enrichment steps #38
|
@ -0,0 +1,53 @@
|
|||
package eu.dnetlib.doiboost.mag
|
||||
|
||||
|
||||
import org.json4s
|
||||
import org.json4s.DefaultFormats
|
||||
import org.json4s.jackson.JsonMethods.parse
|
||||
|
||||
|
||||
case class Papers(PaperId:Long, Rank:Integer, Doi:String,
|
||||
DocType:String, PaperTitle:String, OriginalTitle:String,
|
||||
BookTitle:String, Year:Option[Integer], Date:Option[java.sql.Timestamp], Publisher:String,
|
||||
JournalId:Option[Long], ConferenceSeriesId:Option[Long], ConferenceInstanceId:Option[Long],
|
||||
Volume:String, Issue:String, FirstPage:String, LastPage:String,
|
||||
ReferenceCount:Option[Long], CitationCount:Option[Long], EstimatedCitation:Option[Long],
|
||||
OriginalVenue:String, FamilyId:Option[Long], CreatedDate:java.sql.Timestamp) {}
|
||||
|
||||
|
||||
case class PaperAbstract(PaperId:Long,IndexedAbstract:String) {}
|
||||
|
||||
|
||||
|
||||
case object ConversionUtil {
|
||||
|
||||
|
||||
|
||||
def transformPaperAbstract(input:PaperAbstract) : PaperAbstract = {
|
||||
PaperAbstract(input.PaperId, convertInvertedIndexString(input.IndexedAbstract))
|
||||
}
|
||||
|
||||
|
||||
|
||||
def convertInvertedIndexString(json_input:String) :String = {
|
||||
implicit lazy val formats: DefaultFormats.type = org.json4s.DefaultFormats
|
||||
lazy val json: json4s.JValue = parse(json_input)
|
||||
|
||||
|
||||
|
||||
val idl = (json \ "IndexLength").extract[Int]
|
||||
|
||||
if (idl > 0) {
|
||||
val res = Array.ofDim[String](idl)
|
||||
|
||||
val iid = (json \ "InvertedIndex").extract[Map[String, List[Int]]]
|
||||
|
||||
for {(k:String,v:List[Int]) <- iid}{
|
||||
v.foreach(item => res(item) = k)
|
||||
}
|
||||
return res.mkString(" ")
|
||||
|
||||
}
|
||||
""
|
||||
}
|
||||
}
|
|
@ -63,7 +63,7 @@ object SparkImportMagIntoDataset {
|
|||
def main(args: Array[String]): Unit = {
|
||||
val logger: Logger = LoggerFactory.getLogger(getClass)
|
||||
val conf: SparkConf = new SparkConf()
|
||||
val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/doiboost/convert_mag_to_oaf_params.json")))
|
||||
val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/doiboost/mag/convert_mag_to_oaf_params.json")))
|
||||
parser.parseArgument(args)
|
||||
val spark: SparkSession =
|
||||
SparkSession
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
package eu.dnetlib.doiboost.mag
|
||||
|
||||
import eu.dnetlib.dhp.application.ArgumentApplicationParser
|
||||
import org.apache.commons.io.IOUtils
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.sql.{Dataset, SaveMode, SparkSession}
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
import org.apache.spark.sql.functions._
|
||||
|
||||
object SparkPreProcessMAG {
|
||||
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
|
||||
val logger: Logger = LoggerFactory.getLogger(getClass)
|
||||
val conf: SparkConf = new SparkConf()
|
||||
val parser = new ArgumentApplicationParser(IOUtils.toString(getClass.getResourceAsStream("/eu/dnetlib/dhp/doiboost/mag/preprocess_mag_params.json")))
