moved lots of preprocessing under make

This commit is contained in:
Andrea Mannocci 2021-03-25 15:20:06 +01:00
parent 9433fbe46d
commit 629d781645
2 changed files with 15549 additions and 440 deletions

File diff suppressed because one or more lines are too long

View File

@ -6,6 +6,31 @@ from dotenv import find_dotenv, load_dotenv
import pandas as pd
import ast
import os
import tldextract
def fix_keywords(lst):
fixed = set()
for k in lst:
tokens = set(k.split(','))
for t in tokens:
fixed.add(str.strip(t))
fixed.discard('')
return list(fixed)
def extract_email_domains(lst):
res = []
for email in lst:
res.append(email.split('@')[1])
return res
def extract_url_domains(lst):
domains = []
for e in lst:
# e[0] is a string describing the url
# e[1] is the url
domain = tldextract.extract(e[1])
domains.append(domain.registered_domain)
return domains
@click.command()
@click.argument('input_filepath', type=click.Path(exists=True))
@ -17,8 +42,9 @@ def main(input_filepath, output_filepath):
logger = logging.getLogger(__name__)
logger.info('Making final data set from raw data')
logger.info('Loading the zipped dataset')
df = pd.read_csv(os.path.join(input_filepath, 'initial_info_whole_20210322.tsv.gz'), compression='gzip', sep='\t', header=0,
names=['orcid', 'claimed','verified_email', 'verified_primary_email',
df = pd.read_csv(os.path.join(input_filepath, 'data.gz'), compression='gzip',
sep='\t', header=None,
names=['orcid','verified_email', 'verified_primary_email',
'given_names', 'family_name', 'biography', 'other_names', 'urls',
'primary_email', 'other_emails', 'keywords', 'external_ids', 'education',
'employment', 'n_works', 'works_source', 'activation_date', 'last_update_date',
@ -54,6 +80,25 @@ def main(input_filepath, output_filepath):
df['label'] = df.orcid.isin(openaire_orcid['orcid'])
df['label'] = df['label'].astype(int)
logger.info('Fixing keywords')
df['keywords'] = df[df.keywords.notna()]['keywords'].apply(lambda x: fix_keywords(x))
logger.info('Extracting domains from URLs and emails')
df['primary_email_domain'] = df[df.primary_email.notna()]['primary_email'].apply(lambda x: x.split('@')[1])
df['other_email_domains'] = df[df.other_emails.notna()]['other_emails'].apply(lambda x: extract_email_domains(x))
df['url_domains'] = df[df.urls.notna()]['urls'].apply(lambda x: extract_url_domains(x))
logger.info('Creating simple numeric columns')
df['n_emails'] = df.other_emails.str.len()
df['n_urls'] = df.url_domains.str.len()
df['n_ids'] = df.external_ids.str.len()
df['n_keywords'] = df.keywords.str.len()
df['n_education'] = df.education.str.len()
df['n_employment'] = df.employment.str.len()
logger.info('Dropping useless columns')
df = df.drop(['urls', 'other_emails'], axis=1)
logger.info('Serializing the dataset in ./data/processed')
n = 1000000
chunks = [df[i:i+n] for i in range(0, df.shape[0], n)]