, String>) OBJECT_MAPPER::writeValueAsString, Encoders.bean(e.getValue()))
|
||||
.write()
|
||||
.option("compression", "gzip")
|
||||
.mode(SaveMode.Append)
|
||||
.text(outputPath + "/" + e.getKey());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static Relation getInverse(Relation rel, VocabularyGroup vocs) {
|
||||
final Relation inverse = new Relation();
|
||||
|
||||
inverse.setProperties(rel.getProperties());
|
||||
inverse.setValidated(rel.getValidated());
|
||||
inverse.setValidationDate(rel.getValidationDate());
|
||||
inverse.setCollectedfrom(rel.getCollectedfrom());
|
||||
inverse.setDataInfo(rel.getDataInfo());
|
||||
inverse.setLastupdatetimestamp(rel.getLastupdatetimestamp());
|
||||
|
||||
inverse.setSource(rel.getTarget());
|
||||
inverse.setTarget(rel.getSource());
|
||||
inverse.setRelType(rel.getRelType());
|
||||
inverse.setSubRelType(rel.getSubRelType());
|
||||
|
||||
return inverse;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
package eu.dnetlib.dhp.oa.graph.raw
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.common.HdfsSupport
|
||||
import eu.dnetlib.dhp.schema.common.ModelSupport
|
||||
import eu.dnetlib.dhp.schema.mdstore.MDStoreWithInfo
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf
|
||||
import eu.dnetlib.dhp.utils.DHPUtils
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.commons.lang3.StringUtils
|
||||
import org.apache.http.client.methods.HttpGet
|
||||
import org.apache.http.impl.client.HttpClients
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SaveMode, SparkSession}
|
||||
import org.apache.spark.{SparkConf, SparkContext}
|
||||
import org.slf4j.LoggerFactory
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
import scala.io.Source
|
||||
|
||||
object CopyHdfsOafSparkApplication {
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
val log = LoggerFactory.getLogger(getClass)
|
||||
val conf = new SparkConf()
|
||||
val parser = new ArgumentApplicationParser(Source.fromInputStream(getClass.getResourceAsStream("/eu/dnetlib/dhp/oa/graph/copy_hdfs_oaf_parameters.json")).mkString)
|
||||
parser.parseArgument(args)
|
||||
|
||||
val spark =
|
||||
SparkSession
|
||||
.builder()
|
||||
.config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master(parser.get("master")).getOrCreate()
|
||||
|
||||
val sc: SparkContext = spark.sparkContext
|
||||
|
||||
val mdstoreManagerUrl = parser.get("mdstoreManagerUrl")
|
||||
log.info("mdstoreManagerUrl: {}", mdstoreManagerUrl)
|
||||
|
||||
val mdFormat = parser.get("mdFormat")
|
||||
log.info("mdFormat: {}", mdFormat)
|
||||
|
||||
val mdLayout = parser.get("mdLayout")
|
||||
log.info("mdLayout: {}", mdLayout)
|
||||
|
||||
val mdInterpretation = parser.get("mdInterpretation")
|
||||
log.info("mdInterpretation: {}", mdInterpretation)
|
||||
|
||||
val hdfsPath = parser.get("hdfsPath")
|
||||
log.info("hdfsPath: {}", hdfsPath)
|
||||
|
||||
implicit val oafEncoder: Encoder[Oaf] = Encoders.kryo[Oaf]
|
||||
|
||||
val paths = DHPUtils.mdstorePaths(mdstoreManagerUrl, mdFormat, mdLayout, mdInterpretation, true).asScala
|
||||
|
||||
val validPaths: List[String] = paths.filter(p => HdfsSupport.exists(p, sc.hadoopConfiguration)).toList
|
||||
|
||||
if (validPaths.nonEmpty) {
|
||||
val oaf = spark.read.load(validPaths: _*).as[Oaf]
|
||||
val mapper = new ObjectMapper()
|
||||
val l =ModelSupport.oafTypes.entrySet.asScala.map(e => e.getKey).toList
|
||||
l.foreach(
|
||||
e =>
|
||||
oaf.filter(o => o.getClass.getSimpleName.equalsIgnoreCase(e))
|
||||
.map(s => mapper.writeValueAsString(s))(Encoders.STRING)
|
||||
.write
|
||||
.option("compression", "gzip")
|
||||
.mode(SaveMode.Append)
|
||||
.text(s"$hdfsPath/${e}")
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
|
@ -186,6 +186,9 @@ public class MigrateDbEntitiesApplication extends AbstractMigrationApplication i