|
||||
parser.parseArgument(args)
|
||||
val spark: SparkSession =
|
||||
SparkSession
|
||||
.builder()
|
||||
.config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master(parser.get("master")).getOrCreate()
|
||||
import spark.implicits._
|
||||
|
||||
logger.info("Phase 1) make uninque DOI in Papers:")
|
||||
|
||||
val d: Dataset[Papers] = spark.read.load(s"${parser.get("sourcePath")}/Papers").as[Papers]
|
||||
|
||||
|
||||
// Filtering Papers with DOI, and since for the same DOI we have multiple version of item with different PapersId we get the last one
|
||||
val result: RDD[Papers] = d.where(col("Doi").isNotNull).rdd.map { p: Papers => Tuple2(p.Doi, p) }.reduceByKey { case (p1: Papers, p2: Papers) =>
|
||||
var r = if (p1 == null) p2 else p1
|
||||
if (p1 != null && p2 != null) {
|
||||
if (p1.CreatedDate != null && p2.CreatedDate != null) {
|
||||
if (p1.CreatedDate.before(p2.CreatedDate))
|
||||
r = p1
|
||||
else
|
||||
r = p2
|
||||
} else {
|
||||
r = if (p1.CreatedDate == null) p2 else p1
|
||||
}
|
||||
}
|
||||
r
|
||||
}.map(_._2)
|
||||
|
||||
val distinctPaper: Dataset[Papers] = spark.createDataset(result)
|
||||
distinctPaper.write.mode(SaveMode.Overwrite).save(s"${parser.get("targetPath")}/Papers_distinct")
|
||||
logger.info(s"Total number of element: ${result.count()}")
|
||||
|
||||
logger.info("Phase 2) convert InverdIndex Abastrac to string")
|
||||
val pa = spark.read.load(s"${parser.get("sourcePath")}/PaperAbstractsInvertedIndex").as[PaperAbstract]
|
||||
pa.map(ConversionUtil.transformPaperAbstract).write.mode(SaveMode.Overwrite).save(s"${parser.get("targetPath")}/PaperAbstract")
|
||||
|
||||
|
||||
distinctPaper.joinWith(pa, col("PaperId").eqia)
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
|
@ -34,7 +34,7 @@
|
|||
<delete path='${targetPath}'/>
|
||||
<mkdir path='${targetPath}'/>
|
||||
</fs>
|
||||
<ok to="ConvertMagToDataset"/>
|
||||
<ok to="PreprocessMag"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
|
@ -59,5 +59,28 @@
|
|||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
|
||||
|
||||
<action name="PreprocessMag">
|
||||
<spark xmlns="uri:oozie:spark-action:0.2">
|
||||
<master>yarn-cluster</master>
|
||||
<mode>cluster</mode>
|
||||
<name>Convert Mag to Dataset</name>
|
||||
<class>eu.dnetlib.doiboost.mag.SparkPreProcessMAG</class>
|
||||
<jar>dhp-doiboost-${projectVersion}.jar</jar>
|
||||
<spark-opts>
|
||||
--executor-memory=${sparkExecutorMemory}
|
||||
--executor-cores=${sparkExecutorCores}
|
||||
--driver-memory=${sparkDriverMemory}
|
||||
${sparkExtraOPT}
|
||||
</spark-opts>
|
||||
<arg>--sourcePath</arg><arg>${sourcePath}</arg>
|
||||
<arg>--targetPath</arg><arg>${targetPath}</arg>
|
||||
<arg>--master</arg><arg>yarn-cluster</arg>
|
||||
</spark>
|
||||
<ok to="End"/>
|
||||
<error to="Kill"/>
|
||||
</action>
|
||||
|
||||
<end name="End"/>
|
||||
</workflow-app>
|
|
@ -0,0 +1,6 @@
|
|||
[
|
||||
{"paramName":"s", "paramLongName":"sourcePath", "paramDescription": "the base path of MAG input", "paramRequired": true},
