forked from D-Net/dnet-hadoop
WIP: prepare relation job
This commit is contained in:
parent
6933ec11fb
commit
e62333192c
|
@ -1,42 +1,33 @@
|
|||
|
||||
package eu.dnetlib.dhp.oa.provision;
|
||||
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.*;
|
||||
import java.util.function.Supplier;
|
||||
|
||||
import javax.annotation.Nullable;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
import com.google.common.base.Splitter;
|
||||
import com.google.common.collect.Iterables;
|
||||
import com.google.common.collect.Sets;
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.common.HdfsSupport;
|
||||
import eu.dnetlib.dhp.oa.provision.model.SortableRelationKey;
|
||||
import eu.dnetlib.dhp.oa.provision.utils.RelationPartitioner;
|
||||
import eu.dnetlib.dhp.schema.oaf.Relation;
|
||||
import org.apache.commons.io.IOUtils;
|
||||
import org.apache.spark.SparkConf;
|
||||
import org.apache.spark.api.java.JavaRDD;
|
||||
import org.apache.spark.api.java.JavaSparkContext;
|
||||
import org.apache.spark.api.java.function.Function;
|
||||
import org.apache.spark.api.java.function.PairFunction;
|
||||
import org.apache.spark.rdd.RDD;
|
||||
import org.apache.spark.sql.Encoders;
|
||||
import org.apache.spark.sql.SaveMode;
|
||||
import org.apache.spark.sql.SparkSession;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import com.fasterxml.jackson.databind.ObjectMapper;
|
||||
import com.google.common.base.Predicate;
|
||||
import com.google.common.base.Splitter;
|
||||
import com.google.common.collect.ComparisonChain;
|
||||
import com.google.common.collect.Iterables;
|
||||
import com.google.common.collect.Maps;
|
||||
import com.google.common.collect.Sets;
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
|
||||
import eu.dnetlib.dhp.common.HdfsSupport;
|
||||
import eu.dnetlib.dhp.oa.provision.model.SortableRelationKey;
|
||||
import eu.dnetlib.dhp.oa.provision.utils.RelationPartitioner;
|
||||
import eu.dnetlib.dhp.schema.oaf.Relation;
|
||||
import scala.Tuple2;
|
||||
|
||||
import java.util.HashSet;
|
||||
import java.util.Optional;
|
||||
import java.util.Set;
|
||||
|
||||
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
|
||||
|
||||
/**
|
||||
* Joins the graph nodes by resolving the links of distance = 1 to create an adjacency list of linked objects. The
|
||||
* operation considers all the entity types (publication, dataset, software, ORP, project, datasource, organization, and
|
||||
|
@ -136,32 +127,35 @@ public class PrepareRelationsJob {
|
|||
SparkSession spark, String inputRelationsPath, String outputPath, Set<String> relationFilter, int maxRelations,
|
||||
int relPartitions) {
|
||||
|
||||
RDD<Relation> cappedRels = readPathRelationRDD(spark, inputRelationsPath)
|
||||
// group by SOURCE and apply limit
|
||||
RDD<Relation> bySource = readPathRelationRDD(spark, inputRelationsPath)
|
||||
.filter(rel -> rel.getDataInfo().getDeletedbyinference() == false)
|
||||
.filter(rel -> relationFilter.contains(rel.getRelClass()) == false)
|
||||
|
||||
// group by SOURCE and apply limit
|
||||
.mapToPair(r -> new Tuple2<>(SortableRelationKey.create(r, r.getSource()), r))
|
||||
.repartitionAndSortWithinPartitions(new RelationPartitioner(relPartitions))
|
||||
.groupBy(Tuple2::_1)
|
||||
.map(Tuple2::_2)
|
||||
.map(t -> Iterables.filter(t, input -> input._1().getSubRelType().equals("outcome")))
|
||||
.map(t -> Iterables.limit(t, maxRelations))
|
||||
.flatMap(Iterable::iterator)
|
||||
.map(Tuple2::_2)
|
||||
.rdd();
|
||||
|
||||
// group by TARGET and apply limit
|
||||
// group by TARGET and apply limit
|
||||
RDD<Relation> byTarget = readPathRelationRDD(spark, inputRelationsPath)
|
||||
.filter(rel -> rel.getDataInfo().getDeletedbyinference() == false)
|
||||
.filter(rel -> relationFilter.contains(rel.getRelClass()) == false)
|
||||
.mapToPair(r -> new Tuple2<>(SortableRelationKey.create(r, r.getTarget()), r))
|
||||
.repartitionAndSortWithinPartitions(new RelationPartitioner(relPartitions))
|
||||
.groupBy(Tuple2::_1)
|
||||
.map(Tuple2::_2)
|
||||
.map(t -> Iterables.filter(t, input -> input._1().getSubRelType().equals("outcome")))
|
||||
// .map(t -> Iterables.limit(t, maxRelations))
|
||||
.map(t -> Iterables.limit(t, maxRelations))
|
||||
.flatMap(Iterable::iterator)
|
||||
.map(Tuple2::_2)
|
||||
.rdd();
|
||||
|
||||
spark
|
||||
.createDataset(cappedRels, Encoders.bean(Relation.class))
|
||||
.createDataset(bySource.union(byTarget), Encoders.bean(Relation.class))
|
||||
.repartition(relPartitions)
|
||||
.write()
|
||||
.mode(SaveMode.Overwrite)
|
||||
.parquet(outputPath);
|
||||
|
|
|
@ -50,7 +50,7 @@ public class SortableRelationKey implements Comparable<SortableRelationKey>, Ser
|
|||
if (o == null || getClass() != o.getClass())
|
||||
return false;
|
||||
SortableRelationKey that = (SortableRelationKey) o;
|
||||
return Objects.equal(getGroupingKey(), that.getGroupingKey());
|
||||
return getGroupingKey().equals(that.getGroupingKey());
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
Loading…
Reference in New Issue