openaire-graph-docs/versioned_docs/version-6.2.2/graph-production-workflow/enrichment-by-mining/classifies.md

23 lines
1.6 KiB
Markdown
Raw Permalink Normal View History

2023-11-27 11:00:20 +01:00
---
sidebar_position: 5
---
# Classifiers
***Short description:*** A document classification algorithm that employs analysis of free text stemming from the abstracts of the publications. The purpose of applying a document classification module is to assign a scientific text to one or more predefined content classes.
***Algorithmic details:***
The algorithm classifies publication's fulltexts using a Bayesian classifier and weighted terms according to an offline training phase. The training has been done using the following taxonomies: arXiv, MeSH (Medical Subject Headings), ACM, and DDC (Dewey Decimal Classification, or Dewey Decimal System).
***Parameters:*** Publication's identifier and fulltext
***Limitations:*** -
***Environment:***
Python, [madIS](https://github.com/madgik/madis), [APSW](https://github.com/rogerbinns/apsw)
***References:***
* Giannakopoulos, T., Stamatogiannakis, E., Foufoulas, I., Dimitropoulos, H., Manola, N., Ioannidis, Y. (2014). Content Visualization of Scientific Corpora Using an Extensible Relational Database Implementation. In: Bolikowski, Ł., Casarosa, V., Goodale, P., Houssos, N., Manghi, P., Schirrwagen, J. (eds) Theory and Practice of Digital Libraries -- TPDL 2013 Selected Workshops. TPDL 2013. Communications in Computer and Information Science, vol 416. Springer, Cham. [doi:10.1007/978-3-319-08425-1_10](https://doi.org/10.1007/978-3-319-08425-1_10)
***Authority:*** ATHENA RC • ***License:*** CC-BY/CC-0 • ***Code:*** [iis/referenceextraction](https://github.com/openaire/iis/tree/master/iis-wf/iis-wf-referenceextraction/src/main/resources/eu/dnetlib/iis/wf/referenceextraction)