|
|||
|
||||
log.info("Processing Openorgs Merge Rels...");
|
||||
smdbe.execute("queryOpenOrgsSimilarityForProvision.sql", smdbe::processOrgOrgMergeRels);
|
||||
|
||||
log.info("Processing Openorgs Parent/Child Rels...");
|
||||
smdbe.execute("queryParentChildRelsOpenOrgs.sql", smdbe::processOrgOrgParentChildRels);
|
||||
break;
|
||||
|
||||
case openaire_organizations:
|
||||
|
@ -689,6 +692,35 @@ public class MigrateDbEntitiesApplication extends AbstractMigrationApplication i
|
|||
}
|
||||
}
|
||||
|
||||
public List<Oaf> processOrgOrgParentChildRels(final ResultSet rs) {
|
||||
try {
|
||||
final DataInfo info = prepareDataInfo(rs); // TODO
|
||||
|
||||
final String orgId1 = createOpenaireId(20, rs.getString("source"), true);
|
||||
final String orgId2 = createOpenaireId(20, rs.getString("target"), true);
|
||||
|
||||
final List<KeyValue> collectedFrom = listKeyValues(
|
||||
createOpenaireId(10, rs.getString("collectedfromid"), true), rs.getString("collectedfromname"));
|
||||
|
||||
final Relation r = new Relation();
|
||||
r.setRelType(ORG_ORG_RELTYPE);
|
||||
r.setSubRelType(ModelConstants.RELATIONSHIP);
|
||||
r
|
||||
.setRelClass(
|
||||
rs.getString("type").equalsIgnoreCase("parent") ? ModelConstants.IS_PARENT_OF
|
||||
: ModelConstants.IS_CHILD_OF);
|
||||
r.setSource(orgId1);
|
||||
r.setTarget(orgId2);
|
||||
r.setCollectedfrom(collectedFrom);
|
||||
r.setDataInfo(info);
|
||||
r.setLastupdatetimestamp(lastUpdateTimestamp);
|
||||
|
||||
return Arrays.asList(r);
|
||||
} catch (final Exception e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
|
||||
public List<Oaf> processOrgOrgSimRels(final ResultSet rs) {
|
||||
try {
|
||||
final DataInfo info = prepareDataInfo(rs); // TODO
|
||||
|
|
|
@ -26,6 +26,7 @@ import com.fasterxml.jackson.databind.ObjectMapper;
|
|||
|
||||
import eu.dnetlib.dhp.schema.mdstore.MDStoreWithInfo;
|
||||
import eu.dnetlib.dhp.schema.oaf.Oaf;
|
||||
import eu.dnetlib.dhp.utils.DHPUtils;
|
||||
|
||||
public class AbstractMigrationApplication implements Closeable {
|
||||
|
||||
|
@ -71,27 +72,7 @@ public class AbstractMigrationApplication implements Closeable {
|
|||
final String format,
|
||||
final String layout,
|
||||
final String interpretation) throws IOException {
|
||||
final String url = mdstoreManagerUrl + "/mdstores/";
|
||||
final ObjectMapper objectMapper = new ObjectMapper();
|
||||
|
||||
final HttpGet req = new HttpGet(url);
|
||||
|
||||
try (final CloseableHttpClient client = HttpClients.createDefault()) {
|
||||
try (final CloseableHttpResponse response = client.execute(req)) {
|
||||
final String json = IOUtils.toString(response.getEntity().getContent());
|
||||
final MDStoreWithInfo[] mdstores = objectMapper.readValue(json, MDStoreWithInfo[].class);
|
||||
return Arrays
|
||||
.stream(mdstores)
|
||||
.filter(md -> md.getFormat().equalsIgnoreCase(format))
|
||||
.filter(md -> md.getLayout().equalsIgnoreCase(layout))
|
||||
.filter(md -> md.getInterpretation().equalsIgnoreCase(interpretation))
|
||||
.filter(md -> StringUtils.isNotBlank(md.getHdfsPath()))
|
||||
.filter(md -> StringUtils.isNotBlank(md.getCurrentVersion()))
|
||||
.filter(md -> md.getSize() > 0)
|
||||
.map(md -> md.getHdfsPath() + "/" + md.getCurrentVersion() + "/store")
|
||||
.collect(Collectors.toSet());
|
||||
}
|
||||
}
|
||||
return DHPUtils.mdstorePaths(mdstoreManagerUrl, format, layout, interpretation, false);
|
||||
}
|
||||
|
||||
private Configuration getConf() {
|
||||
|
|
|
@ -0,0 +1,107 @@
|
|||
package eu.dnetlib.dhp.oa.graph.resolution
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.common.HdfsSupport
|
||||
import eu.dnetlib.dhp.schema.common.EntityType
|
||||
import eu.dnetlib.dhp.schema.oaf.{OtherResearchProduct, Publication, Result, Software, Dataset => OafDataset}
