
ar
X

iv
:2

00
5.

14
41

9v
2

 [
cs

.L
G

]
 1

3
Ju

n
20

20

Reinforcement Learning

Olivier Buffet, Olivier Pietquin, and Paul Weng

Abstract Reinforcement learning (RL) is a general framework for adaptive control,

which has proven to be efficient in many domains, e.g., board games, video games

or autonomous vehicles. In such problems, an agent faces a sequential decision-

making problem where, at every time step, it observes its state, performs an action,

receives a reward and moves to a new state. An RL agent learns by trial and error

a good policy (or controller) based on observations and numeric reward feedback

on the previously performed action. In this chapter, we present the basic framework

of RL and recall the two main families of approaches that have been developed to

learn a good policy. The first one, which is value-based, consists in estimating the

value of an optimal policy, value from which a policy can be recovered, while the

other, called policy search, directly works in a policy space. Actor-critic methods

can be seen as a policy search technique where the policy value that is learned

guides the policy improvement. Besides, we give an overview of some extensions

of the standard RL framework, notably when risk-averse behavior needs to be taken

into account or when rewards are not available or not known.

Olivier Buffet

INRIA, Université de Lorraine, CNRS, UMR 7503 - LORIA, Nancy, France

e-mail: olivier.buffet@loria.fr

Olivier Pietquin

Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, Lille; France, now with Deep-

Mind, London, UK

e-mail: olivier.pietquin@univ-lille1.fr

Paul Weng

Shanghai Jiao Tong University, University of Michigan-Shanghai Jiao Tong University Joint Insti-

tute, Shanghai, China

e-mail: paul.weng@sjtu.edu.cn

1

http://arxiv.org/abs/2005.14419v2

2 Olivier Buffet, Olivier Pietquin, and Paul Weng

1 Introduction

Reinforcement learning (RL) is a general framework for building autonomous

agents (physical or virtual), which are systems that make decisions without human

supervision in order to perform a given task. Examples of such systems abound:

expert backgammon player [Tesauro, 1995], dialogue systems [Singh et al., 1999],

acrobatic helicopter flight [Abbeel et al., 2010], human-level video game player

[Mnih et al., 2015], go player [Silver et al., 2016] or autonomous driver [Bojarski

et al., 2016]. See also Chapter 11 of Volume 2 and Chapters 10 and 12 of Volume 3.

In all those examples, an agent faces a sequential decision-making problem,

which can be represented as an interaction loop between an agent and an environ-

ment. After observing its current situation, the agent selects an action to perform. As

a result, the environment changes its state and provides a numeric reward feedback

about the chosen action. In RL, the agent needs to learn how to choose good actions

based on its observations and the reward feedback, without necessarily knowing the

dynamics of the environment.

In this chapter, we focus on the basic setting of RL that assumes a single learning

agent with full observability. Some work has investigated the partial observability

case (see [Spaan, 2012] for an overview of both the model-based and model-free

approaches). The basic setting has also been extended to situations where several

agents interact and learn simultaneously (see [Busoniu et al., 2010] for a survey).

RL has also been tackled with Bayesian inference techniques, which we do not

mention here for space reasons (see [Ghavamzadeh et al., 2015] for a survey).

In Section 2, we recall the Markov decision process model on which RL is formu-

lated and the RL framework, along with some of their classic solution algorithms.

We present two families of approaches that can tackle large-sized problems for

which function approximation is usually required. The first, which is value-based,

is presented in Section 3. It consists in estimating the value function of an optimal

policy. The second, called policy search, is presented in Section 4. It searches for an

optimal policy directly in a policy space. In Section 5, we present some extensions

of the standard RL setting, namely extensions to the case of unknown rewards and

risk-sensitive RL approaches. Finally, we conclude in Section 6.

2 Background for RL

Before presenting the RL framework, we recall the Markov decision process (MDP)

model, on which RL is based. See also Chapter 17 of this volume and Chapter 10 of

Volume 2.

Markov decision process. MDPs and their multiple variants (e.g., Partially Ob-

servable MDP or POMDP) [Puterman, 1994] have been proposed to represent and

solve sequential decision-making problems under uncertainty. An MDP is defined as

a tuple M = 〈S,A,T,R,γ,H〉 where S is a set of states, A is a set of actions, transi-

tion function T (s,a,s′) specifies the probability of reaching state s′ after performing

Reinforcement Learning 3

action a in state s, reward function R(s,a) ∈ R yields the immediate reward after

performing action a in state s, γ ∈ [0,1] is a discount factor and H ∈ N∪{∞} is the

horizon of the problem, which is the number of decisions to be made. An immediate

reward, which is a scalar number, measures the value of performing an action in a

state. In some problems, it can be randomly generated. In that case, R(s,a) is simply

the expectation of the random rewards. In this MDP formulation, the environment

is assumed to be stationary. Using such an MDP model, a system designer needs to

define the tuple M such that an optimal policy performs the task s/he wants.

Solving an MDP (i.e., planning) amounts to finding a controller, called a policy,

which specifies which action to take in every state of the environment in order to

maximize the expected discounted sum of rewards (standard decision criterion).

A policy π can be deterministic (i.e., π(s) ∈ A) or randomized (i.e., π(· |s) is a

probability distribution over A). It can also be stationary or time-dependent, which

is useful in finite-horizon or non-stationary problems.

A t-step history (also called trajectory, rollout or path) h = (s1,a1,s2, . . . ,st+1) ∈
(S×A)t×S is a sequence of past states and actions. In the standard case, it is valued

by its return defined as ∑t γt−1R(st ,at). As a policy induces a probability distribution

over histories, the value function vπ : S→R of a policy π is defined by:

vπ
H(s) = Eπ

[

H

∑
t=1

γt−1R(St ,At) |S1 = s
]

,

where Eπ is the expectation with respect to the distribution induced by π in the

MDP, and St and At are random variables respectively representing a state and an

action at a time step t. We will drop subscript H if there is no risk of confusion. The

value function can be computed recursively. For deterministic policy π , we have:

vπ
0 (s) = 0,

vπ
t (s) = R(s,π(s))+ γ ∑

s′∈S

T (s,π(s),s′)vπ
t−1(s

′).

In a given state, policies can be compared via their value functions. Interestingly,

in standard MDPs, there always exists an optimal deterministic policy whose value

function is maximum in every state. Its value function is said to be optimal.

In the infinite horizon case, when γ < 1, vπ
t is guaranteed to converge to vπ , which

is the solution of the Bellman evaluation equations:

vπ(s) = R(s,π(s))+ γ ∑
s′∈S

T (s,π(s),s′)vπ(s′). (1)

Given vπ , a better policy can be obtained with the following improvement step:

π ′(s) = argmax
a∈A

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)vπ(s′). (2)

4 Olivier Buffet, Olivier Pietquin, and Paul Weng

The policy iteration algorithm consists in alternating between a policy evaluation

step (1) and a policy improvement step (2), which converges to the optimal value

function v∗ : S→R.

Alternatively, the optimal value function v∗H : S→R can also be iteratively com-

puted for any horizon H by:

v∗0(s) = 0

v∗t (s) = max
a∈A

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)v∗t−1(s
′). (3)

In the infinite horizon case, when γ < 1, v∗t is guaranteed to converge to v∗, which

is the solution of the Bellman optimality equations:

v∗(s) = max
a∈A

R(s,a)+ γ ∑
s′∈S

T (s,a,s′)v∗(s′). (4)

In that case, (3) leads to the value iteration algorithm.

Two other related functions are useful when solving an RL problem: the action-

value function Qπ
t (s,a) (resp. the optimal action-value function Q∗t (s,a)) specifies

the value of choosing an action a in a state s at time step t and assuming policy π
(resp. an optimal policy) is applied thereafter, i.e.,

Qx
t (s,a) = R(s,a)+ γ ∑

s′∈S

T (s,a,s′)vx
t−1(s

′) where x ∈ {π ,∗}.

Reinforcement learning. In the MDP framework, a complete model of the envi-

ronment is assumed to be known (via the transition function) and the task to be per-

formed is completely described (via the reward function). The RL setting has been

proposed to tackle situations when those assumptions do not hold. An RL agent

searches for (i.e., during the learning phase) a best policy while interacting with the

unknown environment by trial and error. In RL, the standard decision criterion used

to compare policies is the same as in the MDP setting. Although the reward function

is supposed to be unknown, the system designer has to specify it.

In RL, value and action-value functions have to be estimated. For vπ of a given

policy π , this can be done with the standard TD(0) evaluation algorithm, where

the following update is performed after applying π in state s yielding reward r and

moving to new state s′:

vπ
t (s) = vπ

t−1(s)−αt(s)
(

vπ
t−1(s)−

(

r+ vπ
t−1(s

′)
))

, (5)

where αt(s) ∈ [0,1] is a learning rate. For Qπ , the update is as follows, after the

agent executed action a in state s, received r, moved to new state s′ and executed

action a′ (chosen by π):

Qπ
t (s,a) = Qπ

t−1(s,a)−αt(s,a)
(

Qπ
t−1(s,a)−

(

r+ γQπ
t−1(s

′,a′)
))

, (6)

Reinforcement Learning 5

where αt(s,a) ∈ [0,1] is a learning rate. This update leads to the SARSA algorithm

(named after the variables s,a,r,s′,a′). In the same way that the policy iteration al-

gorithm alternates between an evaluation step and a policy improvement step, one

can use the SARSA evaluation method and combine it with a policy improvement

step. In practice, we do not wait for the SARSA evaluation update rule to converge

to the actual value of the current policy to make a policy improvement step. We

rather continuously behave according to the current estimate of the Q-function to

generate a new transition. One common choice is to use the current estimate in a

softmax (Boltzmann) function of temperature τ and behave according to a random-

ized policy:

πt(a |s) =
eQθt

(s,a)/τ

∑b eQθt
(s,b)/τ

.

