test google gemma

This commit is contained in:
Ahmed Salah Tawfik Ibrahim 2024-05-30 19:09:54 +02:00
parent 73117674ad
commit 1efd0ac18d
7 changed files with 199 additions and 123 deletions

2
.gitignore vendored
View File

@ -1,3 +1,5 @@
janet.pdf janet.pdf
__pycache__/ __pycache__/
git-filter-repo
.gitignore
ahmed.ibrahim39699_interests.json ahmed.ibrahim39699_interests.json

60
DM.py
View File

@ -6,43 +6,61 @@ class DM:
self.working_history_consec = "" self.working_history_consec = ""
self.chitchat_history_consec = "" self.chitchat_history_consec = ""
self.max_history_length = max_history_length self.max_history_length = max_history_length
self.history = ""
self.chat_history = [] self.chat_history = []
self.curr_state = None self.curr_state = None
def update_history(self): #def update_history(self):
to_consider = [x['modified_query'] for x in self.chat_history[-self.max_history_length*2:]] #to_consider = [x['modified_query'] for x in self.chat_history[-self.max_history_length*2:]]
self.working_history_consec = " . ".join(to_consider) #self.working_history_consec = " . ".join(to_consider)
self.working_history_sep = " ||| ".join(to_consider) #self.working_history_sep = " ||| ".join(to_consider)
chat = [] #chat = []
for utt in self.chat_history: #for utt in self.chat_history:
if utt['intent'] == 'CHITCHAT': # if utt['intent'] == 'CHITCHAT':
if len(chat) == 4: # if len(chat) == 4:
chat = chat[1:] # chat = chat[1:]
chat.append(utt['modified_query']) # chat.append(utt['modified_query'])
self.chitchat_history_consec = '. '.join(chat) #self.chitchat_history_consec = '. '.join(chat)
def get_consec_history(self): #def get_consec_history(self):
return self.working_history_consec # return self.working_history_consec
def get_chitchat_history(self): #def get_chitchat_history(self):
return self.chitchat_history_consec # return self.chitchat_history_consec
def get_sep_history(self): #def get_sep_history(self):
return self.working_history_sep # return self.working_history_sep
def get_recent_state(self): #def get_recent_state(self):
return self.curr_state # return self.curr_state
def get_dialogue_history(self): #def get_dialogue_history(self):
return self.chat_history # return self.chat_history
def update(self, new_state): def update(self, new_state):
self.chat_history.append(new_state) self.chat_history.append(new_state)
self.curr_state = new_state self.curr_state = new_state
self.update_history() self.update_history()
def update_history(self):
to_consider = [x['modified_query'] for x in self.chat_history[-self.max_history_length*2:]]
#self.working_history_consec = " . ".join(to_consider)
#self.working_history_sep = " ||| ".join(to_consider)
for utt in to_consider:
self.history = utt if len(self.history) == 0 else f"""{self.history}
{utt}"""
#user_last_utt = f"""{username}: {text}"""
#self.history = user_last_utt if len(self.history) == 0 else f"""{self.history}
#{user_last_utt}"""
def get_history(self):
return self.history
def next_action(self): def next_action(self):
if self.curr_state['help']: if self.curr_state['help']:
return "Help" return "Help"

View File

@ -2,15 +2,15 @@ FROM python:3.8
WORKDIR /backend_janet WORKDIR /backend_janet
COPY requirements_simple.txt . COPY requirements_main.txt .
ARG version_info ARG version_info
ENV FLASK_APP_VERSION_INFO=${version_info} ENV FLASK_APP_VERSION_INFO=${version_info}
RUN pip install -r requirements_simple.txt RUN pip install -r requirements_main.txt
RUN rm -fr /root/.cache/* RUN rm -fr /root/.cache/*
COPY . . COPY . .
ENTRYPOINT ["python", "main_simple.py"] ENTRYPOINT ["python", "main.py"]

108
NLU.py
View File

@ -1,17 +1,22 @@
import spacy import spacy
import spacy_transformers import spacy_transformers
import torch import torch
import logging
class NLU: class NLU:
def __init__(self, query_rewriter, coref_resolver, intent_classifier, offensive_classifier, entity_extractor, ambig_classifier): def __init__(self, LLM_tokenizer, LLM_model):
"""
self.intent_classifier = intent_classifier self.intent_classifier = intent_classifier
self.entity_extractor = entity_extractor self.entity_extractor = entity_extractor
self.offensive_classifier = offensive_classifier self.offensive_classifier = offensive_classifier
self.coref_resolver = coref_resolver self.coref_resolver = coref_resolver
self.query_rewriter = query_rewriter self.query_rewriter = query_rewriter
self.ambig_classifier = ambig_classifier self.ambig_classifier = ambig_classifier
"""
self.tokenizer = LLM_tokenizer
self.model = LLM_model
"""
def _resolve_coref(self, history): def _resolve_coref(self, history):
to_resolve = history + ' <COREF_SEP_TOKEN> ' + self.to_process to_resolve = history + ' <COREF_SEP_TOKEN> ' + self.to_process
doc = self.coref_resolver(to_resolve) doc = self.coref_resolver(to_resolve)
@ -20,13 +25,13 @@ class NLU:
clusters = [ clusters = [
val for key, val in doc.spans.items() if key.startswith("coref_cluster") val for key, val in doc.spans.items() if key.startswith("coref_cluster")
] ]
"""
clusters = [] clusters = []
for cluster in cand_clusters: for cluster in cand_clusters:
if cluster[0].text == "I": if cluster[0].text == "I":
continue continue
clusters.append(cluster) clusters.append(cluster)
"""
# Iterate through every found cluster # Iterate through every found cluster
for cluster in clusters: for cluster in clusters:
first_mention = cluster[0] first_mention = cluster[0]
@ -83,49 +88,68 @@ class NLU:
text = history + " ||| " + self.to_process text = history + " ||| " + self.to_process
return self.query_rewriter(text)[0]['generated_text'] return self.query_rewriter(text)[0]['generated_text']
"""
def process_utterance(self, utterance, history_consec, history_sep): def process_utterance(self, history):
""" """
Query -> coref resolution & intent extraction -> if intents are not confident or if query is ambig -> rewrite query and recheck -> if still ambig, ask a clarifying question Query -> coref resolution & intent extraction -> if intents are not confident or if query is ambig -> rewrite query and recheck -> if still ambig, ask a clarifying question
""" """
if utterance.lower() in ["help", "list resources", "list papers", "list datasets", "list topics"]: #if utterance.lower() in ["help", "list resources", "list papers", "list datasets", "list topics"]:
return {"modified_query": utterance.lower(), "intent": "COMMAND", "entities": [], "is_offensive": False, "is_clear": True} # return {"modified_query": utterance.lower(), "intent": "COMMAND", "entities": [], "is_offensive": False, "is_clear": True}
self.to_process = utterance #self.to_process = utterance
self.to_process = self._resolve_coref(history_consec) prompt = f"""You are Janet, the virtual assistant of the virtual research enviornment users.
What does the user eventually want given this dialogue, which is delimited with triple backticks?
Give your answer in one single sentence.
Dialogue: '''{history}'''
"""
intent, score = self._intentpredictor() chat = [{ "role": "user", "content": prompt },]
prompt_chat = self.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = self.tokenizer.encode(prompt_chat, add_special_tokens=False, return_tensors="pt")
outputs = self.model.generate(input_ids=inputs, max_new_tokens=150)
if score > 0.5: goal = self.tokenizer.decode(outputs[0])
if intent == 'CHITCHAT': logging.debug("User's goal is:" + goal)
self.to_process = utterance
entities = self._entityextractor() #return goal.split("<start_of_turn>model\n")[-1].split("<eos>")[0]
offense = self._offensepredictor() return {"modified_query": goal.split("<start_of_turn>model\n")[-1].split("<eos>")[0],
if intent in ['FINDPAPER', 'FINDDATASET', 'SUMMARIZEPAPER'] and len(entities) == 0: "intent": "QA", "entities": [], "is_offensive": False, "is_clear": True}
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": False}
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": True} #self.to_process = self._resolve_coref(history_consec)
else:
if self._ambigpredictor(): #intent, score = self._intentpredictor()
self.to_process = self._rewrite_query(history_sep)
intent, score = self._intentpredictor() #if score > 0.5:
entities = self._entityextractor() # if intent == 'CHITCHAT':
offense = self._offensepredictor() # self.to_process = utterance
if score > 0.5 or not self._ambigpredictor(): # entities = self._entityextractor()
if intent == 'CHITCHAT': # offense = self._offensepredictor()
self.to_process = utterance # if intent in ['FINDPAPER', 'FINDDATASET', 'SUMMARIZEPAPER'] and len(entities) == 0:
if intent in ['FINDPAPER', 'FINDDATASET', 'SUMMARIZEPAPER'] and len(entities) == 0: # return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": False}
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": False} # return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": True}
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, #else:
"is_clear": True} # if self._ambigpredictor():
else: # self.to_process = self._rewrite_query(history_sep)
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, # intent, score = self._intentpredictor()
"is_clear": False} # entities = self._entityextractor()
else: # offense = self._offensepredictor()
entities = self._entityextractor() # if score > 0.5 or not self._ambigpredictor():
offense = self._offensepredictor() # if intent == 'CHITCHAT':
if intent == 'CHITCHAT': # self.to_process = utterance
self.to_process = utterance # if intent in ['FINDPAPER', 'FINDDATASET', 'SUMMARIZEPAPER'] and len(entities) == 0:
if intent in ['FINDPAPER', 'FINDDATASET', 'SUMMARIZEPAPER'] and len(entities) == 0: # return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": False}
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": False} # return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense,
return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": True} # "is_clear": True}
# else:
# return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense,
# "is_clear": False}
# else:
# entities = self._entityextractor()
# offense = self._offensepredictor()
# if intent == 'CHITCHAT':
# self.to_process = utterance
# if intent in ['FINDPAPER', 'FINDDATASET', 'SUMMARIZEPAPER'] and len(entities) == 0:
# return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": False}
# return {"modified_query": self.to_process, "intent": intent, "entities": entities, "is_offensive": offense, "is_clear": True}

View File

@ -8,7 +8,7 @@ from datetime import datetime
from datasets import Dataset from datasets import Dataset
class ResponseGenerator: class ResponseGenerator:
def __init__(self, index, db,recommender,generators, retriever, num_retrieved=3): def __init__(self, index=None, db=None,recommender=None,generators=None, retriever=None, num_retrieved=3):
self.generators = generators self.generators = generators
self.retriever = retriever self.retriever = retriever
self.recommender = recommender self.recommender = recommender

137
main.py
View File

@ -1,4 +1,5 @@
import os import os
import logging
import re import re
import warnings import warnings
import faiss import faiss
@ -10,7 +11,7 @@ import spacy
import requests import requests
import spacy_transformers import spacy_transformers
import torch import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, AutoModelForCausalLM
from User import User from User import User
from VRE import VRE from VRE import VRE
from NLU import NLU from NLU import NLU
@ -21,6 +22,9 @@ import pandas as pd
import time import time
import threading import threading
from sentence_transformers import SentenceTransformer from sentence_transformers import SentenceTransformer
from huggingface_hub import login
login(token="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")
@ -36,46 +40,56 @@ alive = "alive"
device = "cuda" if torch.cuda.is_available() else "cpu" device = "cuda" if torch.cuda.is_available() else "cpu"
device_flag = torch.cuda.current_device() if torch.cuda.is_available() else -1 device_flag = torch.cuda.current_device() if torch.cuda.is_available() else -1
model_id = "/models/google-gemma"
dtype = torch.bfloat16
query_rewriter = pipeline("text2text-generation", model="castorini/t5-base-canard") #query_rewriter = pipeline("text2text-generation", model="castorini/t5-base-canard")
intent_classifier = pipeline("sentiment-analysis", model='/models/intent_classifier', device=device_flag) #intent_classifier = pipeline("sentiment-analysis", model='/models/intent_classifier', device=device_flag)
entity_extractor = spacy.load("/models/entity_extractor") #entity_extractor = spacy.load("/models/entity_extractor")
offensive_classifier = pipeline("sentiment-analysis", model='/models/offensive_classifier', device=device_flag) #offensive_classifier = pipeline("sentiment-analysis", model='/models/offensive_classifier', device=device_flag)
ambig_classifier = pipeline("sentiment-analysis", model='/models/ambig_classifier', device=device_flag) #ambig_classifier = pipeline("sentiment-analysis", model='/models/ambig_classifier', device=device_flag)
coref_resolver = spacy.load("en_coreference_web_trf") #coref_resolver = spacy.load("en_coreference_web_trf")
nlu = NLU(query_rewriter, coref_resolver, intent_classifier, offensive_classifier, entity_extractor, ambig_classifier) #LLM = pipeline("text2text-generation", model="/models/google-gemma", device=device_flag)
LLM_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
LLM_model = AutoModelForCausalLM.from_pretrainedAutoModelForCausalLM.from_pretrained(
"google/gemma-2b-it",
torch_dtype=torch.bfloat16
)
nlu = NLU(LLM_tokenizer, LLM_model)
#load retriever and generator #load retriever and generator
retriever = SentenceTransformer('/models/retriever/').to(device) retriever = SentenceTransformer('/models/retriever/').to(device)
qa_generator = pipeline("text2text-generation", model="/models/train_qa", device=device_flag) #qa_generator = pipeline("text2text-generation", model="/models/train_qa", device=device_flag)
summ_generator = pipeline("text2text-generation", model="/models/train_summ", device=device_flag) #summ_generator = pipeline("text2text-generation", model="/models/train_summ", device=device_flag)
chat_generator = pipeline("text2text-generation", model="/models/train_chat", device=device_flag) #chat_generator = pipeline("text2text-generation", model="/models/train_chat", device=device_flag)
amb_generator = pipeline("text2text-generation", model="/models/train_amb_gen", device=device_flag) #amb_generator = pipeline("text2text-generation", model="/models/train_amb_gen", device=device_flag)
generators = {'qa': qa_generator, #generators = {'qa': qa_generator,
'chat': chat_generator, # 'chat': chat_generator,
'amb': amb_generator, # 'amb': amb_generator,
'summ': summ_generator} # 'summ': summ_generator}
rec = Recommender(retriever) rec = Recommender(retriever)
def vre_fetch(token): #def vre_fetch(token):
while True: # while True:
try: # try:
time.sleep(1000) # time.sleep(1000)
print('getting new material') # print('getting new material')
users[token]['vre'].get_vre_update() # users[token]['vre'].get_vre_update()
users[token]['vre'].index_periodic_update() # users[token]['vre'].index_periodic_update()
users[token]['rg'].update_index(vre.get_index()) # users[token]['rg'].update_index(vre.get_index())
users[token]['rg'].update_db(vre.get_db()) # users[token]['rg'].update_db(vre.get_db())
#vre.get_vre_update() #vre.get_vre_update()
#vre.index_periodic_update() #vre.index_periodic_update()
#rg.update_index(vre.get_index()) #rg.update_index(vre.get_index())
#rg.update_db(vre.get_db()) #rg.update_db(vre.get_db())
except Exception as e: # except Exception as e:
alive = "dead_vre_fetch" # alive = "dead_vre_fetch"
"""
def user_interest_decay(token): def user_interest_decay(token):
while True: while True:
try: try:
@ -99,6 +113,7 @@ def clear_inactive():
users[username]['activity'] += 1 users[username]['activity'] += 1
except Exception as e: except Exception as e:
alive = "dead_clear_inactive" alive = "dead_clear_inactive"
"""
@app.route("/health", methods=['GET']) @app.route("/health", methods=['GET'])
def health(): def health():
@ -113,10 +128,13 @@ def init_dm():
token = request.get_json().get("token") token = request.get_json().get("token")
status = request.get_json().get("stat") status = request.get_json().get("stat")
if status == "start": if status == "start":
logging.debug("status=start")
message = {"stat": "waiting", "err": ""} message = {"stat": "waiting", "err": ""}
elif status == "set": elif status == "set":
logging.debug("status=set")
headers = {"gcube-token": token, "Accept": "application/json"} headers = {"gcube-token": token, "Accept": "application/json"}
if token not in users: if token not in users:
logging.debug("getting user info")
url = 'https://api.d4science.org/rest/2/people/profile' url = 'https://api.d4science.org/rest/2/people/profile'
response = requests.get(url, headers=headers) response = requests.get(url, headers=headers)
if response.status_code == 200: if response.status_code == 200:
@ -128,12 +146,13 @@ def init_dm():
index = vre.get_index() index = vre.get_index()
db = vre.get_db() db = vre.get_db()
rg = ResponseGenerator(index,db, rec, generators, retriever) rg = ResponseGenerator(index,db, rec, retriever=retriever)
users[token] = {'username': username, 'name': name, 'dm': DM(), 'activity': 0, 'user': User(username, token), 'vre': vre, 'rg': rg} users[token] = {'username': username, 'name': name, 'dm': DM(), 'activity': 0, 'user': User(username, token),
'vre': vre, 'rg': rg}
threading.Thread(target=user_interest_decay, args=(token,), name='decayinterest_'+users[token]['username']).start() #threading.Thread(target=user_interest_decay, args=(token,), name='decayinterest_'+users[token]['username']).start()
threading.Thread(target=vre_fetch, name='updatevre'+users[token]['username'], args=(token,)).start() #threading.Thread(target=vre_fetch, name='updatevre'+users[token]['username'], args=(token,)).start()
message = {"stat": "done", "err": ""} message = {"stat": "done", "err": ""}
else: else:
message = {"stat": "rejected", "err": ""} message = {"stat": "rejected", "err": ""}
@ -156,43 +175,55 @@ def predict():
message = {} message = {}
try: try:
if text == "<HELP_ON_START>": if text == "<HELP_ON_START>":
logging.debug("help on start - inactive")
state = {'help': True, 'inactive': False, 'modified_query':"", 'intent':""} state = {'help': True, 'inactive': False, 'modified_query':"", 'intent':""}
dm.update(state) dm.update(state)
action = dm.next_action() action = dm.next_action()
logging.debug("next action:" + action)
#response = "Hey " + users[token]['name'].split()[0] + "! it's Janet! I am here to help you make use of the datasets and papers in the catalogue of the VRE. I can answer questions whose answers may be inside the papers. I can summarize papers for you. I can also chat with you. So, whichever it is, I am ready to chat!"
response = rg.gen_response(action, vrename=vre.name, username=users[token]['username'], name=users[token]['name'].split()[0]) response = rg.gen_response(action, vrename=vre.name, username=users[token]['username'], name=users[token]['name'].split()[0])
message = {"answer": response} message = {"answer": response}
elif text == "<RECOMMEND_ON_IDLE>": elif text == "<RECOMMEND_ON_IDLE>":
logging.debug("recommend on idle - inactive")
state = {'help': False, 'inactive': True, 'modified_query':"recommed: ", 'intent':""} state = {'help': False, 'inactive': True, 'modified_query':"recommed: ", 'intent':""}
dm.update(state) dm.update(state)
action = dm.next_action() action = dm.next_action()
logging.debug("next action:" + action)
#response = "Hey " + users[token]['name'].split()[0] + "! it's Janet! I am here to help you make use of the datasets and papers in the catalogue of the VRE. I can answer questions whose answers may be inside the papers. I can summarize papers for you. I can also chat with you. So, whichever it is, I am ready to chat!"
response = rg.gen_response(action, username=users[token]['username'],name=users[token]['name'].split()[0], vrename=vre.name) response = rg.gen_response(action, username=users[token]['username'],name=users[token]['name'].split()[0], vrename=vre.name)
message = {"answer": response} message = {"answer": response}
new_state = {'modified_query': response} new_state = {'modified_query': "Janet: " + response}
dm.update(new_state) dm.update(new_state)
else: else:
state = nlu.process_utterance(text, dm.get_consec_history(), dm.get_sep_history()) state = nlu.process_utterance(f"""{dm.get_history()}
user: {text}""")
state['help'] = False state['help'] = False
state['inactive'] = False state['inactive'] = False
old_user_interests = user.get_user_interests() #old_user_interests = user.get_user_interests()
old_vre_material = pd.concat([vre.db['paper_db'], vre.db['dataset_db']]).reset_index(drop=True) #old_vre_material = pd.concat([vre.db['paper_db'], vre.db['dataset_db']]).reset_index(drop=True)
user_interests = [] #user_interests = []
for entity in state['entities']: #for entity in state['entities']:
if entity['entity'] == 'TOPIC': # if entity['entity'] == 'TOPIC':
user_interests.append(entity['value']) # user_interests.append(entity['value'])
user.update_interests(user_interests) #user.update_interests(user_interests)
new_user_interests = user.get_user_interests() #new_user_interests = user.get_user_interests()
new_vre_material = pd.concat([vre.db['paper_db'], vre.db['dataset_db']]).reset_index(drop=True) #new_vre_material = pd.concat([vre.db['paper_db'], vre.db['dataset_db']]).reset_index(drop=True)
if (new_user_interests != old_user_interests or len(old_vre_material) != len(new_vre_material)): #if (new_user_interests != old_user_interests or len(old_vre_material) != len(new_vre_material)):
rec.generate_recommendations(users[token]['username'], new_user_interests, new_vre_material) # rec.generate_recommendations(users[token]['username'], new_user_interests, new_vre_material)
dm.update(state) dm.update(state)
action = dm.next_action() action = dm.next_action()
response = rg.gen_response(action=action, utterance=state['modified_query'], state=dm.get_recent_state(), consec_history=dm.get_consec_history(), chitchat_history=dm.get_chitchat_history(), vrename=vre.name, username=users[token]['username'], name=users[token]['name'].split()[0]) logging.debug("Next action: " + action)
message = {"answer": response, "query": text, "cand": "candidate", "history": dm.get_consec_history(), "modQuery": state['modified_query']} #response = rg.gen_response(action=action, utterance=state['modified_query'], state=dm.get_recent_state(), consec_history=dm.get_consec_history(), chitchat_history=dm.get_chitchat_history(), vrename=vre.name, username=users[token]['username'], name=users[token]['name'].split()[0])
if state['intent'] == "QA": #message = {"answer": response, "query": text, "cand": "candidate", "history": dm.get_consec_history(), "modQuery": state['modified_query']}
split_response = response.split("_______ \n ") message = {"answer": state['modified_query'], "query": text, "cand": "candidate", "history": dm.get_history(), "modQuery": state['modified_query']}
if len(split_response) > 1:
response = split_response[1] #if state['intent'] == "QA":
new_state = {'modified_query': response, 'intent': state['intent']} # split_response = response.split("_______ \n ")
# if len(split_response) > 1:
# response = split_response[1]
response =state['modified_query']
new_state = {'modified_query': "Janet: " + response, 'intent': state['intent']}
dm.update(new_state) dm.update(new_state)
reply = jsonify(message) reply = jsonify(message)
users[token]['dm'] = dm users[token]['dm'] = dm
@ -231,7 +262,7 @@ def feedback():
if __name__ == "__main__": if __name__ == "__main__":
warnings.filterwarnings("ignore") warnings.filterwarnings("ignore")
threading.Thread(target=clear_inactive, name='clear').start() #threading.Thread(target=clear_inactive, name='clear').start()
""" """
conn = psycopg2.connect(host="janet-pg", database=os.getenv("POSTGRES_DB"), user=os.getenv("POSTGRES_USER"), password=os.getenv("POSTGRES_PASSWORD")) conn = psycopg2.connect(host="janet-pg", database=os.getenv("POSTGRES_DB"), user=os.getenv("POSTGRES_USER"), password=os.getenv("POSTGRES_PASSWORD"))

View File

@ -33,6 +33,7 @@ markupsafe==2.0.1
psycopg2==2.9.5 psycopg2==2.9.5
en-coreference-web-trf @ https://github.com/explosion/spacy-experimental/releases/download/v0.6.1/en_coreference_web_trf-3.4.0a2-py3-none-any.whl en-coreference-web-trf @ https://github.com/explosion/spacy-experimental/releases/download/v0.6.1/en_coreference_web_trf-3.4.0a2-py3-none-any.whl
datasets datasets
huggingface_hub
Werkzeug==1.0.1 Werkzeug==1.0.1