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.hadoop.fs.{FileSystem, Path}
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.sql._
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
object SparkResolveEntities {
|
||||
|
||||
val mapper = new ObjectMapper()
|
||||
val entities = List(EntityType.dataset,EntityType.publication, EntityType.software, EntityType.otherresearchproduct)
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
val log: Logger = LoggerFactory.getLogger(getClass)
|
||||
val conf: SparkConf = new SparkConf()
|
||||
val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/oa/graph/resolution/resolve_entities_params.json")))
|
||||
parser.parseArgument(args)
|
||||
val spark: SparkSession =
|
||||
SparkSession
|
||||
.builder()
|
||||
.config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master(parser.get("master")).getOrCreate()
|
||||
|
||||
|
||||
val graphBasePath = parser.get("graphBasePath")
|
||||
log.info(s"graphBasePath -> $graphBasePath")
|
||||
val workingPath = parser.get("workingPath")
|
||||
log.info(s"workingPath -> $workingPath")
|
||||
val unresolvedPath = parser.get("unresolvedPath")
|
||||
log.info(s"unresolvedPath -> $unresolvedPath")
|
||||
|
||||
val fs = FileSystem.get(spark.sparkContext.hadoopConfiguration)
|
||||
fs.mkdirs(new Path(workingPath))
|
||||
|
||||
resolveEntities(spark, workingPath, unresolvedPath)
|
||||
generateResolvedEntities(spark, workingPath, graphBasePath)
|
||||
|
||||
// TO BE conservative we keep the original entities in the working dir
|
||||
// and save the resolved entities on the graphBasePath
|
||||
//In future these lines of code should be removed
|
||||
entities.foreach {
|
||||
e =>
|
||||
fs.rename(new Path(s"$graphBasePath/$e"), new Path(s"$workingPath/${e}_old"))
|
||||
fs.rename(new Path(s"$workingPath/resolvedGraph/$e"), new Path(s"$graphBasePath/$e"))
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
def resolveEntities(spark: SparkSession, workingPath: String, unresolvedPath: String) = {
|
||||
implicit val resEncoder: Encoder[Result] = Encoders.kryo(classOf[Result])
|
||||
import spark.implicits._
|
||||
|
||||
val rPid: Dataset[(String, String)] = spark.read.load(s"$workingPath/relationResolvedPid").as[(String, String)]
|
||||
val up: Dataset[(String, Result)] = spark.read.text(unresolvedPath).as[String].map(s => mapper.readValue(s, classOf[Result])).map(r => (r.getId, r))(Encoders.tuple(Encoders.STRING, resEncoder))
|
||||
|
||||
rPid.joinWith(up, rPid("_2").equalTo(up("_1")), "inner").map {
|
||||
r =>
|
||||
val result = r._2._2
|
||||
val dnetId = r._1._1
|
||||
result.setId(dnetId)
|
||||
result
|
||||
}.write.mode(SaveMode.Overwrite).save(s"$workingPath/resolvedEntities")
|
||||
}
|
||||
|
||||
|
||||
def deserializeObject(input:String, entity:EntityType ) :Result = {
|
||||
|
||||
entity match {
|
||||
case EntityType.publication => mapper.readValue(input, classOf[Publication])
|
||||
case EntityType.dataset => mapper.readValue(input, classOf[OafDataset])
|
||||
case EntityType.software=> mapper.readValue(input, classOf[Software])
|
||||
case EntityType.otherresearchproduct=> mapper.readValue(input, classOf[OtherResearchProduct])
|
||||
}
|
||||
}
|
||||
|
||||
def generateResolvedEntities(spark:SparkSession, workingPath: String, graphBasePath:String) = {
|
||||
|
||||
implicit val resEncoder: Encoder[Result] = Encoders.kryo(classOf[Result])
|
||||
import spark.implicits._
|
||||
|
||||
val re:Dataset[Result] = spark.read.load(s"$workingPath/resolvedEntities").as[Result]
|
||||
entities.foreach {
|
||||
e =>
|
||||
|
||||
spark.read.text(s"$graphBasePath/$e").as[String]
|
||||
.map(s => deserializeObject(s, e))
|
||||
.union(re)
|
||||
.groupByKey(_.getId)
|
||||
.reduceGroups {
|
||||
(x, y) =>
|
||||
x.mergeFrom(y)
|
||||
x
|
||||
}.map(_._2)
|
||||
.filter(r => r.getClass.getSimpleName.toLowerCase != "result")
|
||||
.map(r => mapper.writeValueAsString(r))(Encoders.STRING)
|
||||
.write.mode(SaveMode.Overwrite).option("compression", "gzip").text(s"$workingPath/resolvedGraph/$e")
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,161 @@
|
|||
package eu.dnetlib.dhp.oa.graph.resolution
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.common.HdfsSupport
|
||||
import eu.dnetlib.dhp.schema.oaf.{Relation, Result}
|
||||
import eu.dnetlib.dhp.utils.DHPUtils
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.hadoop.fs.{FileSystem, Path}
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.sql._
|
||||
import org.json4s
|
||||
import org.json4s.DefaultFormats
|
||||
import org.json4s.JsonAST.{JField, JObject, JString}
|
||||
import org.json4s.jackson.JsonMethods.parse
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
object SparkResolveRelation {
|
||||
def main(args: Array[String]): Unit = {
|
||||
val log: Logger = LoggerFactory.getLogger(getClass)
|
||||
val conf: SparkConf = new SparkConf()
|
||||
val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/oa/graph/resolution/resolve_relations_params.json")))
|
||||
parser.parseArgument(args)
|
||||
val spark: SparkSession =
|
||||
SparkSession
|
||||
.builder()
|
||||
.config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master(parser.get("master")).getOrCreate()
|
||||
|
||||
|
||||
val graphBasePath = parser.get("graphBasePath")
|
||||
log.info(s"graphBasePath -> $graphBasePath")
|
||||
val workingPath = parser.get("workingPath")
|
||||
log.info(s"workingPath -> $workingPath")
|
||||
|
||||
implicit val relEncoder: Encoder[Relation] = Encoders.kryo(classOf[Relation])
|
||||
import spark.implicits._
|
||||
|
||||
|
||||
//CLEANING TEMPORARY FOLDER
|
||||
HdfsSupport.remove(workingPath, spark.sparkContext.hadoopConfiguration)
|
||||
val fs = FileSystem.get(spark.sparkContext.hadoopConfiguration)
|
||||
fs.mkdirs(new Path(workingPath))
|
||||
|
||||
extractPidResolvedTableFromJsonRDD(spark, graphBasePath, workingPath)
|
||||
|
||||
val mapper: ObjectMapper = new ObjectMapper()
|
||||
|
||||
val rPid: Dataset[(String, String)] = spark.read.load(s"$workingPath/relationResolvedPid").as[(String, String)]
|
||||
|
||||
val relationDs: Dataset[(String, Relation)] = spark.read.text(s"$graphBasePath/relation").as[String]
|
||||
.map(s => mapper.readValue(s, classOf[Relation])).as[Relation]
|
||||
.map(r => (r.getSource.toLowerCase, r))(Encoders.tuple(Encoders.STRING, relEncoder))
|
||||
|
||||
relationDs.joinWith(rPid, relationDs("_1").equalTo(rPid("_2")), "left").map {
|
||||
m =>
|
||||
val sourceResolved = m._2
|
||||
val currentRelation = m._1._2
|
||||
if (sourceResolved != null && sourceResolved._1 != null && sourceResolved._1.nonEmpty)
|
||||
currentRelation.setSource(sourceResolved._1)
|
||||
currentRelation
|
||||
}.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relationResolvedSource")
|
||||
|
||||
|
||||
val relationSourceResolved: Dataset[(String, Relation)] = spark.read.load(s"$workingPath/relationResolvedSource").as[Relation]
|
||||
.map(r => (r.getTarget.toLowerCase, r))(Encoders.tuple(Encoders.STRING, relEncoder))
|
||||
relationSourceResolved.joinWith(rPid, relationSourceResolved("_1").equalTo(rPid("_2")), "left").map {
|
||||
m =>
|
||||
val targetResolved = m._2
|
||||
val currentRelation = m._1._2
|
||||
if (targetResolved != null && targetResolved._1.nonEmpty)
|
||||
currentRelation.setTarget(targetResolved._1)
|
||||
currentRelation
|
||||
}
|
||||
.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relation_resolved")
|
||||
|
||||
|
||||
// TO BE conservative we keep the original relation in the working dir
|
||||
// and save the relation resolved on the graphBasePath
|
||||
//In future this two line of code should be removed
|
||||
|
||||
fs.rename(new Path(s"$graphBasePath/relation"), new Path(s"$workingPath/relation"))
|
||||
|
||||
spark.read.load(s"$workingPath/relation_resolved").as[Relation]
|
||||
.filter(r => !r.getSource.startsWith("unresolved") && !r.getTarget.startsWith("unresolved"))
|
||||
.map(r => mapper.writeValueAsString(r))
|
||||
.write
|
||||
.option("compression", "gzip")
|
||||
.mode(SaveMode.Overwrite)
|
||||
.text(s"$graphBasePath/relation")
|
||||
}
|
||||
|
||||
def extractInstanceCF(input: String): List[(String, String)] = {
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: json4s.JValue = parse(input)
|
||||
val result: List[(String, String)] = for {
|
||||
JObject(iObj) <- json \ "instance"
|
||||
JField("collectedfrom", JObject(cf)) <- iObj
|
||||
JField("instancetype", JObject(instancetype)) <- iObj
|
||||
JField("value", JString(collectedFrom)) <- cf
|
||||
JField("classname", JString(classname)) <- instancetype
|
||||
} yield (classname, collectedFrom)
|
||||
|
||||
result
|
||||
|
||||
}
|
||||
|
||||
|
||||
def extractPidsFromRecord(input: String): (String, List[(String, String)]) = {
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: json4s.JValue = parse(input)
|
||||
val id: String = (json \ "id").extract[String]
|
||||
val result: List[(String, String)] = for {
|
||||
JObject(pids) <- json \\ "instance" \ "pid"
|
||||
JField("value", JString(pidValue)) <- pids
|
||||
JField("qualifier", JObject(qualifier)) <- pids
|
||||
JField("classid", JString(pidType)) <- qualifier
|
||||
} yield (pidValue, pidType)
|
||||
|
||||
(id, result)
|
||||
}
|
||||
|
||||
|
||||
private def isRelation(input: String): Boolean = {
|
||||
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: json4s.JValue = parse(input)
|
||||
val source = (json \ "source").extractOrElse[String](null)
|
||||
|
||||
source != null
|
||||
}
|
||||
|
||||
def extractPidResolvedTableFromJsonRDD(spark: SparkSession, graphPath: String, workingPath: String) = {
|
||||
import spark.implicits._
|
||||
|
||||
val d: RDD[(String, String)] = spark.sparkContext.textFile(s"$graphPath/*")
|
||||
.filter(i => !isRelation(i))
|
||||
.map(i => extractPidsFromRecord(i))
|
||||
.filter(s => s != null && s._1 != null && s._2 != null && s._2.nonEmpty)
|
||||
.flatMap { p =>
|
||||
p._2.map(pid =>
|
||||
(p._1, DHPUtils.generateUnresolvedIdentifier(pid._1, pid._2))
|
||||
)
|
||||
}.filter(r => r._1 != null || r._2 != null)
|
||||
|
||||
spark.createDataset(d)
|
||||
.groupByKey(_._2)
|
||||
.reduceGroups((x, y) => if (x._1.startsWith("50|doi") || x._1.startsWith("50|pmid")) x else y)
|
||||
.map(s => s._2)
|
||||
.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relationResolvedPid")
|
||||
}
|
||||
|
||||
}
|
|
@ -59,7 +59,12 @@ object SparkConvertRDDtoDataset {
|
|||
log.info("Converting Relation")
|
||||
|
||||
|
||||
val rddRelation =spark.sparkContext.textFile(s"$sourcePath/relation").map(s => mapper.readValue(s, classOf[Relation]))
|
||||
val relationSemanticFilter = List("cites", "iscitedby","merges", "ismergedin")
|
||||
|
||||
val rddRelation =spark.sparkContext.textFile(s"$sourcePath/relation")
|
||||
.map(s => mapper.readValue(s, classOf[Relation]))
|
||||
.filter(r=> r.getSource.startsWith("50") && r.getTarget.startsWith("50"))
|
||||
.filter(r => !relationSemanticFilter.exists(k => k.equalsIgnoreCase(r.getRelClass)))
|
||||
spark.createDataset(rddRelation).as[Relation].write.mode(SaveMode.Overwrite).save(s"$relPath")
|
||||
|
||||
|
||||
|
|
|
@ -51,10 +51,14 @@ object SparkCreateScholix {
|
|||
|
||||
relationDS.joinWith(summaryDS, relationDS("_1").equalTo(summaryDS("_1")), "left")
|
||||
.map { input: ((String, Relation), (String, ScholixSummary)) =>
|
||||
val rel: Relation = input._1._2
|
||||
val source: ScholixSummary = input._2._2
|
||||
(rel.getTarget, ScholixUtils.scholixFromSource(rel, source))
|
||||
if (input._1!= null && input._2!= null) {
|
||||
val rel: Relation = input._1._2
|
||||
val source: ScholixSummary = input._2._2
|
||||
(rel.getTarget, ScholixUtils.scholixFromSource(rel, source))
|
||||
}
|
||||
else null
|
||||
}(Encoders.tuple(Encoders.STRING, scholixEncoder))
|
||||
.filter(r => r!= null)
|
||||
.write.mode(SaveMode.Overwrite).save(s"$targetPath/scholix_from_source")
|
||||
|
||||
val scholixSource: Dataset[(String, Scholix)] = spark.read.load(s"$targetPath/scholix_from_source").as[(String, Scholix)](Encoders.tuple(Encoders.STRING, scholixEncoder))
|
||||
|
|
|
@ -1,154 +0,0 @@
|
|||
package eu.dnetlib.dhp.sx.graph
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import eu.dnetlib.dhp.schema.oaf.{Relation, Result}
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.hadoop.io.compress.GzipCodec
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.sql._
|
||||
import org.json4s
|
||||
import org.json4s.DefaultFormats
|
||||
import org.json4s.JsonAST.{JField, JObject, JString}
|
||||
import org.json4s.jackson.JsonMethods.parse
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
object SparkResolveRelation {
|
||||
def main(args: Array[String]): Unit = {
|
||||
val log: Logger = LoggerFactory.getLogger(getClass)
|
||||
val conf: SparkConf = new SparkConf()
|
||||
val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/sx/graph/resolve_relations_params.json")))
|
||||
parser.parseArgument(args)
|
||||
val spark: SparkSession =
|
||||
SparkSession
|
||||
.builder()
|
||||
.config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master(parser.get("master")).getOrCreate()
|
||||
|
||||
|
||||
val relationPath = parser.get("relationPath")
|
||||
log.info(s"sourcePath -> $relationPath")
|
||||
val entityPath = parser.get("entityPath")
|
||||
log.info(s"entityPath -> $entityPath")
|
||||
val workingPath = parser.get("workingPath")
|
||||
log.info(s"workingPath -> $workingPath")
|
||||
|
||||
implicit val relEncoder: Encoder[Relation] = Encoders.kryo(classOf[Relation])
|
||||
import spark.implicits._
|
||||
|
||||
|
||||
extractPidResolvedTableFromJsonRDD(spark, entityPath, workingPath)
|
||||
|
||||
val mappper = new ObjectMapper()
|
||||
|
||||
val rPid:Dataset[(String,String)] = spark.read.load(s"$workingPath/relationResolvedPid").as[(String,String)]
|
||||
|
||||
val relationDs:Dataset[(String,Relation)] = spark.read.load(relationPath).as[Relation].map(r => (r.getSource.toLowerCase, r))(Encoders.tuple(Encoders.STRING, relEncoder))
|
||||
|
||||
relationDs.joinWith(rPid, relationDs("_1").equalTo(rPid("_2")), "left").map{
|
||||
m =>
|
||||
val sourceResolved = m._2
|
||||
val currentRelation = m._1._2
|
||||
if (sourceResolved!=null && sourceResolved._1!=null && sourceResolved._1.nonEmpty)
|
||||
currentRelation.setSource(sourceResolved._1)
|
||||
currentRelation
|
||||
}.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relationResolvedSource")
|
||||
|
||||
|
||||
val relationSourceResolved:Dataset[(String,Relation)] = spark.read.load(s"$workingPath/relationResolvedSource").as[Relation].map(r => (r.getTarget.toLowerCase, r))(Encoders.tuple(Encoders.STRING, relEncoder))
|
||||
relationSourceResolved.joinWith(rPid, relationSourceResolved("_1").equalTo(rPid("_2")), "left").map{
|
||||
m =>
|
||||
val targetResolved = m._2
|
||||
val currentRelation = m._1._2
|
||||
if (targetResolved!=null && targetResolved._1.nonEmpty)
|
||||
currentRelation.setTarget(targetResolved._1)
|
||||
currentRelation
|
||||
}.filter(r => r.getSource.startsWith("50")&& r.getTarget.startsWith("50"))
|
||||
.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relation_resolved")
|
||||
|
||||
spark.read.load(s"$workingPath/relation_resolved").as[Relation]
|
||||
.map(r => mappper.writeValueAsString(r))
|
||||
.rdd.saveAsTextFile(s"$workingPath/relation", classOf[GzipCodec])
|
||||
|
||||
}
|
||||
|
||||
|
||||
def extractPidsFromRecord(input:String):(String,List[(String,String)]) = {
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: json4s.JValue = parse(input)
|
||||
val id:String = (json \ "id").extract[String]
|
||||
val result: List[(String,String)] = for {
|
||||
JObject(pids) <- json \ "pid"
|
||||
JField("value", JString(pidValue)) <- pids
|
||||
JField("qualifier", JObject(qualifier)) <- pids
|
||||
JField("classname", JString(pidType)) <- qualifier
|
||||
} yield (pidValue, pidType)
|
||||
|
||||
val alternateIds: List[(String,String)] = for {
|
||||
JObject(pids) <- json \\ "alternateIdentifier"
|
||||
JField("value", JString(pidValue)) <- pids
|
||||
JField("qualifier", JObject(qualifier)) <- pids
|
||||
JField("classname", JString(pidType)) <- qualifier
|
||||
} yield (pidValue, pidType)
|
||||
|
||||
(id,result:::alternateIds)
|
||||
}
|
||||
|
||||
private def extractPidResolvedTableFromJsonRDD(spark: SparkSession, entityPath: String, workingPath: String) = {
|
||||
import spark.implicits._
|
||||
|
||||
val d: RDD[(String,String)] = spark.sparkContext.textFile(s"$entityPath/*")
|
||||
.map(i => extractPidsFromRecord(i))
|
||||
.filter(s => s != null && s._1!= null && s._2!=null && s._2.nonEmpty)
|
||||
.flatMap{ p =>
|
||||
p._2.map(pid =>
|
||||
(p._1, convertPidToDNETIdentifier(pid._1, pid._2))
|
||||
)
|
||||
}.filter(r =>r._1 != null || r._2 != null)
|
||||
|
||||
spark.createDataset(d)
|
||||
.groupByKey(_._2)
|
||||
.reduceGroups((x, y) => if (x._1.startsWith("50|doi") || x._1.startsWith("50|pmid")) x else y)
|
||||
.map(s => s._2)
|
||||
.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relationResolvedPid")
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
This method should be used once we finally convert everythings in Kryo dataset
|
||||
instead of using rdd of json
|
||||
*/
|
||||
private def extractPidResolvedTableFromKryo(spark: SparkSession, entityPath: String, workingPath: String) = {
|
||||
import spark.implicits._
|
||||
implicit val oafEncoder: Encoder[Result] = Encoders.kryo(classOf[Result])
|
||||
val entities: Dataset[Result] = spark.read.load(s"$entityPath/*").as[Result]
|
||||
entities.flatMap(e => e.getPid.asScala
|
||||
.map(p =>
|
||||
convertPidToDNETIdentifier(p.getValue, p.getQualifier.getClassid))
|
||||
.filter(s => s != null)
|
||||
.map(s => (s, e.getId))
|
||||
).groupByKey(_._1)
|
||||
.reduceGroups((x, y) => if (x._2.startsWith("50|doi") || x._2.startsWith("50|pmid")) x else y)
|
||||
.map(s => s._2)
|
||||
.write
|
||||
.mode(SaveMode.Overwrite)
|
||||
.save(s"$workingPath/relationResolvedPid")
|
||||
}
|
||||
|
||||
def convertPidToDNETIdentifier(pid:String, pidType: String):String = {
|
||||
if (pid==null || pid.isEmpty || pidType== null || pidType.isEmpty)
|
||||
null
|
||||
else
|
||||
s"unresolved::${pid.toLowerCase}::${pidType.toLowerCase}"
|
||||
}
|
||||
|
||||
}
|
|
@ -289,7 +289,7 @@ object ScholixUtils {
|
|||
if (r.getInstance() == null || r.getInstance().isEmpty)
|
||||
return List()
|
||||
r.getInstance().asScala.filter(i => i.getUrl!= null && !i.getUrl.isEmpty)
|
||||
|
||||
.filter(i => i.getPid!= null && i.getUrl != null)
|
||||
.flatMap(i => findURLForPID(i.getPid.asScala.toList, i.getUrl.asScala.toList))
|
||||
.map(i => new ScholixIdentifier(i._1.getValue, i._1.getQualifier.getClassid, i._2)).distinct.toList
|
||||
}
|
||||
|
|
|
@ -23,16 +23,16 @@
|
|||
"paramDescription": "metadata layout",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "m",
|
||||
"paramLongName": "master",
|
||||
"paramDescription": "should be yarn or local",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "i",
|
||||
"paramLongName": "mdInterpretation",
|
||||
"paramDescription": "metadata interpretation",
|
||||
"paramRequired": true
|
||||
},
|
||||
{
|
||||
"paramName": "isu",
|
||||
"paramLongName": "isLookupUrl",
|
||||
"paramDescription": "the url of the ISLookupService",
|
||||
"paramRequired": true
|
||||
}
|
||||
]
|
|
@ -258,7 +258,7 @@
|
|||
<switch>
|
||||
<case to="ImportDB">${wf:conf('reuseDB') eq false}</case>
|
||||
<case to="reuse_odf">${wf:conf('reuseDB') eq true}</case>
|
||||
<default to="ImportDB_claims"/>
|
||||
<default to="ImportDB"/>
|
||||
</switch>
|
||||
</decision>
|
||||
|
||||
|
@ -553,7 +553,7 @@
|
|||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>ImportOAF_hdfs_graph</name>
|
||||
<class>eu.dnetlib.dhp.oa.graph.raw.CopyHdfsOafApplication</class>
|
||||
<class>eu.dnetlib.dhp.oa.graph.raw.CopyHdfsOafSparkApplication</class>
|
||||
<jar>dhp-graph-mapper-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory ${sparkExecutorMemory}
|
||||
|
@ -568,8 +568,8 @@
|
|||
<arg>--mdstoreManagerUrl</arg><arg>${mdstoreManagerUrl}</arg>
|
||||
<arg>--mdFormat</arg><arg>OAF</arg>
|
||||
<arg>--mdLayout</arg><arg>store</arg>
|
||||
<arg>--master</arg><arg>yarn</arg>
|
||||
<arg>--mdInterpretation</arg><arg>graph</arg>
|
||||
<arg>--isLookupUrl</arg><arg>${isLookupUrl}</arg>
|
||||
</spark>
|
||||
<ok to="wait_graphs"/>
|
||||
<error to="Kill"/>
|
||||
|
|
|
@ -0,0 +1,72 @@
|
|||
<workflow-app name="Resolve relation and entities" xmlns="uri:oozie:workflow:0.5">
|
||||
<parameters>
|
||||
<property>
|
||||
<name>graphBasePath</name>
|
||||
<description>the path of the graph</description>
|
||||
</property>
|
||||
<property>
|
||||
<name>unresolvedPath</name>
|
||||
<description>the path of the unresolved Entities</description>
|
||||
</property>
|
||||
</parameters>
|
||||
|
||||
<start to="ResolveRelations"/>
|
||||
|
||||
<kill name="Kill">
|
||||
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
|
||||
</kill>
|
||||
|
||||
<action name="ResolveRelations">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Resolve Relations in raw graph</name>
|
||||
<class>eu.dnetlib.dhp.oa.graph.resolution.SparkResolveRelation</class>
|
||||
<jar>dhp-graph-mapper-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.shuffle.partitions=15000
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--master</arg><arg>yarn</arg>
|
||||
<arg>--graphBasePath</arg><arg>${graphBasePath}</arg>
|
||||
<arg>--workingPath</arg><arg>${workingDir}</arg>
|
||||
</spark>
|
||||
<ok to="ResolveEntities"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<action name="ResolveEntities">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Resolve Entities in raw graph</name>
|
||||
<class>eu.dnetlib.dhp.oa.graph.resolution.SparkResolveEntities</class>
|
||||
<jar>dhp-graph-mapper-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
--conf spark.extraListeners=${spark2ExtraListeners}
|
||||
--conf spark.sql.shuffle.partitions=10000
|
||||
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
|
||||
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
|
||||
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
|
||||
</spark-opts>
|
||||
<arg>--master</arg><arg>yarn</arg>
|
||||
<arg>--graphBasePath</arg><arg>${graphBasePath}</arg>
|
||||
<arg>--unresolvedPath</arg><arg>${unresolvedPath}</arg>
|
||||
<arg>--workingPath</arg><arg>${workingDir}</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
|
||||
</workflow-app>
|
|
@ -0,0 +1,6 @@
|
|||
[
|
||||
{"paramName":"mt", "paramLongName":"master", "paramDescription": "should be local or yarn", "paramRequired": true},
|
||||
{"paramName":"w", "paramLongName":"workingPath", "paramDescription": "the source Path", "paramRequired": true},
|
||||
{"paramName":"u", "paramLongName":"unresolvedPath", "paramDescription": "the source Path", "paramRequired": true},
|
||||
{"paramName":"g", "paramLongName":"graphBasePath", "paramDescription": "the path of the raw graph", "paramRequired": true}
|
||||
]
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue