merge branch with master

This commit is contained in:
Miriam Baglioni 2020-11-03 16:59:08 +01:00
commit 8ec7a61188
15 changed files with 122 additions and 40 deletions

View File

@ -39,15 +39,15 @@ public class ModelConstants {
public static final String IS_SUPPLEMENT_TO = "isSupplementTo";
public static final String IS_SUPPLEMENTED_BY = "isSupplementedBy";
public static final String PART = "part";
public static final String IS_PART_OF = "IsPartOf";
public static final String HAS_PARTS = "HasParts";
public static final String IS_PART_OF = "isPartOf";
public static final String HAS_PARTS = "hasParts";
public static final String RELATIONSHIP = "relationship";
public static final String CITATION = "citation";
public static final String CITES = "cites";
public static final String IS_CITED_BY = "IsCitedBy";
public static final String IS_CITED_BY = "isCitedBy";
public static final String REVIEW = "review";
public static final String REVIEWS = "reviews";
public static final String IS_REVIEWED_BY = "IsReviewedBy";
public static final String IS_REVIEWED_BY = "isReviewedBy";
public static final String RESULT_PROJECT = "resultProject";
public static final String OUTCOME = "outcome";

View File

@ -4,6 +4,7 @@ package eu.dnetlib.dhp.actionmanager.project;
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Optional;
@ -11,6 +12,7 @@ import org.apache.commons.io.IOUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.*;
import org.slf4j.Logger;
@ -175,43 +177,54 @@ public class PrepareProgramme {
return csvProgramme;
});
prepareClassification(h2020Programmes);
// prepareClassification(h2020Programmes);
h2020Programmes
.map(csvProgramme -> OBJECT_MAPPER.writeValueAsString(csvProgramme))
JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());
JavaRDD<CSVProgramme> rdd = jsc.parallelize(prepareClassification(h2020Programmes), 1);
rdd
.map(csvProgramme -> {
String tmp = OBJECT_MAPPER.writeValueAsString(csvProgramme);
return tmp;
})
.saveAsTextFile(outputPath);
}
private static void prepareClassification(JavaRDD<CSVProgramme> h2020Programmes) {
private static List<CSVProgramme> prepareClassification(JavaRDD<CSVProgramme> h2020Programmes) {
Object[] codedescription = h2020Programmes
.map(value -> new Tuple2<>(value.getCode(), value.getTitle()))
.map(
value -> new Tuple2<>(value.getCode(),
new Tuple2<String, String>(value.getTitle(), value.getShortTitle())))
.collect()
.toArray();
for (int i = 0; i < codedescription.length - 1; i++) {
for (int j = i + 1; j < codedescription.length; j++) {
Tuple2<String, String> t2i = (Tuple2<String, String>) codedescription[i];
Tuple2<String, String> t2j = (Tuple2<String, String>) codedescription[j];
Tuple2<String, Tuple2<String, String>> t2i = (Tuple2<String, Tuple2<String, String>>) codedescription[i];
Tuple2<String, Tuple2<String, String>> t2j = (Tuple2<String, Tuple2<String, String>>) codedescription[j];
if (t2i._1().compareTo(t2j._1()) > 0) {
Tuple2<String, String> temp = t2i;
Tuple2<String, Tuple2<String, String>> temp = t2i;
codedescription[i] = t2j;
codedescription[j] = temp;
}
}
}
Map<String, String> map = new HashMap<>();
Map<String, Tuple2<String, String>> map = new HashMap<>();
for (int j = 0; j < codedescription.length; j++) {
Tuple2<String, String> entry = (Tuple2<String, String>) codedescription[j];
Tuple2<String, Tuple2<String, String>> entry = (Tuple2<String, Tuple2<String, String>>) codedescription[j];
String ent = entry._1();
if (ent.contains("Euratom-")) {
ent = ent.replace("-Euratom-", ".Euratom.");
}
String[] tmp = ent.split("\\.");
if (tmp.length <= 2) {
map.put(entry._1(), entry._2());
if (StringUtils.isEmpty(entry._2()._2())) {
map.put(entry._1(), new Tuple2<String, String>(entry._2()._1(), entry._2()._1()));
} else {
map.put(entry._1(), entry._2());
}
} else {
if (ent.endsWith(".")) {
ent = ent.substring(0, ent.length() - 1);
@ -224,14 +237,14 @@ public class PrepareProgramme {
key = key.substring(0, key.length() - 1);
}
}
String current = entry._2();
String current = entry._2()._1();
if (!ent.contains("Euratom")) {
String parent;
String tmp_key = tmp[0] + ".";
for (int i = 1; i < tmp.length - 1; i++) {
tmp_key += tmp[i] + ".";
parent = map.get(tmp_key).toLowerCase().trim();
parent = map.get(tmp_key)._1().toLowerCase().trim();
if (parent.contains("|")) {
parent = parent.substring(parent.lastIndexOf("|") + 1).trim();
}
@ -246,18 +259,29 @@ public class PrepareProgramme {
}
}
map.put(ent + ".", map.get(key) + " | " + current);
String shortTitle = entry._2()._2();
if (StringUtils.isEmpty(shortTitle)) {
shortTitle = current;
}
Tuple2<String, String> newEntry = new Tuple2<>(map.get(key)._1() + " | " + current,
map.get(key)._2() + " | " + shortTitle);
map.put(ent + ".", newEntry);
}
}
h2020Programmes.foreach(csvProgramme -> {
if (!csvProgramme.getCode().endsWith(".") && !csvProgramme.getCode().contains("Euratom")
&& !csvProgramme.getCode().equals("H2020-EC"))
csvProgramme.setClassification(map.get(csvProgramme.getCode() + "."));
else
csvProgramme.setClassification(map.get(csvProgramme.getCode()));
});
return h2020Programmes.map(csvProgramme -> {
String code = csvProgramme.getCode();
if (!code.endsWith(".") && !code.contains("Euratom")
&& !code.equals("H2020-EC"))
code += ".";
csvProgramme.setClassification(map.get(code)._1());
csvProgramme.setClassification_short(map.get(code)._2());
return csvProgramme;
}).collect();
}
public static <R> Dataset<R> readPath(