Notice that we chose to use the Bellman evaluation equations to estimate the

targets. However we could also use the Bellman optimality equations in the case of

the Q-function and replace r+ γQ(s′,a′) by r+maxb Q(s′,b). Yet this only holds if

we compute the value Q∗ of the optimal policy π∗. This gives rise to the Q-learning

update rule, which directly computes the value of the optimal policy. It is called an

off-policy algorithm (whereas SARSA is on-policy) because it computes the value

function of another policy than the one that selects the actions and generates the

transitions used for the update. The following update is performed after the agent

executed action a (e.g., chosen according to the softmax rule) in state s, received r

and moved to new state s′:

Q∗t (s,a) = Q∗t−1(s,a)−αt(s,a)
(

Q∗t−1(s,a)− (r+ γ max
a′

Q∗t−1(s
′,a′))

)

. (7)

Updates (5), (6) and (7) can be proved to converge if the learning rates satisfy

standard stochastic approximation conditions (i.e., ∑t αt = ∞ and ∑t α2
t < ∞). Be-

sides, for (6), temperature τ would also need to converge to 0 while ensuring suf-

ficient exploration in order for SARSA to converge to the optimal Q-function. In

practice, αt(s,a) is often chosen constant, which would also account for the case

where the environment is non-stationary.

Those two general framework (MDP and RL) have been successfully applied in

many different domains. For instance, MDPs or their variants have been used in

finance [Bäuerle and Rieder, 2011] or logistics [Zhao et al., 2010]. RL has been

applied to soccer [Bai et al., 2013] or power systems [Yu and Zhang, 2013], to

cite a few. To tackle real-life large-sized problems, MDP and RL have to be com-

pleted with other techniques, such as compact representations [Boutilier et al., 2000;

Guestrin et al., 2004; van Otterlo, 2009] or function approximation [de Farias and

Van Roy, 2003; Geist and Pietquin, 2011; Mnih et al., 2015].

6 Olivier Buffet, Olivier Pietquin, and Paul Weng

3 Value-Based Methods with Function Approximation

In many cases, the state-action space is too large so as to be able to represent ex-

actly the value functions vπ or the action-value function Qπ of a policy π . For this

reason, function approximation for RL has been studied for a long time, starting

with the seminal work of Bellman and Dreyfus [1959]. In this framework, the func-

tions are parameterized by a vector of d parameters θθθ = [θ j]
d
j=1, with θθθ ∈Θ ⊂ R

d

(we will always consider column vectors) and the algorithms will aim at learning

the parameters from data provided in the shape of transitions {st ,at ,s
′
t ,rt}

N
t=1 where

s′t is the successor state of st drawn from T (st ,at , ·). We will denote the param-

eterized versions of the functions as vθθθ and Qθθθ . Popular approximation schemes

are linear function approximation and neural networks. The former gave birth to

a large literature in the theoretical domain as it allows studying convergence rates

and bounds (although it remains non-trivial). The latter, although already used in

the 90’s [Tesauro, 1995], has known a recent growth in interest following the Deep

Learning successes in supervised learning.

The case of neural networks will be addressed in Section 3.4 but we will start

with linear function approximation. In this particular case, a set of basis functions

φφφ(·) = [φ j(·)]
d
j=1 has to be defined by the practitioner (or maybe learned through

unsupervised learning) so that the value functions can be approximated by:

vθθθ (s) = ∑
j

θ jφ j(s) = θθθ⊺φφφ(s) or Qθθθ (s,a) = ∑
j

θ jφ j(s,a) = θθθ⊺φφφ(s,a).

The vector space defined by the span of φφφ is denoted Φ .

Notice that the exact case in which the different values of the value func-

tions can be stored in a table (tabular case) is a particular case of linear func-

tion approximation. Indeed, if we consider that the state space is finite and small
(

s = {sk}
|S|
k=1 ∈ S

)

, then the value function can be represented in a table of |S|

values {vk |vk = v(sk)}
|S|
k=1 where |S| is the number of states. This is equivalent to

defining a vector of |S| parameters vvv = [vk]
|S|
k=1 and a vector of |S| basis functions

δδδ (s) = [δk(s)]
|S|
k=1 where δk(s) = 1 if s = sk and 0 otherwise. The value function can

thus be written v(s) = ∑k vkδk(s) = vvv⊺δδδ (s).

3.1 Stochastic Gradient Descent Methods

3.1.1 Bootstrapped Methods

If one wanted to cast the Reinforcement Learning problem into a supervised learning

problem (see Chapter 11 of this Volume and Chapter 12 of Volume 2), one could

want to fit the parameters to the value function directly. For instance, to evaluate the

value of a particular policy π , one would solve the following regression problem

Reinforcement Learning 7

(for some ℓp-norm and distribution µ over states):

θθθ ∗ = argmin
θθθ

‖vπ
θθθ − vπ‖p,µ = argmin

θθθ

‖vπ
θθθ − vπ‖p

p,µ

where ‖ · ‖p,µ denotes the weighted ℓp-norm defined by
(

Eµ | · |
p
)1/p

, Eµ is the ex-

pectation with respect to µ .Yet, as said before, we usually cannot compute these

values everywhere and we usually only have access to some transition samples

{st ,at ,s
′
t ,rt}

N
t=1 generated according to distribution µ . So we could imagine cast-

ing the RL problem into the following minimization problem:

θθθ ∗ = argmin
θθθ

1

N

N

∑
t=1

|vπ
θθθ (st)− vπ(st)|

p.

This cost function can be minimized by stochastic gradient descent (we will consider

an ℓ2-norm):

θθθ t = θθθ t−1−
α

2
∇θθθ t−1

(

vπ
θθθ t−1

(st)− vπ(st)
)2

= θθθ t−1−α∇θθθ t−1
vπ

θθθ t−1
(st)

(

vπ
θθθ t−1

(st)− vπ(st)
)

.

Of course, it is not possible to apply this update rule as it is since we do not know

the actual value vπ(st) of the states we observe in the transitions. But, from the

Bellman evaluation equations (1), we can obtain an estimate by replacing vπ(st) by

rt + γvπ
θθθ t−1

(st+1). Notice that this replacement uses bootstrapping as we use the cur-

rent estimate of the target to compute the gradient. We finally obtain the following

update rule for evaluating the current policy π :

θθθ t = θθθ t−1−α∇θθθ t−1
vπ

θθθ t−1
(st)

(

vπ
θθθ t−1

(st)−
(

rt + γvπ
θθθ t−1

(s′t)
))

.

In the case of linear function approximation, i.e., vπ
θθθ (s) = θθθ⊺φφφ (s), we obtain:

θθθ t = θθθ t−1−αφφφ(st)
(

θθθ⊺
t−1φφφ (st)−

(

rt + γθθθ⊺
t−1φφφ (s′t)

))

.

Everything can be written again in the case of the action-value function, which leads

to the SARSA update rule with linear function approximation Qπ
θθθ (s,a) = θθθ⊺φφφ(s,a):

θθθ t = θθθ t−1−αφφφ(st ,at)
(

θθθ
⊺
t−1φφφ (st ,at)−

(

rt + γθθθ
⊺
t−1φφφ (s′t ,a

′
t)
))

.

Changing the target as in the Q-learning update, we obtain for Q∗θθθ (s,a) = θθθ⊺φφφ(s,a):

θθθ t = θθθ t−1−αφφφ(st ,at)

(

θθθ
⊺
t−1φφφ(st ,at)−

(

rt + γ max
b

θθθ
⊺
t−1φφφ(s′t ,b)

))

.

8 Olivier Buffet, Olivier Pietquin, and Paul Weng

3.1.2 Residual Methods

Instead of using the Bellman equations to provide an estimate of the target after

deriving the update rule, one could use it directly to define the loss function to be

optimized. We would then obtain the following minimization problem:

θθθ ∗ = argmin
θθθ

1

N

N

∑
t=1

(

vπ
θθθ (st)−

(

rt + γvπ
θθθ (s
′
t)
))2

.

This can also be seen as the minimization of the Bellman residual. Indeed the Bell-

man evaluation equations (vπ(s) =Eπ [R(s,A)+γvπ(S′)]) can be rewritten as vπ(s)−
Eπ [R(s,A) + γvπ(S′)] = 0. So by minimizing the quantity vπ(s)− Eπ [R(s,A) +
γvπ(S′)], called the Bellman residual, we reach the objective of evaluating vπ(s).
Here, we take the observed quantity r+γvπ(s′) as an unbiased estimate of its expec-

tation. The Bellman residual can also be minimized by stochastic gradient descent

as proposed by Baird et al. [1995] and the update rule becomes:

θθθ t = θθθ t−1−α∇θθθ t−1

(

vπ
θθθ t−1

(st)−
(

rt + γvπ
θθθt−1

(s′t)
))(

vπ
θθθ t−1

(st)−
(

rt + γvπ
θθθ t−1

(s′t)
))

.

In the case of a linear approximation, we obtain:

θθθ t = θθθ t−1−α
(

φφφ (st)− γφφφ(s′t)
)(

θθθ⊺
t−1φφφ(st)−

(

rt + γθθθ⊺
t−1φφφ(s′t)

))

.

This approach, called R-SGD (for residual stochastic gradient descent), has a major

flaw as it computes a biased estimate of the value-function. Indeed, vπ
θθθ (st) and vπ

θθθ (s
′
t)

are correlated as s′t is the result of having taken action at chosen by π(st) [Werbos,

1990]. To address this problem, Baird et al. [1995] suggest to draw two different

next states s′t and s′′t starting from the same state st and to update as follows:

θθθ t = θθθ t−1−α∇θθθ t−1

(

vπ
θθθ t−1

(st)−
(

rt + γvπ
θθθt−1

(s′t)
))(

vπ
θθθ t−1

(st)−
(

rt + γvπ
θθθ t−1

(s′′t)
))

.

Of course, this requires that a generative model or a simulator is available and that

transitions can be generated on demand.

The same discussions as in previous section can apply to learning an action-value

function. For instance, one could want to solve the following optimization problem

to learn the optimal action-value function:

θθθ ∗ = argmin
θθθ

1

N

N

∑
t=1

(

Q∗θθθ (st ,at)−
(

rt + γ max
b

Q∗θθθ (s
′
t ,b)

)

)2

. (8)

Yet this optimal residual cannot directly be minimized in the case of the Q-

function as the max operator is not differentiable. Notice that a sub-gradient method

can still be used.

Reinforcement Learning 9

3.2 Least-Squares Methods

Gradient descent was used to minimize the empirical norm of either the bootstrap-

ping error or the Bellman residual in the previous section. As the empirical norm is

generally using the ℓ2-norm and that linear function approximation is often assumed,

another approach could be to find the least squares solution to these problems. In-

deed, least squares is a powerful approach as it is a second-order type of method

and offers a closed-form solution to the optimization problem. Although there is

no method that explicitly applies least squares to the two aforementioned empiri-

cal errors, one can see the fixed-point Kalman Filter (FPKF) algorithm [Choi and

Van Roy, 2006] as a recursive least squares method applied to the bootstrapping er-

ror minimization. Also, the Gaussian Process Temporal Difference (GPTD) [Engel

et al., 2005] or the Kalman Temporal Difference (KTD) [Geist and Pietquin, 2010a]

algorithms can be seen as recursive least squares methods applied to Bellman resid-

ual minimization. We invite the reader to refer to Geist and Pietquin [2013] for

further discussion on this.

Yet, the most popular method inspired by least squares optimization does apply

to a different cost function. The Least-Squares Temporal Difference (LSTD) algo-

rithm [Bradtke and Barto, 1996] aims at minimizing:

θθθ ∗ = argmin
θθθ

1

N

N

∑
i=1

(

vπ
θθθ (si)− vπ

ωωω∗(si)
)2
,

where ωωω∗ = argminωωω
1
N ∑N

i=1

(

vπ
ωωω(si)−

(

ri + γvπ
θθθ (s
′
i)
))2

can be understood as a pro-

jection on the space Φ spanned by the family of functions φφφ j’s used to approximate

vπ . It can be seen as the composition of the Bellman operator and of a projection

operator. This cost function is the so-called projected Bellman residual. When us-

ing linear function approximation, this optimization problem admits a closed-form

solution:

θθθ ∗ =

[

N

∑
i=1

φφφ(si)
[

φφφ(si)− γφφφ(s′i)
]⊺

]−1
N

∑
i=1

φφφ(si)ri.

Note that the projected Bellman residual can also be optimized with a stochastic

gradient approach [Sutton et al., 2009].

Extensions to non-linear function approximation exist and rely on the kernel

trick [Xu et al., 2007] or on statistical linearization [Geist and Pietquin, 2010b].

LSTD can be used to learn an approximate Q-function as well and can be combined

with policy improvement steps into an iterative algorithm, similar to policy iteration,

to learn an optimal policy from a dataset of sampled transitions. This gives rise to

the so-called Least Squares Policy Iteration (LSPI) algorithm [Lagoudakis and Parr,

2003], which is one of the most popular batch-RL algorithm.

10 Olivier Buffet, Olivier Pietquin, and Paul Weng

3.3 Iterative Projected Fixed-Point Methods

As we have seen earlier, dynamic programming offers a set of algorithms to com-

pute value functions of a policy in the case the dynamics of the MDP is known. One

of these algorithms, Value Iteration, relies on the fact that the Bellman equations

define contraction operators when γ < 1. For instance, if we define the Bellman

evaluation operator Bπ such that BπQ(s,a) = R(s,a)+ γEπ

[

Q(S′,A′) |S = s,A = a
]

,

one can show that iteratively applying Bπ to a random initialization of Q con-

verges to Qπ , because Bπ defines a contraction for which the only fixed point is

Qπ [Puterman, 1994]. The Bellman optimality operator B∗, defined as B∗Q(s,a) =
R(s,a) + γE

[

maxb Q(S′,b) |S = s,A = a
]

, is also a contraction. The same holds

for the sampled versions of the Bellman operators. For instance, let us define the

sampled evaluation operator B̂∗ such that B̂∗Q(s,a) = r+ γ maxb Q(s′,b), where the

expectation has been removed (the sampled operator applies to a single transition).

Unfortunately, there is no guarantee that this remains a contraction when the value

functions are approximated. Indeed when applying a Bellman operator to an ap-

proximate Qθθθ , the result might not lie in the space spanned by θθθ . One has thus

to project back on the space Φ spanned by φφφ using a projection operator ΠΦ , i.e.,

ΠΦ f = argminθθθ ‖θθθ
⊺φφφ − f‖2. If the composition of ΠΦ and B̂π (or B̂∗) is still a con-

traction, then recursively applying this composition to any initialization of θθθ still

converges to a good approximate Qπ
θθθ (or Q∗θθθ). Unfortunately, the exact projection is

often impossible to get as it is a regression problem. For instance, one would need

to use least squares methods or stochastic gradient descent to learn the best projec-

tion from samples. Therefore the projection operator itself is approximated and will

result in some Π̂Φ operator. So the iterative projected fixed-point process is defined

as:

Qθθθ t
= Π̂Φ B̂πQθθθ t−1

or Qθθθ t
= Π̂Φ B̂∗Qθθθ t−1

.

In practice, the algorithm consists in collecting transitions (e.g., {si,ai,ri,s
′
i}

N
i=1),

initialize θθθ 0 to some random value, compute a regression database by applying the

chosen sampled Bellman operator (e.g., {B̂∗Qθθθ0
(si,ai)= ri+γ maxb Qθθθ0

(si,b)}
N
i=1),

apply a regression algorithm to find the next value of parameters (e.g., Qθθθ 1
=

Π̂Φ B̂∗Qθθθ 0
= argminθθθ

1
N ∑N

i=1

(

Qθθθ (si,ai)− B̂∗Qθθθ 0
(si,ai)

)2
) and iterate.

This method finds its roots in early papers on dynamic programming [Samuel,

1959; Bellman et al., 1963] and convergence properties have been analyzed by Gor-

don [1995]. The most popular implementations use regression trees [Ernst et al.,

2005] or neural networks [Riedmiller, 2005] as regression algorithms and have been

applied to many concrete problems such as robotics [Antos et al., 2008].

3.4 Value-Based Deep Reinforcement Learning

Although the use of Artificial Neural Networks (ANN, see Chapter 12 of Volume

2) in RL is not new [Tesauro, 1995], there has been only a few successful attempts

Reinforcement Learning 11

to combine RL and ANN in the past. Most notably, before the recent advances in

Deep Learning (DL) [LeCun et al., 2015], one can identify the work by Riedmiller

[2005] as the biggest success of ANN as a function approximation framework for

RL. There are many reasons for that, which are inherently due to the way ANN

learns and assumptions that have to be made for both gradient descent and most

value-based RL algorithms to converge. Especially, Deep ANNs (DNN) require a

tremendous amount of data as they contain a lot of parameters to learn (typically

hundreds of thousands to millions). To alleviate this issue, Tesauro [1995] trained

his network to play backgammon through a self-play procedure. The model learned

at iteration t plays again itself to generate data for training the model at iteration

t + 1. It could thus reach super-human performance at the game of backgammon

using RL. This very simple and powerful idea was reused in [Silver et al., 2016] to

build the first artificial Go player that consistently defeated a human Go master. Yet,

this method relies on the assumption that games can easily be generated on demand

(backgammon and Go rules are simple enough even though the game is very com-

plex). In more complex settings, the agent faces an environment for which it does

not have access to the dynamics, maybe it cannot start in random states and has to

follow trajectories, and it can only get transitions through actual interactions. This

causes two major issues for learning with DNNs (in addition to intensive usage of

data). First, gradient descent for training DNNs assume the data to be independent

and identically distributed (i.i.d. assumption). Second, the distribution of the data

should remain constant over time. Both these assumptions are normally violated

by RL since transitions used to train the algorithms are part of trajectories (so next

states are functions of previous states and actions, violating the i.i.d. assumption)

and because trajectories are generated by a policy extracted from the current esti-

mate of the value function (learning the value function influences the distribution of

the data generated in the future). In addition, we also have seen in Section 3.1.2 that

Bellman residual minimization suffers from the correlation between estimates of

value functions of successive states. All these problems make RL unstable [Gordon,

1995].

To alleviate these issues, Mnih et al. [2015] used two tricks that allowed to

reach super-human performances at playing Atari 2600 games from pixels. First,

they made use of a biologically inspired mechanism, called experience replay [Lin,

1992], that consists in storing transitions in a Replay Buffer D before using them

for learning. Instead of sequentially using these transitions, they are shuffled in the

buffer and randomly sampled for training the network (which helps breaking corre-

lation between successive samples). The buffer is filled on a first-in-first-out basis

so that the distribution of the transitions is nearly stationary (transitions generated

by old policies are discarded first). Second, the algorithm is based on asynchronous

updates of the network used for generating the trajectories and a slow learning net-

work. The slow learning network, called the target network, will be updated less

often than the network that actually learns from the transitions stored in the replay

buffer (the Q-network). This way, the update rule of the Q-network is built such that

correlation between estimates of Q(s,a) and Q(s′,a′) is reduced. Indeed, the result-

ing algorithm (Deep Q-Network or DQN) is inspired by the gradient-descent up-

12 Olivier Buffet, Olivier Pietquin, and Paul Weng

date on the optimal Bellman residual (8). But instead of using the double-sampling

trick mentioned in Section 3.1.2, two different estimates of the Q-function are used.

One according to the target network parameters (θθθ−) and the other according to

Q-network parameters (θθθ). The parameters of the Q-network are thus computed as:

θθθ ∗ = argmin
θθθ

∑
(st ,at ,s′t ,rt)∈D

[(

rt + γ max
b

Qθθθ−(s
′
t ,b)

)

−Qθθθ (st ,at)

]2

,

With this approach, the problem of non-differentiability of the max operator is also

solved as the gradient is computed w.r.t. θθθ and not θθθ−. Once in a while, the tar-

get network parameters are updated with the Q-network parameters (θθθ−← θθθ ∗) and

new trajectories are generated according to the policy extracted from Qθθθ− to fill

again the replay buffer and train again the Q-network. The target network policy is

actually a softmax policy based on Qθθθ− (see Section 3.1.1). Many improvements

have been brought to that method since its publication, such as a prioritized re-

play mechanism [Schaul et al., 2016] that allows to sample more often from the

replay buffer transitions for which the Bellman residual is larger, or the Double-

DQN trick [Van Hasselt et al., 2016] used to provide more stable estimates of the

max operator.

4 Policy-Search Approaches

Value-based approaches to RL rely on approximating the optimal value function V ∗

(typically using Bellman’s optimality principle), and then acting greedily with re-

spect to this function. Policy Search algorithms directly optimize control policies,

which typically depend on a parameter vector θθθ ∈Θ (and are thus noted πθθθ), and

whose general shape is user-defined.1 Possible representations include linear poli-

cies, (deep) neural networks, radial basis function networks, and dynamic move-

ment primitives (in robotics). Using such approaches avoids issues with discon-

tinuous value functions, and makes it possible, in some cases, to deal with high-

dimensional (possibly continuous) state and action spaces. They also allow provid-

ing expert knowledge through the shaping of the controller, or through example

trajectories—to initialize the parameters.

In the following, we mainly distinguish between model-free and model-based

algorithms—i.e., depending on whether a model is being learned or not.

1 This section is mainly inspired by [Deisenroth et al., 2011], although that survey focuses on a

robotic framework.

Reinforcement Learning 13

4.1 Model-Free Policy Search

In model-free policy search, sampled trajectories are used directly to update the

policy parameters. The discussion will follow the three main steps followed by the

algorithms: (i) how they explore the space of policies, (ii) how they evaluate poli-

cies, and (iii) how policies are updated.

4.1.1 Policy Exploration

Exploring the space of policies implies either sampling the parameter vector the pol-

icy depends on, or perturbing the action choice of the policy. Often, the sampling of

parameters takes place at the beginning of each episode (in episodic scenarios), and

action perturbations are different at each time step, but other options are possible.

Stochastic policies can be seen as naturally performing a step-based exploration in

action space. Otherwise, the exploration strategy can be modeled as an upper-level

policy πω(θ)—sampling θ according to a probability distribution governed by pa-

rameter vector ω—, while the actual policy πθ (a|s) is refered to as a lower-level

policy. In this setting, the policy search aims at finding the parameter vector ω that

maximizes the expected return given this vector. If πω(θ) is a Gaussian distribu-

tion (common in robotics), then its covariance matrix can be diagonal—typically

in step-based exploration—or not—which leads to more stability, but requires more

samples—, meaning that the various parameters in θ can be treated in a correlated

manner or not.

4.1.2 Policy Evaluation

Policy evaluation can also be step-based or episode-based. Step-based approaches

evaluate each state-action pair. They have low variance and allow crediting several

parameter vectors. They can rely on Q-value estimates, which can be biased and

prone to approximation errors, or Monte-Carlo estimates, which can suffer from

high variance. Episode-based approaches evaluate parameters using complete tra-

jectories. They allow more performance criteria than step-based approaches—e.g.,

minimizing the final distance to the target. They also allow for more sophisticated

exploration strategies, but suffer all the more from noisy estimates and high variance

that the dynamics are more stochastic.

4.1.3 Policy Update

Finally, the policy can be updated in rather different manners. We will discuss ap-

proaches relying on gradient ascents, inference-based optimization, information-

theoretic ideas, stochastic optimization and path-integral optimal control.

14 Olivier Buffet, Olivier Pietquin, and Paul Weng

Policy Gradient (PG) algorithms first require estimating the gradient. Some

(episode-based) PG algorithms perform this estimate using a finite difference (FD)

method by perturbing the parameter vector. Other algorithms instead exploit the

Likelihood ratio trick, which allows estimating the gradient from a single trajectory,

but requires a stochastic policy. These can be step-based as REINFORCE [Williams,

1992] or G(PO)MDP [Baxter and Bartlett, 2001; Baxter et al., 2001], or episode-

based as PEPG [Sehnke et al., 2010].

Policy gradients also include natural gradient algorithms (NPG), i.e., algorithms

that try to limit the distance between distributions Pθ (h) and Pθ+δθ (h) using the KL

divergence (estimated through the Fisher information matrix (FIM)). In step-based

NPGs [Bagnell and Schneider, 2003; Peters and Schaal, 2008b], using appropri-

ate (“compatible”) function approximation removes the need to estimate the FIM,

but requires estimating the value function, which can be difficult. On the contrary,

episodic Natural Actor-Critic (eNAC) [Peters and Schaal, 2008a] uses complete

episodes, and thus only estimates v(s1). NAC [Peters and Schaal, 2008b] addresses

infinite horizon problems, the lack of episodes leading to the use of Temporal Dif-

ference methods to estimate values.

Policy gradient usually applies to randomized policies. Recent work [Silver et al.,

2014; Lillicrap et al., 2016] has adapted it to deterministic policies with a continu-

ous action space, which can potentially facilitate the gradient estimation. Building

on DQN, actor-critic methods have been extended to asynchronous updates with

parallel actors and neural networks as approximators [Mnih et al., 2016].

Inference-based algorithms avoid the need to set learning rates. They consider

that (i) the return R is an observed binary variable (1 meaning success),2 (ii) the tra-

jectory h is a latent variable, and (iii) one looks for the parameter vector that max-

imizes the probability of getting a return of 1. Then, an Expectation-Maximization

algorithm can address this Bayesian inference problem. Variational inference can

be used in the E-step of EM [Neumann, 2011], but most approaches rely on Monte-

Carlo estimates instead, despite the fact that they perform maximum likelihood esti-

mates over several modes of the reward function (and thus do not distinguish them).

These can be episode-based algorithms as RWR [Peters and Schaal, 2007] (uses

a linear upper-level policy) or CrKR [Kober et al., 2010] (a kernelized version of

RWR, i.e., which does not need to specify feature vectors, but cannot model cor-

relations). These can also be step-based algorithms as PoWER [Kober and Peters,

2010], which allows a more structured exploration strategy, and gives more influ-

ence to data points with less variance.

Information-theoretic approaches (see Chapter 2 of Volume 3) try to limit

changes in trajectory distributions between two consecutive time steps, which could

correspond to degradations rather than improvements in the policy. Natural PGs

have the same objective, but need a user-defined learning rate. Instead, REPS [Pe-

ters et al., 2010] combines advantages from NPG (smooth learning) and EM-based

algorithms (no learning-rate). Episode-based REPS [Daniel et al., 2012] learns a

higher-level policy while bounding parameter changes by solving a constrained op-

2 Transformations can bring us in this setting.

Reinforcement Learning 15

timization problem. Variants are able to adapt to multiple contexts or learn multiple

solutions. Step-based REPS [Peters et al., 2010] solves an infinite horizon problem

(rather than an episodic one), optimizing the average reward per time step. It requires

enforcing the stationarity of state features, and thus solving another constrained op-

timization problem. A related recent method, TRPO [Schulman et al., 2015], which

notably constrains the changes of π(· |s) instead of those of state-action distribu-

tions, proves to work well in practice.

Stochastic Optimization relies on black-box optimizers, and thus can easily be

used for episode-based formulations, i.e., working with an upper-level policy πω(θ).
Typical examples are CEM [de Boer et al., 2005; Szita and Lörincz, 2006], CMA-ES

[Hansen et al., 2003; Heidrich-Meisner and Igel, 2009], and NES [Wierstra et al.,

2014], three evolutionary algorithms that maintain a parametric probability distri-

bution (often Gaussian) πω(θ) over the parameter vector. They sample a population

of candidates, evaluate them, and use the best ones (weighted) to update the distri-

bution. Many rollouts may be required for evaluation, as examplified with the game

of Tetris [Szita and Lörincz, 2006].

Path Integral (PI) approaches were introduced for optimal control, i.e., to han-

dle non-linear continuous-time systems. They handle squared control costs and arbi-

trary state-dependent rewards. Policy Improvement with PIs (PI2) applies PI theory

to optimize Dynamic Movement Primitives (DMPs), i.e., representations of move-

ments with parameterized differential equations, using Monte-Carlo rollouts instead

of dynamic programming.

4.2 Model-Based Policy Search

Typical model-based policy-search approaches repeatedly (i) sample real-world tra-

jectories using a fixed policy; (ii) learn a forward model of the dynamics based on

these samples (and previous ones); (iii) optimize this policy using the learned model

(generally as a simulator). As can be noted, this process does not explicitly handle

the exploration-exploitation trade-off as policies are not chosen so as to improve

the model where this could be appropriate. We now discuss three important dimen-

sions of these approaches: how to learn the model, how to make reliable long-term

predictions, and how to perform the policy updates.

Model learning often uses probabilistic models. They first allow accounting for

uncertainty due to sparse data (at least in some areas) or an inappropriate model

class. In robotics, where action and state spaces are continuous, non-parametric

probabilistic methods can be used such as Linearly Weighted Bayesian Regression

(LWBR) of Gaussian Processes (GPs), which may suffer from increasing time and

memory requirements. But probabilistic models can also be employed to represent

stochastic dynamics. An example is that of propositional problems, which are often

modeled as Factored MDPs [Boutilier et al., 1995], where the dynamics and rewards

are DBNs whose structure is a priori unknown. A variety of approaches have been

proposed, which rely on different representations (such as rule sets, decision trees,

16 Olivier Buffet, Olivier Pietquin, and Paul Weng

Stochastic STRIPS, or PPDDL) [Degris et al., 2006; Pasula et al., 2007; Walsh et al.,

2009; Lesner and Zanuttini, 2011]. See Chapter 10 of Volume 2.

Long-term predictions are usually required to optimize the policy given the cur-

rent forward model. While the real world is its own best (unbiased) model, using

a learned model has the benefit of allowing to control these predictions. A first ap-

proach, similar to paired statistical tests, is to always use the same random initial

states and the same sequences of random numbers when evaluating different poli-

cies. It has been introduced for policy-search in the PEGASUS framework [Ng and

Jordan, 2000] and drastically reduces the sampling variance. Another approach is,

when feasible, to compute a probability distribution over trajectories using deter-

ministic approximations such as linearization [Anderson and Moore, 2005], sigma-

point methods (e.g., [Julier and Uhlmann, 2004]) or moment-matching.

Policy updates can rely on gradient-free optimization (e.g., Nelder-Mead method

or hill-climbing) [Bagnell and Schneider, 2001], on sampling-based gradients (e.g.,

finite difference methods), as in model-free approaches, although they require many

samples, or on analytical gradients [Deisenroth and Rasmussen, 2011], which re-

quire the model as well as the policy to be differentiable, scale favorably with the

number of parameters, but are computationally involved.

5 Extensions: Unknown Rewards and Risk-sensitive Criteria

In the previous sections, we recalled different techniques for solving RL problems,

with the assumption that policies are compared with the expected cumulated re-

wards as a decision criterion. However, rewards may not be scalar, known or nu-

meric, and the standard criterion based on expectation may not always be suitable.

For instance, multiobjective RL has been proposed to tackle situations where an ac-

tion is evaluated over several dimensions (e.g., duration, length, power consumption

for a navigation problem). The interested reader may refer to [Roijers et al., 2013]

for a survey and refer to Chapter 16 of this volume for an introduction to multicri-

teria decision-making. For space reasons, we focus below only on three extensions:

reward learning (Section 5.1), preference-based RL (Section 5.2) and risk sensitive

RL (Section 5.3).

5.1 Reward Learning

From the system designer’s point of view, defining the reward function can be

viewed as programming the desired behavior in an autonomous agent. A good

choice of reward values may accelerate learning [Matignon et al., 2006] while an

incorrect choice may lead to unexpected and unwanted behaviors [Randløv and Al-

strøm, 1998]. Thus, designing this function is a hard task (e.g., robotics [Argall et al.,

Reinforcement Learning 17

2009], natural language parsers [Neu and Szepesvari, 2009] or dialogue systems [El

Asri et al., 2012]).

When the reward signal is not known, a natural approach is to learn from demon-

stration. Indeed, in some domains (e.g., autonomous driving), it is much simpler

for an expert to demonstrate how to perform a task rather than specify a reward

function. Such an approach has been called apprenticeship learning [Abbeel and

Ng, 2004], learning from demonstration [Argall et al., 2009], behavior cloning or

imitation learning [Hussein et al., 2017]. Two families of techniques have been de-

veloped to solve such problems. The first group tries to directly learn a good policy

from (near) optimal demonstrations [Argall et al., 2009; Pomerleau, 1989] while

the second, called inverse RL (IRL) [Ng and Russell, 2000; Russell, 1998], tries to

first recover a reward function that explains the demonstrations and then computes

an optimal policy from it. The direct methods based on supervised learning usually

suffer when the reward function is sparse and even more when dynamics is also

perturbed [Piot et al., 2013].

As the reward function is generally considered to be a more compact, robust and

transferable representation of a task than a policy [Abbeel and Ng, 2004; Russell,

1998], we only discuss reward learning approaches here.

As for many inverse problems, IRL is ill-posed: any constant function is a trivial

solution that makes all policies equivalent and therefore optimal. Various solutions

were proposed to tackle this degeneracy issue, differing on whether a probabilistic

model is assumed or not on the generation of the observation. When the state and/or

action spaces are large, the reward function is generally assumed to take a parametric

form: R(s,a)= fθθθ (s,a) for fθθθ a parametric function of θθθ . One important case, called

linear features, is when f is linear in θθθ , i.e., R(s,a) =∑i θiφi(s,a) where φi are basis

functions.

No generative model assumption. As underlined by Neu and Szepesvari [2009],

many IRL methods can be viewed as finding the reward function R that minimizes

a dissimilarity measure between the policy π∗R optimal for R and the expert demon-

strations. Most work assume a linear-feature reward function, with some exceptions

that we mention below. Abbeel and Ng [2004] introduced the important idea of

expected feature matching, which says that the expected features of π∗R and those

estimated from the demonstrations should be close. Thus, they notably proposed

the projection method, which amounts to minimizing the Euclidean distance be-

tween those two expected features. Neu and Szepesvari [2007] proposed a natural

gradient method for minimizing this objective function. Syed and Schapire [2008]

reformulated the projection method problem as a zero-sum two-player game, with

the nice property that the learned policy may perform better than the demonstrated

one. Abbeel and Ng [2004]’s work was extended to the partially observable case

[Choi and Kim, 2011].

Besides, Ratliff et al. [2006] proposed a max-margin approach enforcing that

the found solution is better than any other one by at least a margin. Interestingly,

the method can learn from multiple MDPs. It was later extended to the non-linear

feature case [Ratliff et al., 2007].

18 Olivier Buffet, Olivier Pietquin, and Paul Weng

Another technique [Klein et al., 2012; Piot et al., 2014] consists in learning a

classifier based on a linearly parametrized score function to predict the best action

for a state given the set of demonstrations. The learned score function can then be

interpreted as a value function and can be used to recover a reward function.

Traditional IRL methods learn from (near) optimal demonstration. More recent

approaches extend IRL to learn from other types of observations, e.g., a set of (non-

necessarily optimal) demonstrations rated by an expert [El Asri et al., 2016; Burch-

field et al., 2016], bad demonstrations [Sebag et al., 2016] or pairwise comparisons

[da Silva et al., 2006; Wirth and Neumann, 2015]. In the latter case, the interac-

tive setting is investigated with a reliable expert [Chernova and Veloso, 2009] or

unreliable one [Weng et al., 2013].

Generative model assumption. Another way to tackle the degeneracy issue is

to assume a probabilistic model on how observations are generated. Here, most

work assumes that the expert policy is described by Boltzmann distributions, where

higher-valued actions are more probable. Two notable exceptions are the work of

Grollman and Billard [2011], which shows how to learn from failed demonstrations

using Gaussian mixture models, and the Bayesian approach of Ramachandran and

Amir [2007], with the assumption that state-action pairs in demonstrations follow

such a Boltzmann distribution. This latter approach has been extended to Boltz-

mann distribution-based expert policy and for multi-task learning [Dimitrakakis

and Rothkopf, 2011], and to account for multiple reward functions [Choi and Kim,

2012]. This Bayesian approach has been investigated to interactive settings where

the agent can query for an optimal demonstration in a chosen state [Lopes et al.,

2009] or for a pairwise comparison [Wilson et al., 2012; Akrour et al., 2013, 2014].

Without assuming a prior, Babes-Vroman et al. [2011] proposed to recover the

expert reward function by maximum likelihood. The approach is able to handle the

possibility of multiple intentions in the demonstrations. Furthermore, Nguyen et al.

[2015] suggested an Expectation-Maximization approach to learn from demonstra-

tion induced by locally consistent reward functions.

To tackle the degeneracy issue, Ziebart et al. [2010] argued for the use of the

maximum entropy principle, which states that among all solutions that fit the obser-

vations, the least informative one (i.e., maximum entropy) should be chosen, with

the assumption that a reward function induces a Boltzmann probability distribution

over trajectories. When the transition function is not known, Boularias et al. [2011]

extended this approach by proposing to minimize the relative entropy between the

probability distribution (over trajectories) induced by a policy and a baseline dis-

tribution under an expected feature matching constraint. Wulfmeier et al. [2015]

extended this approach to the case where a deep neural network is used for the

representation of the reward function, while Bogert et al. [2016] took into account

non-observable variables.

Reinforcement Learning 19

5.2 Preference-Based Approaches

Another line of work redefines policy optimality directly based on pairwise com-

parisons of histories without assuming the existence of a scalar numeric reward

function. This notably accounts for situations where reward values and probabili-

ties are not commensurable. In this context, different decision criteria (e.g., quantile

[Gilbert and Weng, 2016]) may be used. One popular decision model ([Yue et al.,

2012; Fürnkranz et al., 2012]) is defined as follows: a policy π is preferred to another

policy π ′ if

P[hπ % hπ ′]≥ P[hπ ′ % hπ], (9)

where % is a preorder over histories, hπ is a random variable representing the his-

tory generated by policy π and therefore P[hπ % hπ ′] is the probability that a history

generated by π is not less preferred than a history generated by π ′. Based on (9),

Fürnkranz et al. [2012] proposed a policy iteration algorithm. However, one crucial

issue with (9) is that the concept of optimal solution is not well-defined as (9) can

lead to preference cycles [Gilbert et al., 2015]. Busa-Fekete et al. [2014] circum-

vented this problem by refining this decision model with criteria from social choice

theory. In [Gilbert et al., 2015], the issue was solved by considering mixed solu-

tions: an optimal mixed solution is guaranteed to exist by interpreting it as a Nash

equilibrium of a two-player zero-sum game. Gilbert et al. [2016] proposed a model-

free RL algorithm based on a two-timescale technique to find such a mixed optimal

solution.

5.3 Risk-Sensitive Criteria

Taking into account risk is important in decision-making under uncertainty (see

Chapter 17 of this volume). The standard criterion based on expectation is risk-

neutral. When it is known that a policy will only be used a few limited number

of times, variability in the obtained rewards should be penalized. Besides, in some

hazardous domains, good policies need to absolutely avoid bad or error states. In

those two cases, preferences over policies need to be defined to be risk-sensitive.

In its simplest form, risk can directly be represented as a probability. For instance,

Geibel and Wysotzky [2005] adopted such an approach and consider MDP problems

with two objectives where the first objective is the standard decision criterion and

the second objective is to minimize the probability of reaching a set of bad states.

A more advanced approach is based on risk-sensitive decision criteria [Barbera

et al., 1999]. Variants of Expected Utility [Machina, 1988], which is the standard

risk-sensitive criterion, were investigated in two cases when the utility function is

exponential [Borkar, 2010; Moldovan and Abbeel, 2012] and when it is quadratic

[Tamar et al., 2012, 2013; Gosavi, 2014]. In the latter case, the criterion amounts

to penalizing the standard criterion by the variance of the cumulated reward. While

20 Olivier Buffet, Olivier Pietquin, and Paul Weng

the usual approach is to transform the cumulated reward, Mihatsch and Neuneier

[2002] proposed to directly transform the temporal differences during learning.

Other approaches consider risk measures [Denuit et al., 2006] and in particu-

lar coherent risk measures [Artzner et al., 1999]. Value-at-risk, popular in finance,

was considered in [Gilbert and Weng, 2016]. Policy gradient methods [Chow and

Ghavamzadeh, 2014; Tamar et al., 2015b] were proposed to optimize Conditional

Value-at-Risk (CVaR) and were extended to any coherent risk measure [Tamar et al.,

2015a]. Jiang and Powell [2018] proposed dynamic quantile-based risk measures,

which encompasses VaR and CVaR, and investigated an approximate dynamic pro-

gramming scheme to optimize them.

In risk-constrained problems, the goal is to maximize the expectation of re-

turn while bounding a risk measure. For variance-constrained problems, Prashanth

and Ghavamzadeh [2016] proposed an actor-critic algorithm. For CVaR-constrained

problems, Borkar and Jain [2014] proposed a two-timescale stochastic approxima-

tion technique, while Chow et al. [2017] investigated policy gradient and actor-critic

methods.

One important issue to consider when dealing with risk-sensitive criteria is that

the Bellman optimality principle generally does not hold anymore: a sub-policy of

an optimal risk-sensitive policy may not be optimal. However, in most cases, the

Bellman optimality principle may be recovered by considering a state-augmented

MDP, where the state includes the rewards cumulated so far [Liu and Koenig, 2006].

6 Conclusion

Recently, thanks to a number of success stories, reinforcement learning (RL) has be-

come a very active research area. In this chapter, we recalled the basic setting of RL.

Our focus was to present an overview of the main techniques, which can be divided

into value-based and policy search methods, for solving large-sized RL problems

with function approximation. We also presented some approaches for tackling the

issue of unknown rewards that a system designer would encounter in practice and

recalled some recent work in RL when risk-sensitivity needs to be taken into account

in decision-making.

Currently RL still has too large sample and computational requirements for many

practical domains (e.g., robotics). Research work is very active on improving RL

algorithms along those two dimensions, notably by exploiting the structure of the

problem [Kulkarni et al., 2016] or other a priori knowledge, expressed in temporal

logic [Wen et al., 2017] for instance, or by reusing previous learning experience with

transfer learning [Taylor and Stone, 2009], lifelong learning [Bou Ammar et al.,

2015], multi-task learning [Wilson et al., 2007] or curriculum learning [Wu and

Tian, 2017], to cite a few. Having more efficient RL algorithms is important as it

will pave the way to more applications in more realistic domains.

Reinforcement Learning 21

References

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter aerobatics

through apprenticeship learning. International Journal of Robotics Research,

29(13):1608–1639.

Abbeel, P. and Ng, A. (2004). Apprenticeship learning via inverse reinforcement

learning. In International Conference Machine Learning.

Akrour, R., Schoenauer, M., and Sebag, M. (2013). Interactive robot education. In

ECML PKDD, Lecture Notes in Computer Science.

Akrour, R., Schoenauer, M., Souplet, J.-C., and Sebag, M. (2014). Programming by

feedback. In ICML.

Anderson, B. D. O. and Moore, J. B. (2005). Optimal Filtering. Dover Publications.

Antos, A., Szepesvári, C., and Munos, R. (2008). Fitted q-iteration in continuous

action-space mdps. In Advances in neural information processing systems, pages

9–16.

Argall, B., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483.

Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999). Coherent measures of risk.

Mathematical Finance, 9(3):203–228.

Babes-Vroman, M., Marivate, V., Subramanian, K., and Littman, M. (2011). Ap-

prenticeship learning about multiple intentions. In ICML.

Bagnell, J. A. and Schneider, J. G. (2001). Autonomous helicopter control using re-

inforcement learning policy search methods. In Proceedings of the International

Conference on Robotics and Automation, pages 1615–1620.

Bagnell, J. A. and Schneider, J. G. (2003). Covariant policy search. In Proceedings

of the International Joint Conference on Artifical Intelligence.

Bai, A., Wu, F., and Chen, X. (2013). Towards a principled solution to simulated

robot soccer. In RoboCup-2012: Robot Soccer World Cup XVI, Lecture Notes in

Artificial Intelligence, volume 7500.

Baird, L. et al. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Proceedings of the twelfth international conference on machine

learning, pages 30–37.

Barbera, S., Hammond, P., and Seidl, C. (1999). Handbook of Utility Theory.

Springer.

Bäuerle, N. and Rieder, U. (2011). Markov Decision Processes with Applications to

Finance. Springer Science & Business Media.

Baxter, J. and Bartlett, P. (2001). Infinite-horizon policy-gradient estimation. Jour-

nal of Artificial Intelligence Research, 15:319–350.

Baxter, J., Bartlett, P., and Weaver, L. (2001). Experiments with infinite-horizon,

policy-gradient estimation. Journal of Artificial Intelligence Research, 15:351–

381.

Bellman, R. and Dreyfus, S. (1959). Functional approximations and dynamic pro-

gramming. Mathematical Tables and Other Aids to Computation, 13(68):247–

251.

22 Olivier Buffet, Olivier Pietquin, and Paul Weng

Bellman, R., Kalaba, R., and Kotkin, B. (1963). Polynomial approximation–a new

computational technique in dynamic programming: Allocation processes. Math-

ematics of Computation, 17(82):155–161.

Bogert, K., Lin, J. F.-S., Doshi, P., and Kulic, D. (2016). Expectation-maximization

for inverse reinforcement learning with hidden data. In AAMAS.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,

L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., and Zhao, J. (2016). End to

end learning for self-driving cars. Technical report, NVIDIA.

Borkar, V. and Jain, R. (2014). Risk-constrained Markov decision processes. IEEE

Transactions on Automatic Control, 59(9):2574–2579.

Borkar, V. S. (2010). Learning algorithms for risk-sensitive control. In International

Symposium on Mathematical Theory of Networks and Systems.

Bou Ammar, H., Tutunov, R., and Eaton, E. (2015). Safe policy search for lifelong

reinforcement learning with sublinear regret. In ICML.

Boularias, A., Kober, J., and Peters, J. (2011). Relative entropy inverse reinforce-

ment learning. In AISTATS.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in policy

construction. In Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence, pages 1104–1111.

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic pro-

gramming with factored representations. Artificial Intelligence, 121(1-2):49–107.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal

difference learning. Machine Learning, 22:33–57.

Burchfield, B., Tomasi, C., and Parr, R. (2016). Distance minimization for reward

learning from scored trajectories. In AAAI.

Busa-Fekete, R., Szörenyi, B., Weng, P., Cheng, W., and Hüllermeier, E. (2014).

Preference-based Reinforcement Learning: Evolutionary Direct Policy Search us-

ing a Preference-based Racing Algorithm. Machine Learning, 97(3):327–351.

Busoniu, L., Babuska, R., and De Schutter, B. (2010). Innovations in Multi-Agent

Systems and Applications – 1, volume 310, chapter ”Multi-agent reinforcement

learning: An overview,” Chapter 7, pages 183–221. Springer.

Chernova, S. and Veloso, M. (2009). Interactive policy learning through confidence-

based autonomy. Journal of Artificial Intelligence Research, 34:1–25.

Choi, D. and Van Roy, B. (2006). A generalized kalman filter for fixed point ap-

proximation and efficient temporal-difference learning. Discrete Event Dynamic

Systems, 16(2):207–239.

Choi, J. and Kim, K.-E. (2011). Inverse reinforcement learning in partially observ-

able environments. JMLR, 12:691–730.

Choi, J. and Kim, K.-E. (2012). Nonparametric bayesian inverse reinforcement

learning for multiple reward functions. In NIPS.

Chow, Y. and Ghavamzadeh, M. (2014). Algorithms for cvar optimization in MDPs.

In NIPS.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M. (2017). Risk-constrained

reinforcement learning with percentile risk criteria. JMLR, 18(1).

Reinforcement Learning 23

da Silva, V. F., Costa, A. H. R., and Lima, P. (2006). Inverse reinforcement learning

with evaluation. In IEEE ICRA.

Daniel, C., Neumann, G., and Peters, J. (2012). Hierarchical relative entropy policy

search. In Proceedings of the International Conference of Artificial Intelligence

and Statistics, pages 273–281.

de Boer, P., Kroese, D., Mannor, S., and Rubinstein, R. (2005). A tutorial on the

cross-entropy method. Annals of Operations Research, 134(1):19–67.

de Farias, D. and Van Roy, B. (2003). The linear programming approach to approx-

imate dynamic programming. Operations Research, 51(6):850–865.

Degris, T., Sigaud, O., and Wuillemin, P.-H. (2006). Learning the structure of Fac-

tored Markov Decision Processes in reinforcement learning problems. In Pro-

ceedings of the 23rd International Conference on Machine Learning.

Deisenroth, M. P., Neumann, G., and Peters, J. (2011). A survey on policy search

for robotics. Foundations and Trends in Robotics, 2(1–2):1–142.

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A model-based and data-

efficient approach to policy search. In Proceedings of the International Confer-

ence on Machine Learning, pages 465–472.

Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., and Laeven, R. (2006). Risk mea-

surement with equivalent utility principles. Statistics and Decisions, 24:1–25.

Dimitrakakis, C. and Rothkopf, C. A. (2011). Bayesian multitask inverse reinforce-

ment learning. In EWRL.

El Asri, L., Laroche, R., and Pietquin, O. (2012). Reward function learning for

dialogue management. In STAIRS.

El Asri, L., Piot, B., Geist, M., Laroche, R., and Pietquin, O. (2016). Score-based

inverse reinforcement learning. In AAMAS.

Engel, Y., Mannor, S., and Meir, R. (2005). Reinforcement learning with gaus-

sian processes. In Proceedings of the 22nd international conference on Machine

learning, pages 201–208. ACM.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforce-

ment learning. Journal of Machine Learning Research, 6(Apr):503–556.

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S. (2012). Preference-based

reinforcement learning: A formal framework and a policy iteration algorithm.

Machine Learning, 89(1):123–156.

Geibel, P. and Wysotzky, F. (2005). Risk-sensitive reinforcement learning applied

to control under constraints. JAIR, 24:81–108.

Geist, M. and Pietquin, O. (2010a). Kalman temporal differences. Journal of artifi-

cial intelligence research, 39:483–532.

Geist, M. and Pietquin, O. (2010b). Statistically linearized least-squares tempo-

ral differences. In Ultra Modern Telecommunications and Control Systems and

Workshops (ICUMT), 2010 International Congress on, pages 450–457. IEEE.

Geist, M. and Pietquin, O. (2011). Parametric value function approximation: a uni-

fied view. In ADPRL.

Geist, M. and Pietquin, O. (2013). Algorithmic survey of parametric value function

approximation. IEEE Transactions on Neural Networks and Learning Systems,

24(6):845–867.

24 Olivier Buffet, Olivier Pietquin, and Paul Weng

Ghavamzadeh, M., Mannor, S., Pineau, J., and Tamar, A. (2015). Bayesian re-

inforcement learning: a survey. Foundations and Trends in Machine Learning,

8(5–6):359–492.

Gilbert, H., Spanjaard, O., Viappiani, P., and Weng, P. (2015). Solving MDPs with

skew symmetric bilinear utility functions. In International Joint Conference in

Artificial Intelligence (IJCAI), pages 1989–1995.

Gilbert, H. and Weng, P. (2016). Quantile reinforcement learning. In Asian Work-

shop on Reinforcement Learning.

Gilbert, H., Zanuttini, B., Viappiani, P., Weng, P., and Nicart, E. (2016). Model-free

reinforcement learning with skew-symmetric bilinear utilities. In International

Conference on Uncertainty in Artificial Intelligence (UAI).

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In

Proceedings of the twelfth international conference on machine learning, pages

261–268.

Gosavi, A. A. (2014). Variance-penalized markov decision processes: Dynamic

programming and reinforcement learning techniques. International Journal of

General Systems, 43(6):649–669.

Grollman, D. H. and Billard, A. (2011). Donut as i do: learning from failed demon-

strations. In IEEE ICRA.

Guestrin, C., Hauskrecht, M., and Kveton, B. (2004). Solving factored MDPs with

continuous and discrete variables. In AAAI, pages 235–242.

Hansen, N., Muller, S., and Koumoutsakos, P. (2003). Reducing the time complexity

of the derandomized evolution strategy with covariance matrix adaptation (CMA-

ES). Evolutionary Computation, 11(1):1–18.

Heidrich-Meisner, V. and Igel, C. (2009). Neuroevolution strategies for episodic

reinforcement learning. Journal of Algorithms, 64(4):152–168.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. (2017). Imitation learning: a

survey of learning methods. ACM Computing Surveys.

Jiang, D. R. and Powell, W. B. (2018). Risk-averse approximate dynamic program-

ming with quantile-based risk measures. Mathematics of Operations Research,

43(2):347–692.

Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422.

Klein, E., Geist, M., Piot, B., and Pietquin, O. (2012). Inverse reinforcement learn-

ing through structured classification. In NIPS.

Kober, J., Oztop, E., and Peters, J. (2010). Reinforcement learning to adjust robot

movements to new situations. In Proceedings of the 2010 Robotics: Science and

Systems Conference.

Kober, J. and Peters, J. (2010). Policy search for motor primitives in robotics. Ma-

chine Learning, pages 1–33.

Kulkarni, T., Narasimhan, K. R., Saeedi, A., and Tenenbaum, J. (2016). Hierar-

chical deep reinforcement learning: Integrating temporal abstraction and intrinsic

motivation. In NIPS.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of

machine learning research, 4(Dec):1107–1149.

Reinforcement Learning 25

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

Lesner, B. and Zanuttini, B. (2011). Handling ambiguous effects in action learn-

ing. In Proceedings of the 9th European Workshop on Reinforcement Learning,

page 12.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2016). Continuous control with deep reinforcement learning. In

ICLR.

Lin, L.-H. (1992). Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine learning, 8(3/4):69–97.

Liu, Y. and Koenig, S. (2006). Functional value iteration for decision-theoretic

planning with general utility functions. In AAAI, pages 1186–1193. AAAI.

Lopes, M., Melo, F., and Montesano, L. (2009). Active learning for reward es-

timation in inverse reinforcement learning. In ECML/PKDD, Lecture Notes in

Computer Science, volume 5782, pages 31–46.

Machina, M. (1988). Expected utility hypothesis. In Eatwell, J., Milgate, M., and

Newman, P., editors, The New Palgrave: A Dictionary of Economics, pages 232–

239. Macmillan.

Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2006). Reward function and

initial values: Better choices for accelerated goal-directed reinforcement learning.

Lecture notes in CS, 1(4131):840–849.

Mihatsch, O. and Neuneier, R. (2002). Risk-sensitive reinforcement learning. Ma-

chine Learning.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver,

D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement

learning. In ICML.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature, 518:529–533.

Moldovan, T. and Abbeel, P. (2012). Risk aversion Markov decision processes via

near-optimal Chernoff bounds. In NIPS.

Neu, G. and Szepesvari, C. (2007). Apprenticeship learning using inverse reinforce-

ment learning and gradient methods. In UAI.

Neu, G. and Szepesvari, C. (2009). Training parsers by inverse reinforcement learn-

ing. Machine Learning, 77:303–337.

Neumann, G. (2011). Variational inference for policy search in changing situations.

In Proceedings of the International Conference on Machine Learning, pages 817–

824.

Ng, A. and Russell, S. (2000). Algorithms for inverse reinforcement learning. In

ICML. Morgan Kaufmann.

Ng, A. Y. and Jordan, M. (2000). PEGASUS : A policy search method for large

MDPs and POMDPs. In Proceedings of the Conference on Uncertainty in Artifi-

cial Intelligence.

26 Olivier Buffet, Olivier Pietquin, and Paul Weng

Nguyen, Q. P., Low, K. H., and Jaillet, P. (2015). Inverse reinforcement learning

with locally consistent reward functions. In NIPS.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007). Learning sym-

bolic models of stochastic domains. Journal of Artificial Intelligence Research,

29:309–352.

Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In

Proceedings of the National Conference on Artificial Intelligence.

Peters, J. and Schaal, S. (2007). Applying the episodic natural actor-critic architec-

ture to motor primitive learning. In Proceedings of the European Symposium on

Artificial Neural Networks.

Peters, J. and Schaal, S. (2008a). Natural actor-critic. Neurocomputation, 71(7–

9):1180–1190.

Peters, J. and Schaal, S. (2008b). Reinforcement learning of motor skills with policy

gradients. Neural Networks, 4:682–697.

Piot, B., Geist, M., and Pietquin, O. (2013). Learning from demonstrations: Is it

worth estimating a reward function? In ECML PKDD, Lecture Notes in Computer

Science.

Piot, B., Geist, M., and Pietquin, O. (2014). Boosted and Reward-regularized Clas-

sification for Apprenticeship Learning. In AAMAS, pages 1249–1256, Paris,

France.

Pomerleau, D. (1989). Alvinn: An autonomous land vehicle in a neural network. In

NIPS.

Prashanth, L. and Ghavamzadeh, M. (2016). Variance-constrained actor-critic algo-

rithms for discounted and average reward mdps. Machine Learning.

Puterman, M. (1994). Markov decision processes: discrete stochastic dynamic pro-

gramming. Wiley.

Ramachandran, D. and Amir, E. (2007). Bayesian inverse reinforcement learning.

In IJCAI.

Randløv, J. and Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement

learning and shaping. In ICML, (1998).

Ratliff, N., Bagnell, J., and Zinkevich, M. (2006). Maximum margin planning. In

ICML.

Ratliff, N., Bradley, D., Bagnell, J. A., and Chestnutt, J. (2007). Boosting structured

prediction for imitation learning. In NIPS.

Riedmiller, M. (2005). Neural fitted q iteration-first experiences with a data efficient

neural reinforcement learning method. In ECML, volume 3720, pages 317–328.

Springer.

Roijers, D., Vamplew, P., Whiteson, S., and Dazeley, R. (2013). A survey of multi-

objective sequential decision-making. Journal of Artificial Intelligence Research,

48:67–113.

Russell, S. (1998). Learning agents for uncertain environments. In Proceedings of

the eleventh annual conference on Computational learning theory, pages 101–

103. ACM.

Samuel, A. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229.

Reinforcement Learning 27

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience

replay. In ICLR.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region

policy optimization. In ICML.

Sebag, M., Akrour, R., Mayeur, B., and Schoenauer, M. (2016). Anti imitation-

based policy learning. In ECML PKDD, Lecture Notes in Computer Science.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber, J.

(2010). Parameter-exploring policy gradients. Neural Networks, 23(4):551–559.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneerschelvam, V., Lanctot, M., Dieleman,

S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of

Go with deep neural networks and tree search. Nature.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).

Deterministic policy gradient algorithms. In ICML.

Singh, S., Kearns, M., Litman, D., and Walker, M. (1999). Reinforcement learning

for spoken dialogue systems. In NIPS.

Spaan, M. T. (2012). Reinforcement Learning, chapter Partially Observable Markov

Decision Processes. Springer.

Sutton, R., Maei, H., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and

Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference

learning with linear function approximation. In ICML.

Syed, U. and Schapire, R. E. (2008). A game-theoretic approach to apprenticeship

learning. In NIPS.

Szita, I. and Lörincz, A. (2006). Learning tetris using the noisy cross-entropy

method. Neural Computation, 18:2936–2941.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. (2015a). Policy gradient

for coherent risk measures. In NIPS.

Tamar, A., Di Castro, D., and Mannor, S. (2012). Policy gradient with variance

related risk criteria. In ICML.

Tamar, A., Di Castro, D., and Mannor, S. (2013). Temporal difference methods for

the variance of the reward to go. In ICML.

Tamar, A., Glassner, Y., and Mannor, S. (2015b). Optimizing the CVaR via sam-

pling. In AAAI.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research, 10:1633–1685.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications

of the ACM, 38(3):58–68.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with

double q-learning. In AAAI, pages 2094–2100.

van Otterlo, M. (2009). The Logic of Adaptive Behavior. IOS Press.

Walsh, T., Szita, I., Diuk, C., and Littman, M. (2009). Exploring compact

reinforcement-learning representations with linear regression. In Proceedings of

the 25th Conference on Uncertainty in Artificial Intelligence.

28 Olivier Buffet, Olivier Pietquin, and Paul Weng

Wen, M., Papusha, I., and Topcu, U. (2017). Learning from demonstrations with

high-level side information. In IJCAI.

Weng, P., Busa-Fekete, R., and Hüllermeier, E. (2013). Interactive Q-learning with

ordinal rewards and unreliable tutor. In Workshop Reinforcement Learning with

Generalized Feedback, ECML/PKDD.

Werbos, P. J. (1990). Consistency of hdp applied to a simple reinforcement learning

problem. Neural Networks, 3:179–189.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J.

(2014). Natural evolution strategies. JMLR, 15:949–980.

Williams, R. (1992). Simple statistical gradient-following algorithms for connec-

tionnist reinforcement learning. Machine Learning, 8(3):229–256.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). Multi-task reinforcement

learning: A hierarchical bayesian approach. In ICML.

Wilson, A., Fern, A., and Tadepalli, P. (2012). A Bayesian approach for policy

learning from trajectory preference queries. In Advances in Neural Information

Processing Systems.

Wirth, C. and Neumann, G. (2015). Model-free preference-based reinforcement

learning. In EWRL.

Wu, Y. and Tian, Y. (2017). Training agent for first-person shooter game with actor-

critic curriculum learning. In ICLR.

Wulfmeier, M., Ondruska, P., and Posner, I. (2015). Maximum entropy deep inverse

reinforcement learning. In NIPS, Deep Reinforcement Learning Workshop.

Xu, X., Hu, D., and Lu, X. (2007). Kernel-based least squares policy iteration for

reinforcement learning. IEEE Transactions on Neural Networks, 18(4):973–992.

Yu, T. and Zhang, Z. (2013). Optimal CPS control for interconnected power systems

based on SARSA on-policy learning algorithm. Power System Protection and

Control, pages 211–216.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. (2012). The k-armed dueling

bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556.

Zhao, Q., Chen, S., Leung, S., and Lai, K. (2010). Integration of inventory and

transportation decisions in a logistics system. Transportation Research Part E:

Logistics and Transportation Review, 46(6):913–925.

Ziebart, B., Maas, A., Bagnell, J., and Dey, A. (2010). Maximum entropy inverse

reinforcement learning. In AAAI.

Contents

Reinforcement Learning . 1

Olivier Buffet, Olivier Pietquin, and Paul Weng

1 Introduction . 2

2 Background for RL . 2

3 Value-Based Methods with Function Approximation 6

3.1 Stochastic Gradient Descent Methods 6

3.2 Least-Squares Methods . 9

3.3 Iterative Projected Fixed-Point Methods 10

3.4 Value-Based Deep Reinforcement Learning 10

4 Policy-Search Approaches . 12

4.1 Model-Free Policy Search . 13

4.2 Model-Based Policy Search . 15

5 Extensions: Unknown Rewards and Risk-sensitive Criteria 16

5.1 Reward Learning . 16

5.2 Preference-Based Approaches . 19

5.3 Risk-Sensitive Criteria . 19

6 Conclusion . 20

References . 21

29

