retriever
This commit is contained in:
parent
da8ef3b857
commit
a8bfe9a835
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"word_embedding_dimension": 768,
|
||||
"pooling_mode_cls_token": false,
|
||||
"pooling_mode_mean_tokens": true,
|
||||
"pooling_mode_max_tokens": false,
|
||||
"pooling_mode_mean_sqrt_len_tokens": false
|
||||
}
|
|
@ -0,0 +1,129 @@
|
|||
---
|
||||
pipeline_tag: sentence-similarity
|
||||
tags:
|
||||
- sentence-transformers
|
||||
- feature-extraction
|
||||
- sentence-similarity
|
||||
- transformers
|
||||
|
||||
---
|
||||
|
||||
# {MODEL_NAME}
|
||||
|
||||
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
||||
|
||||
<!--- Describe your model here -->
|
||||
|
||||
## Usage (Sentence-Transformers)
|
||||
|
||||
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
||||
|
||||
```
|
||||
pip install -U sentence-transformers
|
||||
```
|
||||
|
||||
Then you can use the model like this:
|
||||
|
||||
```python
|
||||
from sentence_transformers import SentenceTransformer
|
||||
sentences = ["This is an example sentence", "Each sentence is converted"]
|
||||
|
||||
model = SentenceTransformer('{MODEL_NAME}')
|
||||
embeddings = model.encode(sentences)
|
||||
print(embeddings)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Usage (HuggingFace Transformers)
|
||||
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import torch
|
||||
|
||||
|
||||
#Mean Pooling - Take attention mask into account for correct averaging
|
||||
def mean_pooling(model_output, attention_mask):
|
||||
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
||||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||||
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||||
|
||||
|
||||
# Sentences we want sentence embeddings for
|
||||
sentences = ['This is an example sentence', 'Each sentence is converted']
|
||||
|
||||
# Load model from HuggingFace Hub
|
||||
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
||||
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
||||
|
||||
# Tokenize sentences
|
||||
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
||||
|
||||
# Compute token embeddings
|
||||
with torch.no_grad():
|
||||
model_output = model(**encoded_input)
|
||||
|
||||
# Perform pooling. In this case, mean pooling.
|
||||
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
||||
|
||||
print("Sentence embeddings:")
|
||||
print(sentence_embeddings)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Evaluation Results
|
||||
|
||||
<!--- Describe how your model was evaluated -->
|
||||
|
||||
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
||||
|
||||
|
||||
## Training
|
||||
The model was trained with the parameters:
|
||||
|
||||
**DataLoader**:
|
||||
|
||||
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 21515 with parameters:
|
||||
```
|
||||
{'batch_size': 8}
|
||||
```
|
||||
|
||||
**Loss**:
|
||||
|
||||
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
||||
```
|
||||
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
||||
```
|
||||
|
||||
Parameters of the fit()-Method:
|
||||
```
|
||||
{
|
||||
"epochs": 5,
|
||||
"evaluation_steps": 0,
|
||||
"evaluator": "NoneType",
|
||||
"max_grad_norm": 1,
|
||||
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
||||
"optimizer_params": {
|
||||
"lr": 2e-05
|
||||
},
|
||||
"scheduler": "WarmupLinear",
|
||||
"steps_per_epoch": null,
|
||||
"warmup_steps": 10757,
|
||||
"weight_decay": 0.01
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Full Model Architecture
|
||||
```
|
||||
SentenceTransformer(
|
||||
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
||||
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
||||
)
|
||||
```
|
||||
|
||||
## Citing & Authors
|
||||
|
||||
<!--- Describe where people can find more information -->
|
|
@ -0,0 +1,24 @@
|
|||
{
|
||||
"_name_or_path": "microsoft/mpnet-base",
|
||||
"architectures": [
|
||||
"MPNetModel"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.1,
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": 2,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.1,
|
||||
"hidden_size": 768,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 514,
|
||||
"model_type": "mpnet",
|
||||
"num_attention_heads": 12,
|
||||
"num_hidden_layers": 12,
|
||||
"pad_token_id": 1,
|
||||
"relative_attention_num_buckets": 32,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.20.1",
|
||||
"vocab_size": 30527
|
||||
}
|
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"__version__": {
|
||||
"sentence_transformers": "2.2.2",
|
||||
"transformers": "4.20.1",
|
||||
"pytorch": "1.12.0"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
[
|
||||
{
|
||||
"idx": 0,
|
||||
"name": "0",
|
||||
"path": "",
|
||||
"type": "sentence_transformers.models.Transformer"
|
||||
},
|
||||
{
|
||||
"idx": 1,
|
||||
"name": "1",
|
||||
"path": "1_Pooling",
|
||||
"type": "sentence_transformers.models.Pooling"
|
||||
}
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
{
|
||||
"max_seq_length": 512,
|
||||
"do_lower_case": false
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
{
|
||||
"bos_token": "<s>",
|
||||
"cls_token": "<s>",
|
||||
"eos_token": "</s>",
|
||||
"mask_token": {
|
||||
"content": "<mask>",
|
||||
"lstrip": true,
|
||||
"normalized": false,
|
||||
"rstrip": false,
|
||||
"single_word": false
|
||||
},
|
||||
"pad_token": "<pad>",
|
||||
"sep_token": "</s>",
|
||||
"unk_token": "[UNK]"
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,16 @@
|
|||
{
|
||||
"bos_token": "<s>",
|
||||
"cls_token": "<s>",
|
||||
"do_lower_case": true,
|
||||
"eos_token": "</s>",
|
||||
"mask_token": "<mask>",
|
||||
"model_max_length": 512,
|
||||
"name_or_path": "microsoft/mpnet-base",
|
||||
"pad_token": "<pad>",
|
||||
"sep_token": "</s>",
|
||||
"special_tokens_map_file": null,
|
||||
"strip_accents": null,
|
||||
"tokenize_chinese_chars": true,
|
||||
"tokenizer_class": "MPNetTokenizer",
|
||||
"unk_token": "[UNK]"
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue