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Reinforcement Learning

Olivier Buffet, Olivier Pietquin, and Paul Weng

Abstract Reinforcement learning (RL) is a general framework for adaptive control,

which has proven to be efficient in many domains, e.g., board games, video games

or autonomous vehicles. In such problems, an agent faces a sequential decision-

making problem where, at every time step, it observes its state, performs an action,

receives a reward and moves to a new state. An RL agent learns by trial and error

a good policy (or controller) based on observations and numeric reward feedback

on the previously performed action. In this chapter, we present the basic framework

of RL and recall the two main families of approaches that have been developed to

learn a good policy. The first one, which is value-based, consists in estimating the

value of an optimal policy, value from which a policy can be recovered, while the

other, called policy search, directly works in a policy space. Actor-critic methods

can be seen as a policy search technique where the policy value that is learned

guides the policy improvement. Besides, we give an overview of some extensions

of the standard RL framework, notably when risk-averse behavior needs to be taken

into account or when rewards are not available or not known.
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1 Introduction

Reinforcement learning (RL) is a general framework for building autonomous

agents (physical or virtual), which are systems that make decisions without human

supervision in order to perform a given task. Examples of such systems abound:

expert backgammon player [Tesauro, 1995], dialogue systems [Singh et al., 1999],

acrobatic helicopter flight [Abbeel et al., 2010], human-level video game player

[Mnih et al., 2015], go player [Silver et al., 2016] or autonomous driver [Bojarski

et al., 2016]. See also Chapter 11 of Volume 2 and Chapters 10 and 12 of Volume 3.

In all those examples, an agent faces a sequential decision-making problem,

which can be represented as an interaction loop between an agent and an environ-

ment. After observing its current situation, the agent selects an action to perform. As

a result, the environment changes its state and provides a numeric reward feedback

about the chosen action. In RL, the agent needs to learn how to choose good actions

based on its observations and the reward feedback, without necessarily knowing the

dynamics of the environment.

In this chapter, we focus on the basic setting of RL that assumes a single learning

agent with full observability. Some work has investigated the partial observability

case (see [Spaan, 2012] for an overview of both the model-based and model-free

approaches). The basic setting has also been extended to situations where several

agents interact and learn simultaneously (see [Busoniu et al., 2010] for a survey).

RL has also been tackled with Bayesian inference techniques, which we do not

mention here for space reasons (see [Ghavamzadeh et al., 2015] for a survey).

In Section 2, we recall the Markov decision process model on which RL is formu-

lated and the RL framework, along with some of their classic solution algorithms.

We present two families of approaches that can tackle large-sized problems for

which function approximation is usually required. The first, which is value-based,

is presented in Section 3. It consists in estimating the value function of an optimal

policy. The second, called policy search, is presented in Section 4. It searches for an

optimal policy directly in a policy space. In Section 5, we present some extensions

of the standard RL setting, namely extensions to the case of unknown rewards and

risk-sensitive RL approaches. Finally, we conclude in Section 6.

2 Background for RL

Before presenting the RL framework, we recall the Markov decision process (MDP)

model, on which RL is based. See also Chapter 17 of this volume and Chapter 10 of

Volume 2.

Markov decision process. MDPs and their multiple variants (e.g., Partially Ob-

servable MDP or POMDP) [Puterman, 1994] have been proposed to represent and

solve sequential decision-making problems under uncertainty. An MDP is defined as

a tuple M = 〈S,A,T,R,γ,H〉 where S is a set of states, A is a set of actions, transi-

tion function T (s,a,s′) specifies the probability of reaching state s′ after performing
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action a in state s, reward function R(s,a) ∈ R yields the immediate reward after

performing action a in state s, γ ∈ [0,1] is a discount factor and H ∈ N∪{∞} is the

horizon of the problem, which is the number of decisions to be made. An immediate

reward, which is a scalar number, measures the value of performing an action in a

state. In some problems, it can be randomly generated. In that case, R(s,a) is simply

the expectation of the random rewards. In this MDP formulation, the environment

is assumed to be stationary. Using such an MDP model, a system designer needs to

define the tuple M such that an optimal policy performs the task s/he wants.

Solving an MDP (i.e., planning) amounts to finding a controller, called a policy,

which specifies which action to take in every state of the environment in order to

maximize the expected discounted sum of rewards (standard decision criterion).

A policy π can be deterministic (i.e., π(s) ∈ A) or randomized (i.e., π(· |s) is a

probability distribution over A). It can also be stationary or time-dependent, which

is useful in finite-horizon or non-stationary problems.

A t-step history (also called trajectory, rollout or path) h = (s1,a1,s2, . . . ,st+1) ∈
(S×A)t×S is a sequence of past states and actions. In the standard case, it is valued

by its return defined as ∑t γt−1R(st ,at). As a policy induces a probability distribution

over histories, the value function vπ : S→R of a policy π is defined by:

vπ
H(s) = Eπ

[

H

∑
t=1

γt−1R(St ,At) |S1 = s
]

,

where Eπ is the expectation with respect to the distribution induced by π in the

MDP, and St and At are random variables respectively representing a state and an

action at a time step t. We will drop subscript H if there is no risk of confusion. The

value function can be computed recursively. For deterministic policy π , we have:

vπ
0 (s) = 0,

vπ
t (s) = R(s,π(s))+ γ ∑

s′∈S

T (s,π(s),s′)vπ
t−1(s

′).

In a given state, policies can be compared via their value functions. Interestingly,

in standard MDPs, there always exists an optimal deterministic policy whose value

function is maximum in every state. Its value function is said to be optimal.

In the infinite horizon case, when γ < 1, vπ
t is guaranteed to converge to vπ , which

is the solution of the Bellman evaluation equations:

vπ(s) = R(s,π(s))+ γ ∑
s′∈S

T (s,π(s),s′)vπ(s′). (1)

Given vπ , a better policy can be obtained with the following improvement step:

π ′(s) = argmax
a∈A

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)vπ(s′). (2)
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The policy iteration algorithm consists in alternating between a policy evaluation

step (1) and a policy improvement step (2), which converges to the optimal value

function v∗ : S→R.

Alternatively, the optimal value function v∗H : S→R can also be iteratively com-

puted for any horizon H by:

v∗0(s) = 0

v∗t (s) = max
a∈A

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)v∗t−1(s
′). (3)

In the infinite horizon case, when γ < 1, v∗t is guaranteed to converge to v∗, which

is the solution of the Bellman optimality equations:

v∗(s) = max
a∈A

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)v∗(s′). (4)

In that case, (3) leads to the value iteration algorithm.

Two other related functions are useful when solving an RL problem: the action-

value function Qπ
t (s,a) (resp. the optimal action-value function Q∗t (s,a)) specifies

the value of choosing an action a in a state s at time step t and assuming policy π
(resp. an optimal policy) is applied thereafter, i.e.,

Qx
t (s,a) = R(s,a)+ γ ∑

s′∈S

T (s,a,s′)vx
t−1(s

′) where x ∈ {π ,∗}.

Reinforcement learning. In the MDP framework, a complete model of the envi-

ronment is assumed to be known (via the transition function) and the task to be per-

formed is completely described (via the reward function). The RL setting has been

proposed to tackle situations when those assumptions do not hold. An RL agent

searches for (i.e., during the learning phase) a best policy while interacting with the

unknown environment by trial and error. In RL, the standard decision criterion used

to compare policies is the same as in the MDP setting. Although the reward function

is supposed to be unknown, the system designer has to specify it.

In RL, value and action-value functions have to be estimated. For vπ of a given

policy π , this can be done with the standard TD(0) evaluation algorithm, where

the following update is performed after applying π in state s yielding reward r and

moving to new state s′:

vπ
t (s) = vπ

t−1(s)−αt(s)
(

vπ
t−1(s)−

(

r+ vπ
t−1(s

′)
))

, (5)

where αt(s) ∈ [0,1] is a learning rate. For Qπ , the update is as follows, after the

agent executed action a in state s, received r, moved to new state s′ and executed

action a′ (chosen by π):

Qπ
t (s,a) = Qπ

t−1(s,a)−αt(s,a)
(

Qπ
t−1(s,a)−

(

r+ γQπ
t−1(s

′,a′)
))

, (6)
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where αt(s,a) ∈ [0,1] is a learning rate. This update leads to the SARSA algorithm

(named after the variables s,a,r,s′,a′). In the same way that the policy iteration al-

gorithm alternates between an evaluation step and a policy improvement step, one

can use the SARSA evaluation method and combine it with a policy improvement

step. In practice, we do not wait for the SARSA evaluation update rule to converge

to the actual value of the current policy to make a policy improvement step. We

rather continuously behave according to the current estimate of the Q-function to

generate a new transition. One common choice is to use the current estimate in a

softmax (Boltzmann) function of temperature τ and behave according to a random-

ized policy:

πt(a |s) =
eQθt

(s,a)/τ

∑b eQθt
(s,b)/τ

.

Notice that we chose to use the Bellman evaluation equations to estimate the

targets. However we could also use the Bellman optimality equations in the case of

the Q-function and replace r+ γQ(s′,a′) by r+maxb Q(s′,b). Yet this only holds if

we compute the value Q∗ of the optimal policy π∗. This gives rise to the Q-learning

update rule, which directly computes the value of the optimal policy. It is called an

off-policy algorithm (whereas SARSA is on-policy) because it computes the value

function of another policy than the one that selects the actions and generates the

transitions used for the update. The following update is performed after the agent

executed action a (e.g., chosen according to the softmax rule) in state s, received r

and moved to new state s′:

Q∗t (s,a) = Q∗t−1(s,a)−αt(s,a)
(

Q∗t−1(s,a)− (r+ γ max
a′

Q∗t−1(s
′,a′))

)

. (7)

Updates (5), (6) and (7) can be proved to converge if the learning rates satisfy

standard stochastic approximation conditions (i.e., ∑t αt = ∞ and ∑t α2
t < ∞). Be-

sides, for (6), temperature τ would also need to converge to 0 while ensuring suf-

ficient exploration in order for SARSA to converge to the optimal Q-function. In

practice, αt(s,a) is often chosen constant, which would also account for the case

where the environment is non-stationary.

Those two general framework (MDP and RL) have been successfully applied in

many different domains. For instance, MDPs or their variants have been used in

finance [Bäuerle and Rieder, 2011] or logistics [Zhao et al., 2010]. RL has been

applied to soccer [Bai et al., 2013] or power systems [Yu and Zhang, 2013], to

cite a few. To tackle real-life large-sized problems, MDP and RL have to be com-

pleted with other techniques, such as compact representations [Boutilier et al., 2000;

Guestrin et al., 2004; van Otterlo, 2009] or function approximation [de Farias and

Van Roy, 2003; Geist and Pietquin, 2011; Mnih et al., 2015].
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3 Value-Based Methods with Function Approximation

In many cases, the state-action space is too large so as to be able to represent ex-

actly the value functions vπ or the action-value function Qπ of a policy π . For this

reason, function approximation for RL has been studied for a long time, starting

with the seminal work of Bellman and Dreyfus [1959]. In this framework, the func-

tions are parameterized by a vector of d parameters θθθ = [θ j]
d
j=1, with θθθ ∈Θ ⊂ R

d

(we will always consider column vectors) and the algorithms will aim at learning

the parameters from data provided in the shape of transitions {st ,at ,s
′
t ,rt}

N
t=1 where

s′t is the successor state of st drawn from T (st ,at , ·). We will denote the param-

eterized versions of the functions as vθθθ and Qθθθ . Popular approximation schemes

are linear function approximation and neural networks. The former gave birth to

a large literature in the theoretical domain as it allows studying convergence rates

and bounds (although it remains non-trivial). The latter, although already used in

the 90’s [Tesauro, 1995], has known a recent growth in interest following the Deep

Learning successes in supervised learning.

The case of neural networks will be addressed in Section 3.4 but we will start

with linear function approximation. In this particular case, a set of basis functions

φφφ(·) = [φ j(·)]
d
j=1 has to be defined by the practitioner (or maybe learned through

unsupervised learning) so that the value functions can be approximated by:

vθθθ (s) = ∑
j

θ jφ j(s) = θθθ⊺φφφ(s) or Qθθθ (s,a) = ∑
j

θ jφ j(s,a) = θθθ⊺φφφ(s,a).

The vector space defined by the span of φφφ is denoted Φ .

Notice that the exact case in which the different values of the value func-

tions can be stored in a table (tabular case) is a particular case of linear func-

tion approximation. Indeed, if we consider that the state space is finite and small
(

s = {sk}
|S|
k=1 ∈ S

)

, then the value function can be represented in a table of |S|

values {vk |vk = v(sk)}
|S|
k=1 where |S| is the number of states. This is equivalent to

defining a vector of |S| parameters vvv = [vk]
|S|
k=1 and a vector of |S| basis functions

δδδ (s) = [δk(s)]
|S|
k=1 where δk(s) = 1 if s = sk and 0 otherwise. The value function can

thus be written v(s) = ∑k vkδk(s) = vvv⊺δδδ (s).

3.1 Stochastic Gradient Descent Methods

3.1.1 Bootstrapped Methods

If one wanted to cast the Reinforcement Learning problem into a supervised learning

problem (see Chapter 11 of this Volume and Chapter 12 of Volume 2), one could

want to fit the parameters to the value function directly. For instance, to evaluate the

value of a particular policy π , one would solve the following regression problem
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(for some ℓp-norm and distribution µ over states):

θθθ ∗ = argmin
θθθ

‖vπ
θθθ − vπ‖p,µ = argmin

θθθ

‖vπ
θθθ − vπ‖p

p,µ

where ‖ · ‖p,µ denotes the weighted ℓp-norm defined by
(

Eµ | · |
p
)1/p

, Eµ is the ex-

pectation with respect to µ .Yet, as said before, we usually cannot compute these

values everywhere and we usually only have access to some transition samples

{st ,at ,s
′
t ,rt}

N
t=1 generated according to distribution µ . So we could imagine cast-

ing the RL problem into the following minimization problem:

θθθ ∗ = argmin
θθθ

1

N

N

∑
t=1

|vπ
θθθ (st )− vπ(st)|

p.

This cost function can be minimized by stochastic gradient descent (we will consider

an ℓ2-norm):

θθθ t = θθθ t−1−
α

2
∇θθθ t−1

(

vπ
θθθ t−1

(st )− vπ(st)
)2

= θθθ t−1−α∇θθθ t−1
vπ

θθθ t−1
(st )

(

vπ
θθθ t−1

(st )− vπ(st)
)

.

Of course, it is not possible to apply this update rule as it is since we do not know

the actual value vπ(st) of the states we observe in the transitions. But, from the

Bellman evaluation equations (1), we can obtain an estimate by replacing vπ(st) by

rt + γvπ
θθθ t−1

(st+1). Notice that this replacement uses bootstrapping as we use the cur-

rent estimate of the target to compute the gradient. We finally obtain the following

update rule for evaluating the current policy π :

θθθ t = θθθ t−1−α∇θθθ t−1
vπ

θθθ t−1
(st)

(

vπ
θθθ t−1

(st)−
(

rt + γvπ
θθθ t−1

(s′t)
))

.

In the case of linear function approximation, i.e., vπ
θθθ (s) = θθθ⊺φφφ (s), we obtain:

θθθ t = θθθ t−1−αφφφ(st)
(

θθθ⊺
t−1φφφ (st)−

(

rt + γθθθ⊺
t−1φφφ (s′t)

))

.

Everything can be written again in the case of the action-value function, which leads

to the SARSA update rule with linear function approximation Qπ
θθθ (s,a) = θθθ⊺φφφ(s,a):

θθθ t = θθθ t−1−αφφφ(st ,at)
(

θθθ
⊺
t−1φφφ (st ,at)−

(

rt + γθθθ
⊺
t−1φφφ (s′t ,a

′
t)
))

.

Changing the target as in the Q-learning update, we obtain for Q∗θθθ (s,a) = θθθ⊺φφφ(s,a):

θθθ t = θθθ t−1−αφφφ(st ,at)

(

θθθ
⊺
t−1φφφ(st ,at)−

(

rt + γ max
b

θθθ
⊺
t−1φφφ(s′t ,b)

))

.
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3.1.2 Residual Methods

Instead of using the Bellman equations to provide an estimate of the target after

deriving the update rule, one could use it directly to define the loss function to be

optimized. We would then obtain the following minimization problem:

θθθ ∗ = argmin
θθθ

1

N

N

∑
t=1

(

vπ
θθθ (st)−

(

rt + γvπ
θθθ (s
′
t)
))2

.

This can also be seen as the minimization of the Bellman residual. Indeed the Bell-

man evaluation equations (vπ(s) =Eπ [R(s,A)+γvπ(S′)]) can be rewritten as vπ(s)−
Eπ [R(s,A) + γvπ(S′)] = 0. So by minimizing the quantity vπ(s)− Eπ [R(s,A) +
γvπ(S′)], called the Bellman residual, we reach the objective of evaluating vπ(s).
Here, we take the observed quantity r+γvπ(s′) as an unbiased estimate of its expec-

tation. The Bellman residual can also be minimized by stochastic gradient descent

as proposed by Baird et al. [1995] and the update rule becomes:

θθθ t = θθθ t−1−α∇θθθ t−1

(

vπ
θθθ t−1

(st )−
(

rt + γvπ
θθθt−1

(s′t )
))(

vπ
θθθ t−1

(st )−
(

rt + γvπ
θθθ t−1

(s′t )
))

.

In the case of a linear approximation, we obtain:

θθθ t = θθθ t−1−α
(

φφφ (st)− γφφφ(s′t )
)(

θθθ⊺
t−1φφφ(st )−

(

rt + γθθθ⊺
t−1φφφ(s′t)

))

.

This approach, called R-SGD (for residual stochastic gradient descent), has a major

flaw as it computes a biased estimate of the value-function. Indeed, vπ
θθθ (st) and vπ

θθθ (s
′
t )

are correlated as s′t is the result of having taken action at chosen by π(st) [Werbos,

1990]. To address this problem, Baird et al. [1995] suggest to draw two different

next states s′t and s′′t starting from the same state st and to update as follows:

θθθ t = θθθ t−1−α∇θθθ t−1

(

vπ
θθθ t−1

(st )−
(

rt + γvπ
θθθt−1

(s′t )
))(

vπ
θθθ t−1

(st )−
(

rt + γvπ
θθθ t−1

(s′′t )
))

.

Of course, this requires that a generative model or a simulator is available and that

transitions can be generated on demand.

The same discussions as in previous section can apply to learning an action-value

function. For instance, one could want to solve the following optimization problem

to learn the optimal action-value function:

θθθ ∗ = argmin
θθθ

1

N

N

∑
t=1

(

Q∗θθθ (st ,at)−
(

rt + γ max
b

Q∗θθθ (s
′
t ,b)

)

)2

. (8)

Yet this optimal residual cannot directly be minimized in the case of the Q-

function as the max operator is not differentiable. Notice that a sub-gradient method

can still be used.
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3.2 Least-Squares Methods

Gradient descent was used to minimize the empirical norm of either the bootstrap-

ping error or the Bellman residual in the previous section. As the empirical norm is

generally using the ℓ2-norm and that linear function approximation is often assumed,

another approach could be to find the least squares solution to these problems. In-

deed, least squares is a powerful approach as it is a second-order type of method

and offers a closed-form solution to the optimization problem. Although there is

no method that explicitly applies least squares to the two aforementioned empiri-

cal errors, one can see the fixed-point Kalman Filter (FPKF) algorithm [Choi and

Van Roy, 2006] as a recursive least squares method applied to the bootstrapping er-

ror minimization. Also, the Gaussian Process Temporal Difference (GPTD) [Engel

et al., 2005] or the Kalman Temporal Difference (KTD) [Geist and Pietquin, 2010a]

algorithms can be seen as recursive least squares methods applied to Bellman resid-

ual minimization. We invite the reader to refer to Geist and Pietquin [2013] for

further discussion on this.

Yet, the most popular method inspired by least squares optimization does apply

to a different cost function. The Least-Squares Temporal Difference (LSTD) algo-

rithm [Bradtke and Barto, 1996] aims at minimizing:

θθθ ∗ = argmin
θθθ

1

N

N

∑
i=1

(

vπ
θθθ (si)− vπ

ωωω∗(si)
)2
,

where ωωω∗ = argminωωω
1
N ∑N

i=1

(

vπ
ωωω(si)−

(

ri + γvπ
θθθ (s
′
i)
))2

can be understood as a pro-

jection on the space Φ spanned by the family of functions φφφ j’s used to approximate

vπ . It can be seen as the composition of the Bellman operator and of a projection

operator. This cost function is the so-called projected Bellman residual. When us-

ing linear function approximation, this optimization problem admits a closed-form

solution:

θθθ ∗ =

[

N

∑
i=1

φφφ(si)
[

φφφ(si)− γφφφ(s′i)
]⊺

]−1
N

∑
i=1

φφφ(si)ri.

Note that the projected Bellman residual can also be optimized with a stochastic

gradient approach [Sutton et al., 2009].

Extensions to non-linear function approximation exist and rely on the kernel

trick [Xu et al., 2007] or on statistical linearization [Geist and Pietquin, 2010b].

LSTD can be used to learn an approximate Q-function as well and can be combined

with policy improvement steps into an iterative algorithm, similar to policy iteration,

to learn an optimal policy from a dataset of sampled transitions. This gives rise to

the so-called Least Squares Policy Iteration (LSPI) algorithm [Lagoudakis and Parr,

2003], which is one of the most popular batch-RL algorithm.
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3.3 Iterative Projected Fixed-Point Methods

As we have seen earlier, dynamic programming offers a set of algorithms to com-

pute value functions of a policy in the case the dynamics of the MDP is known. One

of these algorithms, Value Iteration, relies on the fact that the Bellman equations

define contraction operators when γ < 1. For instance, if we define the Bellman

evaluation operator Bπ such that BπQ(s,a) = R(s,a)+ γEπ

[

Q(S′,A′) |S = s,A = a
]

,

one can show that iteratively applying Bπ to a random initialization of Q con-

verges to Qπ , because Bπ defines a contraction for which the only fixed point is

Qπ [Puterman, 1994]. The Bellman optimality operator B∗, defined as B∗Q(s,a) =
R(s,a) + γE

[

maxb Q(S′,b) |S = s,A = a
]

, is also a contraction. The same holds

for the sampled versions of the Bellman operators. For instance, let us define the

sampled evaluation operator B̂∗ such that B̂∗Q(s,a) = r+ γ maxb Q(s′,b), where the

expectation has been removed (the sampled operator applies to a single transition).

Unfortunately, there is no guarantee that this remains a contraction when the value

functions are approximated. Indeed when applying a Bellman operator to an ap-

proximate Qθθθ , the result might not lie in the space spanned by θθθ . One has thus

to project back on the space Φ spanned by φφφ using a projection operator ΠΦ , i.e.,

ΠΦ f = argminθθθ ‖θθθ
⊺φφφ − f‖2. If the composition of ΠΦ and B̂π (or B̂∗) is still a con-

traction, then recursively applying this composition to any initialization of θθθ still

converges to a good approximate Qπ
θθθ (or Q∗θθθ ). Unfortunately, the exact projection is

often impossible to get as it is a regression problem. For instance, one would need

to use least squares methods or stochastic gradient descent to learn the best projec-

tion from samples. Therefore the projection operator itself is approximated and will

result in some Π̂Φ operator. So the iterative projected fixed-point process is defined

as:

Qθθθ t
= Π̂Φ B̂πQθθθ t−1

or Qθθθ t
= Π̂Φ B̂∗Qθθθ t−1

.

In practice, the algorithm consists in collecting transitions (e.g., {si,ai,ri,s
′
i}

N
i=1),

initialize θθθ 0 to some random value, compute a regression database by applying the

chosen sampled Bellman operator (e.g., {B̂∗Qθθθ0
(si,ai)= ri+γ maxb Qθθθ0

(si,b)}
N
i=1),

apply a regression algorithm to find the next value of parameters (e.g., Qθθθ 1
=

Π̂Φ B̂∗Qθθθ 0
= argminθθθ

1
N ∑N

i=1

(

Qθθθ (si,ai)− B̂∗Qθθθ 0
(si,ai)

)2
) and iterate.

This method finds its roots in early papers on dynamic programming [Samuel,

1959; Bellman et al., 1963] and convergence properties have been analyzed by Gor-

don [1995]. The most popular implementations use regression trees [Ernst et al.,

2005] or neural networks [Riedmiller, 2005] as regression algorithms and have been

applied to many concrete problems such as robotics [Antos et al., 2008].

3.4 Value-Based Deep Reinforcement Learning

Although the use of Artificial Neural Networks (ANN, see Chapter 12 of Volume

2) in RL is not new [Tesauro, 1995], there has been only a few successful attempts
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to combine RL and ANN in the past. Most notably, before the recent advances in

Deep Learning (DL) [LeCun et al., 2015], one can identify the work by Riedmiller

[2005] as the biggest success of ANN as a function approximation framework for

RL. There are many reasons for that, which are inherently due to the way ANN

learns and assumptions that have to be made for both gradient descent and most

value-based RL algorithms to converge. Especially, Deep ANNs (DNN) require a

tremendous amount of data as they contain a lot of parameters to learn (typically

hundreds of thousands to millions). To alleviate this issue, Tesauro [1995] trained

his network to play backgammon through a self-play procedure. The model learned

at iteration t plays again itself to generate data for training the model at iteration

t + 1. It could thus reach super-human performance at the game of backgammon

using RL. This very simple and powerful idea was reused in [Silver et al., 2016] to

build the first artificial Go player that consistently defeated a human Go master. Yet,

this method relies on the assumption that games can easily be generated on demand

(backgammon and Go rules are simple enough even though the game is very com-

plex). In more complex settings, the agent faces an environment for which it does

not have access to the dynamics, maybe it cannot start in random states and has to

follow trajectories, and it can only get transitions through actual interactions. This

causes two major issues for learning with DNNs (in addition to intensive usage of

data). First, gradient descent for training DNNs assume the data to be independent

and identically distributed (i.i.d. assumption). Second, the distribution of the data

should remain constant over time. Both these assumptions are normally violated

by RL since transitions used to train the algorithms are part of trajectories (so next

states are functions of previous states and actions, violating the i.i.d. assumption)

and because trajectories are generated by a policy extracted from the current esti-

mate of the value function (learning the value function influences the distribution of

the data generated in the future). In addition, we also have seen in Section 3.1.2 that

Bellman residual minimization suffers from the correlation between estimates of

value functions of successive states. All these problems make RL unstable [Gordon,

1995].

To alleviate these issues, Mnih et al. [2015] used two tricks that allowed to

reach super-human performances at playing Atari 2600 games from pixels. First,

they made use of a biologically inspired mechanism, called experience replay [Lin,

1992], that consists in storing transitions in a Replay Buffer D before using them

for learning. Instead of sequentially using these transitions, they are shuffled in the

buffer and randomly sampled for training the network (which helps breaking corre-

lation between successive samples). The buffer is filled on a first-in-first-out basis

so that the distribution of the transitions is nearly stationary (transitions generated

by old policies are discarded first). Second, the algorithm is based on asynchronous

updates of the network used for generating the trajectories and a slow learning net-

work. The slow learning network, called the target network, will be updated less

often than the network that actually learns from the transitions stored in the replay

buffer (the Q-network). This way, the update rule of the Q-network is built such that

correlation between estimates of Q(s,a) and Q(s′,a′) is reduced. Indeed, the result-

ing algorithm (Deep Q-Network or DQN) is inspired by the gradient-descent up-
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date on the optimal Bellman residual (8). But instead of using the double-sampling

trick mentioned in Section 3.1.2, two different estimates of the Q-function are used.

One according to the target network parameters (θθθ−) and the other according to

Q-network parameters (θθθ ). The parameters of the Q-network are thus computed as:

θθθ ∗ = argmin
θθθ

∑
(st ,at ,s′t ,rt)∈D

[(

rt + γ max
b

Qθθθ−(s
′
t ,b)

)

−Qθθθ (st ,at)

]2

,

With this approach, the problem of non-differentiability of the max operator is also

solved as the gradient is computed w.r.t. θθθ and not θθθ−. Once in a while, the tar-

get network parameters are updated with the Q-network parameters (θθθ−← θθθ ∗) and

new trajectories are generated according to the policy extracted from Qθθθ− to fill

again the replay buffer and train again the Q-network. The target network policy is

actually a softmax policy based on Qθθθ− (see Section 3.1.1). Many improvements

have been brought to that method since its publication, such as a prioritized re-

play mechanism [Schaul et al., 2016] that allows to sample more often from the

replay buffer transitions for which the Bellman residual is larger, or the Double-

DQN trick [Van Hasselt et al., 2016] used to provide more stable estimates of the

max operator.

4 Policy-Search Approaches

Value-based approaches to RL rely on approximating the optimal value function V ∗

(typically using Bellman’s optimality principle), and then acting greedily with re-

spect to this function. Policy Search algorithms directly optimize control policies,

which typically depend on a parameter vector θθθ ∈Θ (and are thus noted πθθθ ), and

whose general shape is user-defined.1 Possible representations include linear poli-

cies, (deep) neural networks, radial basis function networks, and dynamic move-

ment primitives (in robotics). Using such approaches avoids issues with discon-

tinuous value functions, and makes it possible, in some cases, to deal with high-

dimensional (possibly continuous) state and action spaces. They also allow provid-

ing expert knowledge through the shaping of the controller, or through example

trajectories—to initialize the parameters.

In the following, we mainly distinguish between model-free and model-based

algorithms—i.e., depending on whether a model is being learned or not.

1 This section is mainly inspired by [Deisenroth et al., 2011], although that survey focuses on a

robotic framework.
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4.1 Model-Free Policy Search

In model-free policy search, sampled trajectories are used directly to update the

policy parameters. The discussion will follow the three main steps followed by the

algorithms: (i) how they explore the space of policies, (ii) how they evaluate poli-

cies, and (iii) how policies are updated.

4.1.1 Policy Exploration

Exploring the space of policies implies either sampling the parameter vector the pol-

icy depends on, or perturbing the action choice of the policy. Often, the sampling of

parameters takes place at the beginning of each episode (in episodic scenarios), and

action perturbations are different at each time step, but other options are possible.

Stochastic policies can be seen as naturally performing a step-based exploration in

action space. Otherwise, the exploration strategy can be modeled as an upper-level

policy πω(θ )—sampling θ according to a probability distribution governed by pa-

rameter vector ω—, while the actual policy πθ (a|s) is refered to as a lower-level

policy. In this setting, the policy search aims at finding the parameter vector ω that

maximizes the expected return given this vector. If πω(θ ) is a Gaussian distribu-

tion (common in robotics), then its covariance matrix can be diagonal—typically

in step-based exploration—or not—which leads to more stability, but requires more

samples—, meaning that the various parameters in θ can be treated in a correlated

manner or not.

4.1.2 Policy Evaluation

Policy evaluation can also be step-based or episode-based. Step-based approaches

evaluate each state-action pair. They have low variance and allow crediting several

parameter vectors. They can rely on Q-value estimates, which can be biased and

prone to approximation errors, or Monte-Carlo estimates, which can suffer from

high variance. Episode-based approaches evaluate parameters using complete tra-

jectories. They allow more performance criteria than step-based approaches—e.g.,

minimizing the final distance to the target. They also allow for more sophisticated

exploration strategies, but suffer all the more from noisy estimates and high variance

that the dynamics are more stochastic.

4.1.3 Policy Update

Finally, the policy can be updated in rather different manners. We will discuss ap-

proaches relying on gradient ascents, inference-based optimization, information-

theoretic ideas, stochastic optimization and path-integral optimal control.
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Policy Gradient (PG) algorithms first require estimating the gradient. Some

(episode-based) PG algorithms perform this estimate using a finite difference (FD)

method by perturbing the parameter vector. Other algorithms instead exploit the

Likelihood ratio trick, which allows estimating the gradient from a single trajectory,

but requires a stochastic policy. These can be step-based as REINFORCE [Williams,

1992] or G(PO)MDP [Baxter and Bartlett, 2001; Baxter et al., 2001], or episode-

based as PEPG [Sehnke et al., 2010].

Policy gradients also include natural gradient algorithms (NPG), i.e., algorithms

that try to limit the distance between distributions Pθ (h) and Pθ+δθ (h) using the KL

divergence (estimated through the Fisher information matrix (FIM)). In step-based

NPGs [Bagnell and Schneider, 2003; Peters and Schaal, 2008b], using appropri-

ate (“compatible”) function approximation removes the need to estimate the FIM,

but requires estimating the value function, which can be difficult. On the contrary,

episodic Natural Actor-Critic (eNAC) [Peters and Schaal, 2008a] uses complete

episodes, and thus only estimates v(s1). NAC [Peters and Schaal, 2008b] addresses

infinite horizon problems, the lack of episodes leading to the use of Temporal Dif-

ference methods to estimate values.

Policy gradient usually applies to randomized policies. Recent work [Silver et al.,

2014; Lillicrap et al., 2016] has adapted it to deterministic policies with a continu-

ous action space, which can potentially facilitate the gradient estimation. Building

on DQN, actor-critic methods have been extended to asynchronous updates with

parallel actors and neural networks as approximators [Mnih et al., 2016].

Inference-based algorithms avoid the need to set learning rates. They consider

that (i) the return R is an observed binary variable (1 meaning success),2 (ii) the tra-

jectory h is a latent variable, and (iii) one looks for the parameter vector that max-

imizes the probability of getting a return of 1. Then, an Expectation-Maximization

algorithm can address this Bayesian inference problem. Variational inference can

be used in the E-step of EM [Neumann, 2011], but most approaches rely on Monte-

Carlo estimates instead, despite the fact that they perform maximum likelihood esti-

mates over several modes of the reward function (and thus do not distinguish them).

These can be episode-based algorithms as RWR [Peters and Schaal, 2007] (uses

a linear upper-level policy) or CrKR [Kober et al., 2010] (a kernelized version of

RWR, i.e., which does not need to specify feature vectors, but cannot model cor-

relations). These can also be step-based algorithms as PoWER [Kober and Peters,

2010], which allows a more structured exploration strategy, and gives more influ-

ence to data points with less variance.

Information-theoretic approaches (see Chapter 2 of Volume 3) try to limit

changes in trajectory distributions between two consecutive time steps, which could

correspond to degradations rather than improvements in the policy. Natural PGs

have the same objective, but need a user-defined learning rate. Instead, REPS [Pe-

ters et al., 2010] combines advantages from NPG (smooth learning) and EM-based

algorithms (no learning-rate). Episode-based REPS [Daniel et al., 2012] learns a

higher-level policy while bounding parameter changes by solving a constrained op-

2 Transformations can bring us in this setting.
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timization problem. Variants are able to adapt to multiple contexts or learn multiple

solutions. Step-based REPS [Peters et al., 2010] solves an infinite horizon problem

(rather than an episodic one), optimizing the average reward per time step. It requires

enforcing the stationarity of state features, and thus solving another constrained op-

timization problem. A related recent method, TRPO [Schulman et al., 2015], which

notably constrains the changes of π(· |s) instead of those of state-action distribu-

tions, proves to work well in practice.

Stochastic Optimization relies on black-box optimizers, and thus can easily be

used for episode-based formulations, i.e., working with an upper-level policy πω(θ ).
Typical examples are CEM [de Boer et al., 2005; Szita and Lörincz, 2006], CMA-ES

[Hansen et al., 2003; Heidrich-Meisner and Igel, 2009], and NES [Wierstra et al.,

2014], three evolutionary algorithms that maintain a parametric probability distri-

bution (often Gaussian) πω(θ ) over the parameter vector. They sample a population

of candidates, evaluate them, and use the best ones (weighted) to update the distri-

bution. Many rollouts may be required for evaluation, as examplified with the game

of Tetris [Szita and Lörincz, 2006].

Path Integral (PI) approaches were introduced for optimal control, i.e., to han-

dle non-linear continuous-time systems. They handle squared control costs and arbi-

trary state-dependent rewards. Policy Improvement with PIs (PI2) applies PI theory

to optimize Dynamic Movement Primitives (DMPs), i.e., representations of move-

ments with parameterized differential equations, using Monte-Carlo rollouts instead

of dynamic programming.

4.2 Model-Based Policy Search

Typical model-based policy-search approaches repeatedly (i) sample real-world tra-

jectories using a fixed policy; (ii) learn a forward model of the dynamics based on

these samples (and previous ones); (iii) optimize this policy using the learned model

(generally as a simulator). As can be noted, this process does not explicitly handle

the exploration-exploitation trade-off as policies are not chosen so as to improve

the model where this could be appropriate. We now discuss three important dimen-

sions of these approaches: how to learn the model, how to make reliable long-term

predictions, and how to perform the policy updates.

Model learning often uses probabilistic models. They first allow accounting for

uncertainty due to sparse data (at least in some areas) or an inappropriate model

class. In robotics, where action and state spaces are continuous, non-parametric

probabilistic methods can be used such as Linearly Weighted Bayesian Regression

(LWBR) of Gaussian Processes (GPs), which may suffer from increasing time and

memory requirements. But probabilistic models can also be employed to represent

stochastic dynamics. An example is that of propositional problems, which are often

modeled as Factored MDPs [Boutilier et al., 1995], where the dynamics and rewards

are DBNs whose structure is a priori unknown. A variety of approaches have been

proposed, which rely on different representations (such as rule sets, decision trees,
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Stochastic STRIPS, or PPDDL) [Degris et al., 2006; Pasula et al., 2007; Walsh et al.,

2009; Lesner and Zanuttini, 2011]. See Chapter 10 of Volume 2.

Long-term predictions are usually required to optimize the policy given the cur-

rent forward model. While the real world is its own best (unbiased) model, using

a learned model has the benefit of allowing to control these predictions. A first ap-

proach, similar to paired statistical tests, is to always use the same random initial

states and the same sequences of random numbers when evaluating different poli-

cies. It has been introduced for policy-search in the PEGASUS framework [Ng and

Jordan, 2000] and drastically reduces the sampling variance. Another approach is,

when feasible, to compute a probability distribution over trajectories using deter-

ministic approximations such as linearization [Anderson and Moore, 2005], sigma-

point methods (e.g., [Julier and Uhlmann, 2004]) or moment-matching.

Policy updates can rely on gradient-free optimization (e.g., Nelder-Mead method

or hill-climbing) [Bagnell and Schneider, 2001], on sampling-based gradients (e.g.,

finite difference methods), as in model-free approaches, although they require many

samples, or on analytical gradients [Deisenroth and Rasmussen, 2011], which re-

quire the model as well as the policy to be differentiable, scale favorably with the

number of parameters, but are computationally involved.

5 Extensions: Unknown Rewards and Risk-sensitive Criteria

In the previous sections, we recalled different techniques for solving RL problems,

with the assumption that policies are compared with the expected cumulated re-

wards as a decision criterion. However, rewards may not be scalar, known or nu-

meric, and the standard criterion based on expectation may not always be suitable.

For instance, multiobjective RL has been proposed to tackle situations where an ac-

tion is evaluated over several dimensions (e.g., duration, length, power consumption

for a navigation problem). The interested reader may refer to [Roijers et al., 2013]

for a survey and refer to Chapter 16 of this volume for an introduction to multicri-

teria decision-making. For space reasons, we focus below only on three extensions:

reward learning (Section 5.1), preference-based RL (Section 5.2) and risk sensitive

RL (Section 5.3).

5.1 Reward Learning

From the system designer’s point of view, defining the reward function can be

viewed as programming the desired behavior in an autonomous agent. A good

choice of reward values may accelerate learning [Matignon et al., 2006] while an

incorrect choice may lead to unexpected and unwanted behaviors [Randløv and Al-

strøm, 1998]. Thus, designing this function is a hard task (e.g., robotics [Argall et al.,
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2009], natural language parsers [Neu and Szepesvari, 2009] or dialogue systems [El

Asri et al., 2012]).

When the reward signal is not known, a natural approach is to learn from demon-

stration. Indeed, in some domains (e.g., autonomous driving), it is much simpler

for an expert to demonstrate how to perform a task rather than specify a reward

function. Such an approach has been called apprenticeship learning [Abbeel and

Ng, 2004], learning from demonstration [Argall et al., 2009], behavior cloning or

imitation learning [Hussein et al., 2017]. Two families of techniques have been de-

veloped to solve such problems. The first group tries to directly learn a good policy

from (near) optimal demonstrations [Argall et al., 2009; Pomerleau, 1989] while

the second, called inverse RL (IRL) [Ng and Russell, 2000; Russell, 1998], tries to

first recover a reward function that explains the demonstrations and then computes

an optimal policy from it. The direct methods based on supervised learning usually

suffer when the reward function is sparse and even more when dynamics is also

perturbed [Piot et al., 2013].

As the reward function is generally considered to be a more compact, robust and

transferable representation of a task than a policy [Abbeel and Ng, 2004; Russell,

1998], we only discuss reward learning approaches here.

As for many inverse problems, IRL is ill-posed: any constant function is a trivial

solution that makes all policies equivalent and therefore optimal. Various solutions

were proposed to tackle this degeneracy issue, differing on whether a probabilistic

model is assumed or not on the generation of the observation. When the state and/or

action spaces are large, the reward function is generally assumed to take a parametric

form: R(s,a)= fθθθ (s,a) for fθθθ a parametric function of θθθ . One important case, called

linear features, is when f is linear in θθθ , i.e., R(s,a) =∑i θiφi(s,a) where φi are basis

functions.

No generative model assumption. As underlined by Neu and Szepesvari [2009],

many IRL methods can be viewed as finding the reward function R that minimizes

a dissimilarity measure between the policy π∗R optimal for R and the expert demon-

strations. Most work assume a linear-feature reward function, with some exceptions

that we mention below. Abbeel and Ng [2004] introduced the important idea of

expected feature matching, which says that the expected features of π∗R and those

estimated from the demonstrations should be close. Thus, they notably proposed

the projection method, which amounts to minimizing the Euclidean distance be-

tween those two expected features. Neu and Szepesvari [2007] proposed a natural

gradient method for minimizing this objective function. Syed and Schapire [2008]

reformulated the projection method problem as a zero-sum two-player game, with

the nice property that the learned policy may perform better than the demonstrated

one. Abbeel and Ng [2004]’s work was extended to the partially observable case

[Choi and Kim, 2011].

Besides, Ratliff et al. [2006] proposed a max-margin approach enforcing that

the found solution is better than any other one by at least a margin. Interestingly,

the method can learn from multiple MDPs. It was later extended to the non-linear

feature case [Ratliff et al., 2007].
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Another technique [Klein et al., 2012; Piot et al., 2014] consists in learning a

classifier based on a linearly parametrized score function to predict the best action

for a state given the set of demonstrations. The learned score function can then be

interpreted as a value function and can be used to recover a reward function.

Traditional IRL methods learn from (near) optimal demonstration. More recent

approaches extend IRL to learn from other types of observations, e.g., a set of (non-

necessarily optimal) demonstrations rated by an expert [El Asri et al., 2016; Burch-

field et al., 2016], bad demonstrations [Sebag et al., 2016] or pairwise comparisons

[da Silva et al., 2006; Wirth and Neumann, 2015]. In the latter case, the interac-

tive setting is investigated with a reliable expert [Chernova and Veloso, 2009] or

unreliable one [Weng et al., 2013].

Generative model assumption. Another way to tackle the degeneracy issue is

to assume a probabilistic model on how observations are generated. Here, most

work assumes that the expert policy is described by Boltzmann distributions, where

higher-valued actions are more probable. Two notable exceptions are the work of

Grollman and Billard [2011], which shows how to learn from failed demonstrations

using Gaussian mixture models, and the Bayesian approach of Ramachandran and

Amir [2007], with the assumption that state-action pairs in demonstrations follow

such a Boltzmann distribution. This latter approach has been extended to Boltz-

mann distribution-based expert policy and for multi-task learning [Dimitrakakis

and Rothkopf, 2011], and to account for multiple reward functions [Choi and Kim,

2012]. This Bayesian approach has been investigated to interactive settings where

the agent can query for an optimal demonstration in a chosen state [Lopes et al.,

2009] or for a pairwise comparison [Wilson et al., 2012; Akrour et al., 2013, 2014].

Without assuming a prior, Babes-Vroman et al. [2011] proposed to recover the

expert reward function by maximum likelihood. The approach is able to handle the

possibility of multiple intentions in the demonstrations. Furthermore, Nguyen et al.

[2015] suggested an Expectation-Maximization approach to learn from demonstra-

tion induced by locally consistent reward functions.

To tackle the degeneracy issue, Ziebart et al. [2010] argued for the use of the

maximum entropy principle, which states that among all solutions that fit the obser-

vations, the least informative one (i.e., maximum entropy) should be chosen, with

the assumption that a reward function induces a Boltzmann probability distribution

over trajectories. When the transition function is not known, Boularias et al. [2011]

extended this approach by proposing to minimize the relative entropy between the

probability distribution (over trajectories) induced by a policy and a baseline dis-

tribution under an expected feature matching constraint. Wulfmeier et al. [2015]

extended this approach to the case where a deep neural network is used for the

representation of the reward function, while Bogert et al. [2016] took into account

non-observable variables.
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5.2 Preference-Based Approaches

Another line of work redefines policy optimality directly based on pairwise com-

parisons of histories without assuming the existence of a scalar numeric reward

function. This notably accounts for situations where reward values and probabili-

ties are not commensurable. In this context, different decision criteria (e.g., quantile

[Gilbert and Weng, 2016]) may be used. One popular decision model ([Yue et al.,

2012; Fürnkranz et al., 2012]) is defined as follows: a policy π is preferred to another

policy π ′ if

P[hπ % hπ ′ ]≥ P[hπ ′ % hπ ], (9)

where % is a preorder over histories, hπ is a random variable representing the his-

tory generated by policy π and therefore P[hπ % hπ ′ ] is the probability that a history

generated by π is not less preferred than a history generated by π ′. Based on (9),

Fürnkranz et al. [2012] proposed a policy iteration algorithm. However, one crucial

issue with (9) is that the concept of optimal solution is not well-defined as (9) can

lead to preference cycles [Gilbert et al., 2015]. Busa-Fekete et al. [2014] circum-

vented this problem by refining this decision model with criteria from social choice

theory. In [Gilbert et al., 2015], the issue was solved by considering mixed solu-

tions: an optimal mixed solution is guaranteed to exist by interpreting it as a Nash

equilibrium of a two-player zero-sum game. Gilbert et al. [2016] proposed a model-

free RL algorithm based on a two-timescale technique to find such a mixed optimal

solution.

5.3 Risk-Sensitive Criteria

Taking into account risk is important in decision-making under uncertainty (see

Chapter 17 of this volume). The standard criterion based on expectation is risk-

neutral. When it is known that a policy will only be used a few limited number

of times, variability in the obtained rewards should be penalized. Besides, in some

hazardous domains, good policies need to absolutely avoid bad or error states. In

those two cases, preferences over policies need to be defined to be risk-sensitive.

In its simplest form, risk can directly be represented as a probability. For instance,

Geibel and Wysotzky [2005] adopted such an approach and consider MDP problems

with two objectives where the first objective is the standard decision criterion and

the second objective is to minimize the probability of reaching a set of bad states.

A more advanced approach is based on risk-sensitive decision criteria [Barbera

et al., 1999]. Variants of Expected Utility [Machina, 1988], which is the standard

risk-sensitive criterion, were investigated in two cases when the utility function is

exponential [Borkar, 2010; Moldovan and Abbeel, 2012] and when it is quadratic

[Tamar et al., 2012, 2013; Gosavi, 2014]. In the latter case, the criterion amounts

to penalizing the standard criterion by the variance of the cumulated reward. While
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the usual approach is to transform the cumulated reward, Mihatsch and Neuneier

[2002] proposed to directly transform the temporal differences during learning.

Other approaches consider risk measures [Denuit et al., 2006] and in particu-

lar coherent risk measures [Artzner et al., 1999]. Value-at-risk, popular in finance,

was considered in [Gilbert and Weng, 2016]. Policy gradient methods [Chow and

Ghavamzadeh, 2014; Tamar et al., 2015b] were proposed to optimize Conditional

Value-at-Risk (CVaR) and were extended to any coherent risk measure [Tamar et al.,

2015a]. Jiang and Powell [2018] proposed dynamic quantile-based risk measures,

which encompasses VaR and CVaR, and investigated an approximate dynamic pro-

gramming scheme to optimize them.

In risk-constrained problems, the goal is to maximize the expectation of re-

turn while bounding a risk measure. For variance-constrained problems, Prashanth

and Ghavamzadeh [2016] proposed an actor-critic algorithm. For CVaR-constrained

problems, Borkar and Jain [2014] proposed a two-timescale stochastic approxima-

tion technique, while Chow et al. [2017] investigated policy gradient and actor-critic

methods.

One important issue to consider when dealing with risk-sensitive criteria is that

the Bellman optimality principle generally does not hold anymore: a sub-policy of

an optimal risk-sensitive policy may not be optimal. However, in most cases, the

Bellman optimality principle may be recovered by considering a state-augmented

MDP, where the state includes the rewards cumulated so far [Liu and Koenig, 2006].

6 Conclusion

Recently, thanks to a number of success stories, reinforcement learning (RL) has be-

come a very active research area. In this chapter, we recalled the basic setting of RL.

Our focus was to present an overview of the main techniques, which can be divided

into value-based and policy search methods, for solving large-sized RL problems

with function approximation. We also presented some approaches for tackling the

issue of unknown rewards that a system designer would encounter in practice and

recalled some recent work in RL when risk-sensitivity needs to be taken into account

in decision-making.

Currently RL still has too large sample and computational requirements for many

practical domains (e.g., robotics). Research work is very active on improving RL

algorithms along those two dimensions, notably by exploiting the structure of the

problem [Kulkarni et al., 2016] or other a priori knowledge, expressed in temporal

logic [Wen et al., 2017] for instance, or by reusing previous learning experience with

transfer learning [Taylor and Stone, 2009], lifelong learning [Bou Ammar et al.,

2015], multi-task learning [Wilson et al., 2007] or curriculum learning [Wu and

Tian, 2017], to cite a few. Having more efficient RL algorithms is important as it

will pave the way to more applications in more realistic domains.
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