View File

@ -9,7 +9,6 @@ import java.util.Objects;
import java.util.Optional;
import org.apache.commons.io.IOUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.spark.SparkConf;
@ -138,7 +137,8 @@ public class SparkAtomicActionJob {
pm.setCode(csvProject.getProgramme());
h2020classification.setClassification(ocsvProgramme.get().getClassification());
h2020classification.setH2020Programme(pm);
setLevelsAndProgramme(h2020classification, ocsvProgramme.get().getClassification());
setLevelsandProgramme(h2020classification, ocsvProgramme.get().getClassification_short());
// setProgramme(h2020classification, ocsvProgramme.get().getClassification());
pp.setH2020classification(Arrays.asList(h2020classification));
return pp;
@ -177,8 +177,8 @@ public class SparkAtomicActionJob {
}
private static void setLevelsAndProgramme(H2020Classification h2020Classification, String classification) {
String[] tmp = classification.split(" \\| ");
private static void setLevelsandProgramme(H2020Classification h2020Classification, String classification_short) {
String[] tmp = classification_short.split(" \\| ");
h2020Classification.setLevel1(tmp[0]);
if (tmp.length > 1) {
h2020Classification.setLevel2(tmp[1]);
@ -189,6 +189,12 @@ public class SparkAtomicActionJob {
h2020Classification.getH2020Programme().setDescription(tmp[tmp.length - 1]);
}
// private static void setProgramme(H2020Classification h2020Classification, String classification) {
// String[] tmp = classification.split(" \\| ");
//
// h2020Classification.getH2020Programme().setDescription(tmp[tmp.length - 1]);
// }
public static <R> Dataset<R> readPath(
SparkSession spark, String inputPath, Class<R> clazz) {
return spark

View File

@ -22,6 +22,15 @@ public class CSVProgramme implements Serializable {
private String shortTitle;
private String language;
private String classification;
private String classification_short;
public String getClassification_short() {
return classification_short;
}
public void setClassification_short(String classification_short) {
this.classification_short = classification_short;
}
public String getClassification() {
return classification;

View File

@ -9,12 +9,14 @@ import java.util.List;
import org.apache.poi.openxml4j.exceptions.InvalidFormatException;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import eu.dnetlib.dhp.actionmanager.project.httpconnector.CollectorServiceException;
import eu.dnetlib.dhp.actionmanager.project.httpconnector.HttpConnector;
import eu.dnetlib.dhp.actionmanager.project.utils.EXCELParser;
@Disabled
public class EXCELParserTest {
private static Path workingDir;

View File

@ -92,6 +92,8 @@ public class PrepareH2020ProgrammeTest {
Assertions.assertEquals(0, verificationDataset.filter("classification = ''").count());
// tmp.foreach(csvProgramme -> System.out.println(OBJECT_MAPPER.writeValueAsString(csvProgramme)));
Assertions
.assertEquals(
"Societal challenges | Smart, Green And Integrated Transport | CLEANSKY2 | IADP Fast Rotorcraft",

View File

@ -78,7 +78,7 @@ public class SparkUpdateProjectTest {
"-programmePath",
getClass()
.getResource(
"/eu/dnetlib/dhp/actionmanager/project/preparedProgramme_classification_whole.json.gz")
"/eu/dnetlib/dhp/actionmanager/project/preparedProgramme_whole.json.gz")
.getPath(),
"-projectPath",
getClass().getResource("/eu/dnetlib/dhp/actionmanager/project/prepared_projects.json").getPath(),
@ -124,7 +124,7 @@ public class SparkUpdateProjectTest {
.getString(0));
Assertions
.assertEquals(
"Societal challenges",
"Societal Challenges",
execverification
.filter("id = '40|corda__h2020::2c7298913008865ba784e5c1350a0aa5'")
.select("classification.level1")
@ -133,7 +133,7 @@ public class SparkUpdateProjectTest {
.getString(0));
Assertions
.assertEquals(
"Smart, Green And Integrated Transport",
"Transport",
execverification
.filter("id = '40|corda__h2020::2c7298913008865ba784e5c1350a0aa5'")
.select("classification.level2")
@ -188,7 +188,7 @@ public class SparkUpdateProjectTest {
.getString(0));
Assertions
.assertEquals(
"Nurturing excellence by means of cross-border and cross-sector mobility",
"MSCA Mobility",
execverification
.filter("id = '40|corda__h2020::1a1f235fdd06ef14790baec159aa1202'")
.select("classification.h2020Programme.description")
@ -197,7 +197,7 @@ public class SparkUpdateProjectTest {
.getString(0));
Assertions
.assertEquals(
"Excellent science",
"Excellent Science",
execverification
.filter("id = '40|corda__h2020::1a1f235fdd06ef14790baec159aa1202'")
.select("classification.level1")
@ -206,7 +206,7 @@ public class SparkUpdateProjectTest {
.getString(0));
Assertions
.assertEquals(
"Marie Skłodowska-Curie Actions",
"Marie-Sklodowska-Curie Actions",
execverification
.filter("id = '40|corda__h2020::1a1f235fdd06ef14790baec159aa1202'")
.select("classification.level2")
@ -215,7 +215,7 @@ public class SparkUpdateProjectTest {
.getString(0));
Assertions
.assertEquals(
"Nurturing excellence by means of cross-border and cross-sector mobility",
"MSCA Mobility",
execverification
.filter("id = '40|corda__h2020::1a1f235fdd06ef14790baec159aa1202'")
.select("classification.level3")

View File

@ -6,8 +6,11 @@ import org.apache.commons.logging.LogFactory;
import org.apache.http.conn.ssl.SSLConnectionSocketFactory;
import org.apache.http.ssl.SSLContextBuilder;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
@Disabled
public class HttpConnectorTest {
private static final Log log = LogFactory.getLog(HttpConnectorTest.class);

View File

@ -38,6 +38,8 @@ class QueryTest {
def myQuery(spark:SparkSession, sc:SparkContext): Unit = {
implicit val mapEncoderPub: Encoder[Publication] = Encoders.kryo[Publication]
val mapper = new ObjectMapper()
mapper.getSerializationConfig.enable(SerializationConfig.Feature.INDENT_OUTPUT)

View File

@ -18,6 +18,7 @@ import eu.dnetlib.dhp.schema.oaf.*;
public class CleaningFunctions {
public static final String ORCID_PREFIX_REGEX = "^http(s?):\\/\\/orcid\\.org\\/";
public static final String NONE = "none";
public static <T extends Oaf> T fixVocabularyNames(T value) {
if (value instanceof Datasource) {
@ -106,6 +107,23 @@ public class CleaningFunctions {
.filter(sp -> StringUtils.isNotBlank(sp.getQualifier().getClassid()))
.collect(Collectors.toList()));
}
if (Objects.nonNull(r.getPid())) {
r
.setPid(
r
.getPid()
.stream()
.filter(Objects::nonNull)
.filter(sp -> StringUtils.isNotBlank(StringUtils.trim(sp.getValue())))
.filter(sp -> NONE.equalsIgnoreCase(sp.getValue()))
.filter(sp -> Objects.nonNull(sp.getQualifier()))
.filter(sp -> StringUtils.isNotBlank(sp.getQualifier().getClassid()))
.map(sp -> {
sp.setValue(StringUtils.trim(sp.getValue()));
return sp;
})
.collect(Collectors.toList()));
}
if (Objects.isNull(r.getResourcetype()) || StringUtils.isBlank(r.getResourcetype().getClassid())) {
r
.setResourcetype(

View File

@ -30,7 +30,7 @@ class SparkScholexplorerAggregationTest {
implicit val pubEncoder: Encoder[DLIPublication] = Encoders.kryo[DLIPublication]
val spark: SparkSession = SparkSession.builder().appName("Test").master("local[*]").getOrCreate()
val spark: SparkSession = SparkSession.builder().appName("Test").master("local[*]").config("spark.driver.bindAddress", "127.0.0.1").getOrCreate()
val ds: Dataset[DLIPublication] = spark.createDataset(spark.sparkContext.parallelize(s)).as[DLIPublication]

View File

@ -3,14 +3,15 @@ package eu.dnetlib.dhp.export
import java.time.LocalDateTime
import java.time.format.DateTimeFormatter
import eu.dnetlib.dhp.provision.scholix.Scholix
import eu.dnetlib.dhp.provision.scholix.summary.ScholixSummary
import eu.dnetlib.dhp.schema.oaf.Relation
import eu.dnetlib.dhp.schema.scholexplorer.{DLIDataset, DLIPublication}
import org.codehaus.jackson.map.{ObjectMapper, SerializationConfig}
import org.junit.jupiter.api.Test
import scala.io.Source
import scala.collection.JavaConverters._
class ExportDLITOOAFTest {
val mapper = new ObjectMapper()
@ -22,12 +23,27 @@ class ExportDLITOOAFTest {
}
def extractDatasources(s:Scholix):List[String]= {
s.getTarget.getCollectedFrom.asScala.map(c => c.getProvider.getName)(collection.breakOut)
}
def extractDatasources(s:ScholixSummary):List[String] = {
s.getDatasources.asScala.map(c => c.getDatasourceName)(collection.breakOut)
}
@Test
def testMappingRele():Unit = {
val r:Relation = new Relation
r.setSource("60|fbff1d424e045eecf24151a5fe3aa738")
r.setTarget("50|dedup_wf_001::ec409f09e63347d4e834087fe1483877")
r.setRelType("IsReferencedBy")
val r1 =DLIToOAF.convertDLIRelation(r)
println(r1.getSource, r1.getTarget)