|
||||
{"paramName":"t", "paramLongName":"targetPath", "paramDescription": "the working dir path", "paramRequired": true},
|
||||
{"paramName":"m", "paramLongName":"master", "paramDescription": "the master name", "paramRequired": true}
|
||||
|
||||
]
|
|
@ -1,20 +1,15 @@
|
|||
package eu.dnetlib.doiboost
|
||||
|
||||
import com.fasterxml.jackson.databind.SerializationFeature
|
||||
import eu.dnetlib.dhp.schema.oaf.{Dataset, KeyValue, Oaf, Publication, Relation, Result}
|
||||
import eu.dnetlib.dhp.schema.oaf._
|
||||
import eu.dnetlib.dhp.utils.DHPUtils
|
||||
import eu.dnetlib.doiboost.crossref.{Crossref2Oaf, SparkMapDumpIntoOAF}
|
||||
import eu.dnetlib.doiboost.mag.SparkImportMagIntoDataset
|
||||
import org.apache.spark.{SparkConf, sql}
|
||||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
|
||||
import eu.dnetlib.doiboost.crossref.Crossref2Oaf
|
||||
import org.codehaus.jackson.map.ObjectMapper
|
||||
import org.junit.jupiter.api.Test
|
||||
|
||||
import scala.io.Source
|
||||
import org.junit.jupiter.api.Assertions._
|
||||
import org.junit.jupiter.api.Test
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
import scala.io.Source
|
||||
import scala.util.matching.Regex
|
||||
|
||||
|
||||
|
@ -24,12 +19,6 @@ class CrossrefMappingTest {
|
|||
val mapper = new ObjectMapper()
|
||||
|
||||
|
||||
|
||||
def testMAGCSV() :Unit = {
|
||||
SparkImportMagIntoDataset.main(null)
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
def testFunderRelationshipsMapping(): Unit = {
|
||||
val template = Source.fromInputStream(getClass.getResourceAsStream("article_funder_template.json")).mkString
|
||||
|
|
|
@ -1,14 +0,0 @@
|
|||
package eu.dnetlib.doiboost.mag
|
||||
|
||||
|
||||
case class Papers(PaperId:Long, Rank:Integer, Doi:String,
|
||||
DocType:String, PaperTitle:String, OriginalTitle:String,
|
||||
BookTitle:String, Year:Option[Integer], Date:Option[java.sql.Timestamp], Publisher:String,
|
||||
JournalId:Option[Long], ConferenceSeriesId:Option[Long], ConferenceInstanceId:Option[Long],
|
||||
Volume:String, Issue:String, FirstPage:String, LastPage:String,
|
||||
ReferenceCount:Option[Long], CitationCount:Option[Long], EstimatedCitation:Option[Long],
|
||||
OriginalVenue:String, FamilyId:Option[Long], CreatedDate:java.sql.Timestamp) {}
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,13 +1,10 @@
|
|||
package eu.dnetlib.doiboost.mag
|
||||
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.api.java.function.ReduceFunction
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.sql.{Dataset, Encoders, SaveMode, SparkSession}
|
||||
import org.codehaus.jackson.map.ObjectMapper
|
||||
import org.junit.jupiter.api.Test
|
||||
import org.slf4j.{Logger, LoggerFactory}
|
||||
import org.apache.spark.sql.functions._
|
||||
import org.junit.jupiter.api.Assertions._
|
||||
import scala.io.Source
|
||||
|
||||
|
||||
class MAGMappingTest {
|
||||
|
@ -18,34 +15,18 @@ class MAGMappingTest {
|
|||
|
||||
//@Test
|
||||
def testMAGCSV(): Unit = {
|
||||
|
||||
val conf: SparkConf = new SparkConf()
|
||||
val spark: SparkSession =
|
||||
SparkSession
|
||||
.builder()
|
||||
.config(conf)
|
||||
.appName(getClass.getSimpleName)
|
||||
.master("local[*]").getOrCreate()
|
||||
SparkPreProcessMAG.main("-m local[*] -s /data/doiboost/mag/datasets -t /data/doiboost/mag/datasets/preprocess".split(" "))
|
||||
}
|
||||
|
||||
|
||||
import spark.implicits._
|
||||
val d: Dataset[Papers] = spark.read.load("/data/doiboost/mag/datasets/Papers").as[Papers]
|
||||
logger.info(s"Total number of element: ${d.where(col("Doi").isNotNull).count()}")
|
||||
//implicit val mapEncoder = org.apache.spark.sql.Encoders.bean[Papers]
|
||||
val result: RDD[Papers] = d.where(col("Doi").isNotNull).rdd.map { p: Papers => Tuple2(p.Doi, p) }.reduceByKey {case (p1:Papers, p2:Papers) =>
|
||||
var r = if (p1==null) p2 else p1
|
||||
if (p1!=null && p2!=null ) if (p1.CreatedDate.before(p2.CreatedDate))
|
||||
r = p1
|
||||
else
|
||||
r = p2
|
||||
r
|
||||
}.map(_._2)
|
||||
|
||||
|
||||
val distinctPaper:Dataset[Papers] = spark.createDataset(result)
|
||||
distinctPaper.write.mode(SaveMode.Overwrite).save("/data/doiboost/mag/datasets/Papers_d")
|
||||
logger.info(s"Total number of element: ${result.count()}")
|
||||
@Test
|
||||
def buildInvertedIndexTest() :Unit = {
|
||||
val json_input = Source.fromInputStream(getClass.getResourceAsStream("invertedIndex.json")).mkString
|
||||
val description = ConversionUtil.convertInvertedIndexString(json_input)
|
||||
assertNotNull(description)
|
||||
assertTrue(description.nonEmpty)
|
||||
|
||||
logger.debug(description)
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,334 @@
|
|||
{
|
||||
"IndexLength": 139,
|
||||
"InvertedIndex": {
|
||||
"The": [
|
||||
0,
|
||||
23,
|
||||
47
|
||||
],
|
||||
"invention": [
|
||||
1,
|
||||
53
|
||||
],
|
||||
"discloses": [
|
||||
2
|
||||
],
|
||||
"a": [
|
||||
3,
|
||||
10,
|
||||
71,
|
||||
81,
|
||||
121
|
||||
],
|
||||
"treatment": [
|
||||
4,
|
||||
69,
|
||||
85,
|
||||
96
|
||||
],
|
||||
"method": [
|
||||
5,
|
||||
24,
|
||||
49
|
||||
],
|
||||
"of": [
|
||||
6,
|
||||
9,
|
||||
19,
|
||||
57,
|
||||
84,
|
||||
117,
|
||||
120
|
||||
],
|
||||
"waste": [
|
||||
7,
|
||||
118
|
||||
],
|
||||
"mash": [
|
||||
8,
|
||||
119
|
||||
],
|
||||
"cane": [
|
||||
11,
|
||||
122
|
||||
],
|
||||
"sugar": [
|
||||
12,
|
||||
123
|
||||
],
|
||||
"factory,": [
|
||||
13
|
||||
],
|
||||
"belonging": [
|
||||
14
|
||||
],
|
||||
"to": [
|
||||
15
|
||||
],
|
||||
"the": [
|
||||
16,
|
||||
26,
|
||||
52,
|
||||
55,
|
||||
66,
|
||||
93,
|
||||
115,
|
||||
135
|
||||
],
|
||||
"technical": [
|
||||
17,
|
||||
48
|
||||
],
|
||||
"field": [
|
||||
18
|
||||
],
|
||||
"industrial": [
|
||||
20
|
||||
],
|
||||
"wastewater": [
|
||||
21
|
||||
],
|
||||
"treatment.": [
|
||||
22
|
||||
],
|
||||
"comprises": [
|
||||
25
|
||||
],
|
||||
"following": [
|
||||
27
|
||||
],
|
||||
"steps": [
|
||||
28
|
||||
],
|
||||
"of:": [
|
||||
29
|
||||
],
|
||||
"(1)": [
|
||||
30
|
||||
],
|
||||
"pretreatment;": [
|
||||
31
|
||||
],
|
||||
"(2)": [
|
||||
32
|
||||
],
|
||||
"primary": [
|
||||
33
|
||||
],
|
||||
"concentration;": [
|
||||
34
|
||||
],
|
||||
"(3)": [
|
||||
35
|
||||
],
|
||||
"cooling": [
|
||||
36
|
||||
],
|
||||
"sedimentation": [
|
||||
37
|
||||
],
|
||||
"and": [
|
||||
38,
|
||||
45,
|
||||
62,
|
||||
80,
|
||||
86,
|
||||
114,
|
||||
134
|
||||
],
|
||||
"dense": [
|
||||
39
|
||||
],
|
||||
"slurry": [
|
||||
40
|
||||
],
|
||||
"drying;": [
|
||||
41
|
||||
],
|
||||
"(4)": [
|
||||
42
|
||||
],
|
||||
"secondary": [
|
||||
43
|
||||
],
|
||||
"concentration": [
|
||||
44
|
||||
],
|
||||
"drying.": [
|
||||
46
|
||||
],
|
||||
"disclosed": [
|
||||
50
|
||||
],
|
||||
"by": [
|
||||
51
|
||||
],
|
||||
"has": [
|
||||
54
|
||||
],
|
||||
"advantages": [
|
||||
56
|
||||
],
|
||||
"small": [
|
||||
58
|
||||
],
|
||||
"investment,": [
|
||||
59
|
||||
],
|
||||
"simple": [
|
||||
60
|
||||
],
|
||||
"equipment": [
|
||||
61
|
||||
],
|
||||
"easiness": [
|
||||
63
|
||||
],
|
||||
"in": [
|
||||
64,
|
||||
132
|
||||
],
|
||||
"popularization;": [
|
||||
65
|
||||
],
|
||||
"product": [
|
||||
67
|
||||
],
|
||||
"after": [
|
||||
68
|
||||
],
|
||||
"is": [
|
||||
70,
|
||||
91,
|
||||
98,
|
||||
102,
|
||||
112,
|
||||
130,
|
||||
137
|
||||
],
|
||||
"high-quality": [
|
||||
72
|
||||
],
|
||||
"high": [
|
||||
73
|
||||
],
|
||||
"value-added": [
|
||||
74
|
||||
],
|
||||
"(fully": [
|
||||
75
|
||||
],
|
||||
"water-soluble)": [
|
||||
76
|
||||
],
|
||||
"potassium": [
|
||||
77
|
||||
],
|
||||
"humate": [
|
||||
78
|
||||
],
|
||||
"product,": [
|
||||
79
|
||||
],
|
||||
"new": [
|
||||
82
|
||||
],
|
||||
"mode": [
|
||||
83
|
||||
],
|
||||
"profit": [
|
||||
87
|
||||
],
|
||||
"enabling": [
|
||||
88
|
||||
],
|
||||
"sustainable": [
|
||||
89
|
||||
],
|
||||
"development": [
|
||||
90
|
||||
],
|
||||
"realized;": [
|
||||
92
|
||||
],
|
||||
"environmental": [
|
||||
94
|
||||
],
|
||||
"protection": [
|
||||
95
|
||||
],
|
||||
"effect": [
|
||||
97
|
||||
],
|
||||
"good,": [
|
||||
99
|
||||
],
|
||||
"water": [
|
||||
100,
|
||||
106
|
||||
],
|
||||
"balance": [
|
||||
101
|
||||
],
|
||||
"realized": [
|
||||
103
|
||||
],
|
||||
"through": [
|
||||
104
|
||||
],
|
||||
"final": [
|
||||
105
|
||||
],
|
||||
"quality": [
|
||||
107
|
||||
],
|
||||
"treatment,": [
|
||||
108
|
||||
],
|
||||
"real": [
|
||||
109
|
||||
],
|
||||
"zero": [
|
||||
110
|
||||
],
|
||||
"emission": [
|
||||
111
|
||||
],
|
||||
"realized,": [
|
||||
113
|
||||
],
|
||||
"problem": [
|
||||
116
|
||||
],
|
||||
"factory": [
|
||||
124
|
||||
],
|
||||
"can": [
|
||||
125
|
||||
],
|
||||
"be": [
|
||||
126
|
||||
],
|
||||
"solved": [
|
||||
127
|
||||
],
|
||||
"fundamentally;": [
|
||||
128
|
||||
],
|
||||
"energy": [
|
||||
129
|
||||
],
|
||||
"saved": [
|
||||
131
|
||||
],
|
||||
"operation,": [
|
||||
133
|
||||
],
|
||||
"feasibility": [
|
||||
136
|
||||
],
|
||||
"high.": [
|
||||
138
|
||||
]
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue