[DoiBoost Author merger] -

This commit is contained in:
Miriam Baglioni 2021-11-22 16:54:27 +01:00
parent 41ea1b2177
commit 910abcba04
2 changed files with 246 additions and 255 deletions

View File

@ -1,52 +1,53 @@
package eu.dnetlib.doiboost;
import eu.dnetlib.dhp.schema.oaf.Author; package eu.dnetlib.doiboost;
import java.io.Serializable; import java.io.Serializable;
import java.util.ArrayList; import java.util.ArrayList;
import java.util.List; import java.util.List;
import eu.dnetlib.dhp.schema.oaf.Author;
/** /**
* This class stores the association information between the enriching author and the possibly enriched ones. * This class stores the association information between the enriching author and the possibly enriched ones.
* It also contains the value of the similarity score between the enriching author and the possibly enriched ones. * It also contains the value of the similarity score between the enriching author and the possibly enriched ones.
* Possibly enriched authors with the same similarity score with the enriching are put in the to_be_enriched list. * Possibly enriched authors with the same similarity score with the enriching are put in the to_be_enriched list.
*/ */
public class AuthorAssoc implements Serializable { public class AuthorAssoc implements Serializable {
private Double score ; private Double score;
private List<Author> to_be_enriched; private List<Author> to_be_enriched;
private Author with_enricheing_content; private Author with_enricheing_content;
public Double getScore() { public Double getScore() {
return score; return score;
} }
public void setScore(Double score) { public void setScore(Double score) {
this.score = score; this.score = score;
} }
public List<Author> getTo_be_enriched() { public List<Author> getTo_be_enriched() {
return to_be_enriched; return to_be_enriched;
} }
public void setTo_be_enriched(List<Author> to_be_enriched) { public void setTo_be_enriched(List<Author> to_be_enriched) {
this.to_be_enriched = to_be_enriched; this.to_be_enriched = to_be_enriched;
} }
public Author getWith_enricheing_content() { public Author getWith_enricheing_content() {
return with_enricheing_content; return with_enricheing_content;
} }
public void setWith_enricheing_content(Author with_enricheing_content) { public void setWith_enricheing_content(Author with_enricheing_content) {
this.with_enricheing_content = with_enricheing_content; this.with_enricheing_content = with_enricheing_content;
} }
public static AuthorAssoc newInstance(Author a){ public static AuthorAssoc newInstance(Author a) {
AuthorAssoc ret = new AuthorAssoc(); AuthorAssoc ret = new AuthorAssoc();
ret.score = 0.0; ret.score = 0.0;
ret.to_be_enriched = new ArrayList<>(); ret.to_be_enriched = new ArrayList<>();
ret.with_enricheing_content = a; ret.with_enricheing_content = a;
return ret; return ret;
} }
} }

View File

@ -6,14 +6,12 @@ import java.util.*;
import java.util.stream.Collectors; import java.util.stream.Collectors;
import com.wcohen.ss.Jaccard; import com.wcohen.ss.Jaccard;
import eu.dnetlib.dhp.schema.oaf.Result;
import eu.dnetlib.dhp.utils.DHPUtils;
import com.wcohen.ss.JaroWinkler; import com.wcohen.ss.JaroWinkler;
import eu.dnetlib.dhp.schema.oaf.Author; import eu.dnetlib.dhp.schema.oaf.Author;
import eu.dnetlib.dhp.schema.oaf.Result;
import eu.dnetlib.dhp.schema.oaf.StructuredProperty; import eu.dnetlib.dhp.schema.oaf.StructuredProperty;
import eu.dnetlib.dhp.utils.DHPUtils;
import scala.Tuple2; import scala.Tuple2;
/** /**
@ -49,258 +47,250 @@ import scala.Tuple2;
public class DoiBoostAuthorMerger { public class DoiBoostAuthorMerger {
public static List<Author> merge(List<List<Author>> authors, Boolean crossref) {
public static List<Author> merge(List<List<Author>> authors, Boolean crossref) { Iterator<List<Author>> it = authors.iterator();
List<Author> author = it.next();
Iterator<List<Author>> it = authors.iterator(); while (it.hasNext()) {
List<Author> author = it.next(); List<Author> autList = it.next();
Tuple2<List<Author>, Boolean> tmp = mergeAuthor(author, autList, crossref);
author = tmp._1();
crossref = tmp._2();
}
while (it.hasNext()){ return author;
List<Author> autList = it.next();
Tuple2<List<Author>, Boolean> tmp = mergeAuthor(author, autList, crossref);
author = tmp._1();
crossref = tmp._2();
}
return author; }
} // If we have a list of authors coming from crossref we take that and we enrich it
// If we do not have a list of authors coming from crossref we enrich the longest at each step
public static Tuple2<List<Author>, Boolean> mergeAuthor(final List<Author> baseAuthor,
final List<Author> otherAuthor,
final Boolean crossref) {
//If we have a list of authors coming from crossref we take that and we enrich it if (baseAuthor == null || baseAuthor.size() == 0)
//If we do not have a list of authors coming from crossref we enrich the longest at each step return new Tuple2<>(otherAuthor, false);
public static Tuple2<List<Author>, Boolean> mergeAuthor(final List<Author> baseAuthor, final List<Author> otherAuthor, if (otherAuthor == null || otherAuthor.size() == 0)
final Boolean crossref) { return new Tuple2<>(baseAuthor, crossref);
if(baseAuthor == null || baseAuthor.size() == 0) if (crossref) {
return new Tuple2<>(otherAuthor, false); enrichPidFromList(baseAuthor, otherAuthor);
if(otherAuthor == null || otherAuthor.size() == 0) return new Tuple2<>(baseAuthor, true);
return new Tuple2<>(baseAuthor, crossref); } else if (baseAuthor.size() > otherAuthor.size()) {
enrichPidFromList(baseAuthor, otherAuthor);
return new Tuple2<>(baseAuthor, false);
} else {
enrichPidFromList(otherAuthor, baseAuthor);
return new Tuple2<>(otherAuthor, false);
}
if(crossref) { }
enrichPidFromList(baseAuthor, otherAuthor);
return new Tuple2<>(baseAuthor, true);
}
else
if (baseAuthor.size() > otherAuthor.size()){
enrichPidFromList(baseAuthor, otherAuthor);
return new Tuple2<>(baseAuthor, false);
}else{
enrichPidFromList(otherAuthor, baseAuthor);
return new Tuple2<>(otherAuthor, false);
}
} // valutare se questa cosa va invertita: dovrei prendere per ogni enriching author quello che piu' gli somiglia
// nella base list non il contrario
private static void enrichPidFromList(List<Author> base, List<Author> enrich) {
// search authors having identifiers in the enrich list
final List<Author> authorsWithPids = enrich
.stream()
.filter(a -> a.getPid() != null && a.getPid().size() > 0)
.collect(Collectors.toList());
//valutare se questa cosa va invertita: dovrei prendere per ogni enriching author quello che piu' gli somiglia Map<String, AuthorAssoc> assocMap = authorsWithPids
//nella base list non il contrario .stream()
private static void enrichPidFromList(List<Author> base, List<Author> enrich) { .map(
a -> new Tuple2<>(DHPUtils.md5(a.getFullname()), AuthorAssoc.newInstance(a)))
.collect(Collectors.toMap(Tuple2::_1, Tuple2::_2, (x1, x2) -> x1));
//search authors having identifiers in the enrich list Map<String, Tuple2<String, Tuple2<List<String>, Double>>> baseAssoc = new HashMap<>();
final List<Author> authorsWithPids = enrich
.stream()
.filter(a -> a.getPid() != null && a.getPid().size() > 0)
.collect(Collectors.toList());
Map<String, AuthorAssoc> assocMap = authorsWithPids // for each author in the base list, we search the best enriching match
.stream() // we create the association (author, list of (enriching author, similatiry score))
.map( base
a -> new Tuple2<>(DHPUtils.md5(a.getFullname()), AuthorAssoc.newInstance(a))) .stream()
.collect(Collectors.toMap(Tuple2::_1, Tuple2::_2, (x1, x2) -> x1)); .map(
a -> new Tuple2<>(a,
authorsWithPids
.stream()
.map(e -> new Tuple2<>(e, sim(a, e)))
.filter(t2 -> t2._2() > 0.0)
.collect(Collectors.toList())))
.forEach(t2 -> {
String base_name = t2._1().getFullname();
String base_name_md5 = DHPUtils.md5(t2._1().getFullname());
Double max_score = 0.0;
List<String> enrich_name = new ArrayList();
for (Tuple2<Author, Double> t : t2._2()) {
// we get the fullname of the enriching
String mapEntry = DHPUtils.md5(t._1().getFullname());
Map<String, Tuple2<String,Tuple2<List<String>, Double>>> baseAssoc = new HashMap<>(); if (t._2() > max_score) {
max_score = t._2();
enrich_name = new ArrayList();
enrich_name.add(mapEntry);
} else if (t._2() > 0 && t._2().equals(max_score)) {
enrich_name.add(mapEntry);
}
AuthorAssoc aa = assocMap.get(mapEntry);
if (aa.getScore() < t._2()) {
aa.setScore(t._2());
aa.setTo_be_enriched(new ArrayList<>());
aa.getTo_be_enriched().add(t2._1());
} else {
aa.getTo_be_enriched().add(t2._1());
}
}
if (max_score > 0) {
baseAssoc.put(base_name_md5, new Tuple2(base_name, new Tuple2<>(enrich_name, max_score)));
}
//for each author in the base list, we search the best enriching match });
//we create the association (author, list of (enriching author, similatiry score)) List<Tuple2<Double, Tuple2<String, List<String>>>> list = baseAssoc.keySet().stream().map(k -> {
base.stream() Tuple2<String, Tuple2<List<String>, Double>> map_entry = baseAssoc.get(k);
.map(a -> return new Tuple2<>(map_entry._2()._2(), new Tuple2<>(map_entry._1(), map_entry._2()._1()));
new Tuple2<>(a, })
authorsWithPids.stream() .collect(Collectors.toList());
.map(e -> new Tuple2<>(e, sim(a, e))) list.sort(Comparator.comparing(e -> e._1()));
.filter(t2 -> t2._2() > 0.0) // ordino per max score la baseAssoc
.collect(Collectors.toList())) for (int i = list.size() - 1; i >= 0; i--) {
) Tuple2<Double, Tuple2<String, List<String>>> tmp = list.get(i);
.forEach(t2 -> { List<String> entries = tmp._2()._2();
String base_name = t2._1().getFullname(); // se len = 1 => ho un solo e che con questo a ha max score
String base_name_md5 = DHPUtils.md5(t2._1().getFullname()); if (entries.size() == 1) {
Double max_score = 0.0; if (assocMap.containsKey(entries.get(0))) {
List<String> enrich_name = new ArrayList(); enrichAuthor(assocMap.get(entries.get(0)));
for (Tuple2<Author, Double> t : t2._2()) { assocMap.remove(entries.get(0));
//we get the fullname of the enriching }
String mapEntry = DHPUtils.md5(t._1().getFullname()); } else {
String author_fullname = tmp._2()._1();
long commonWords = 0;
String enriching = null;
for (String entry : entries) {
if (assocMap.containsKey(entry)) {
long words = getCommonWords(
normalize(entry),
normalize(author_fullname));
if (words > commonWords) {
commonWords = words;
enriching = entry;
}
if (words == commonWords) {
enriching = null;
}
}
if(t._2() > max_score){ }
max_score = t._2(); if (enriching != null) {
enrich_name = new ArrayList(); enrichAuthor(assocMap.get(entries.get(0)));
enrich_name.add(mapEntry); assocMap.remove(entries.get(0));
}else if(t._2() > 0 && t._2().equals(max_score)){ }
enrich_name.add(mapEntry); // TODO pensare ad un modo per arricchire con il miglior e questo autore
} // Siamo nel caso in cui un autore ha piu' di un e con lo stesso similarity score
}
}
// assocMap.keySet().forEach(k -> enrichAuthor(assocMap.get(k)));
AuthorAssoc aa = assocMap.get(mapEntry); }
if(aa.getScore() < t._2()){
aa.setScore(t._2());
aa.setTo_be_enriched(new ArrayList<>());
aa.getTo_be_enriched().add(t2._1());
}else {
aa.getTo_be_enriched().add(t2._1());
}
}
if(max_score > 0){
baseAssoc.put(base_name_md5, new Tuple2(base_name, new Tuple2<>(enrich_name, max_score)));
}
}); private static long getCommonWords(List<String> fullEnrich, List<String> fullEnriching) {
List<Tuple2<Double, Tuple2<String, List<String>>>> list = baseAssoc.keySet().stream().map(k -> { return fullEnrich.stream().filter(w -> fullEnriching.contains(w)).count();
Tuple2<String, Tuple2<List<String>, Double>> map_entry = baseAssoc.get(k); }
return new Tuple2<>(map_entry._2()._2(), new Tuple2<>(map_entry._1(), map_entry._2()._1()));
})
.collect(Collectors.toList());
list.sort(Comparator.comparing(e -> e._1()));
//ordino per max score la baseAssoc
for (int i = list.size() -1 ; i>=0 ; i-- ){
Tuple2<Double, Tuple2<String, List<String>>> tmp = list.get(i);
List<String> entries = tmp._2()._2();
//se len = 1 => ho un solo e che con questo a ha max score
if(entries.size() == 1){
if(assocMap.containsKey(entries.get(0))) {
enrichAuthor(assocMap.get(entries.get(0)));
assocMap.remove(entries.get(0));
}
}else{
String author_fullname = tmp._2()._1();
long commonWords = 0;
String enriching = null;
for(String entry : entries){
if (assocMap.containsKey(entry)){
long words = getCommonWords(normalize(entry),
normalize(author_fullname));
if (words > commonWords){
commonWords = words;
enriching = entry;
}
if(words == commonWords){
enriching = null;
}
}
} private static void enrichAuthor(Author enrich, Author enriching) {
if(enriching != null){ // verify if some of the words in the fullname are contained in the other
enrichAuthor(assocMap.get(entries.get(0))); // get normalized fullname
assocMap.remove(entries.get(0));
}
//TODO pensare ad un modo per arricchire con il miglior e questo autore
//Siamo nel caso in cui un autore ha piu' di un e con lo stesso similarity score
}
}
// assocMap.keySet().forEach(k -> enrichAuthor(assocMap.get(k)));
long commonWords = getCommonWords(
normalize(enrich.getFullname()),
normalize(enriching.getFullname()));
if (commonWords > 0) {
if (enrich.getPid() == null) {
enrich.setPid(new ArrayList<>());
}
Set<String> aPids = enrich.getPid().stream().map(p -> pidToComparableString(p)).collect(Collectors.toSet());
enriching.getPid().forEach(p -> {
if (!aPids.contains(pidToComparableString(p))) {
enrich.getPid().add(p);
}
});
if (enrich.getAffiliation() == null) {
if (enriching.getAffiliation() != null) {
enrich.setAffiliation(enriching.getAffiliation());
}
}
}
} }
private static long getCommonWords(List<String> fullEnrich, List<String> fullEnriching){ // Verify the number of words in common. The one that has more, wins. If the number of words in common are the same
return fullEnrich.stream().filter( w -> fullEnriching.contains(w)).count(); // we
} // enrich no author
private static void enrichAuthor(AuthorAssoc authorAssoc) {
if (authorAssoc.getTo_be_enriched().size() == 1) {
enrichAuthor(authorAssoc.getTo_be_enriched().get(0), authorAssoc.getWith_enricheing_content());
} else {
long common = 0;
List<Author> selected = new ArrayList<>();
for (Author a : authorAssoc.getTo_be_enriched()) {
long current_common = getCommonWords(
normalize(a.getFullname()),
normalize(authorAssoc.getWith_enricheing_content().getFullname()));
if (current_common > common) {
common = current_common;
selected = new ArrayList<>();
selected.add(a);
} else if (current_common == common) {
selected.add(a);
}
}
if (selected.size() == 1) {
enrichAuthor(selected.get(0), authorAssoc.getWith_enricheing_content());
}
}
}
private static void enrichAuthor(Author enrich, Author enriching){ public static String pidToComparableString(StructuredProperty pid) {
//verify if some of the words in the fullname are contained in the other return (pid.getQualifier() != null
//get normalized fullname ? pid.getQualifier().getClassid() != null ? pid.getQualifier().getClassid().toLowerCase() : ""
: "")
+ (pid.getValue() != null ? pid.getValue().toLowerCase() : "");
}
long commonWords = getCommonWords(normalize(enrich.getFullname()), private static Double sim(Author a, Author b) {
normalize(enriching.getFullname())); return new Jaccard()
if(commonWords > 0 ){ .score(normalizeString(a.getFullname()), normalizeString(b.getFullname()));
if(enrich.getPid() == null){
enrich.setPid(new ArrayList<>());
}
Set<String> aPids = enrich.getPid().stream().map(p -> pidToComparableString(p)).collect(Collectors.toSet());
enriching.getPid().forEach(p -> {
if (!aPids.contains(pidToComparableString(p))){
enrich.getPid().add(p);
}
});
if (enrich.getAffiliation() == null){
if (enriching.getAffiliation() != null){
enrich.setAffiliation(enriching.getAffiliation());
}
}
}
}
} private static String normalizeString(String fullname) {
return String.join(" ", normalize(fullname));
}
//Verify the number of words in common. The one that has more, wins. If the number of words in common are the same we private static List<String> normalize(final String s) {
//enrich no author String[] normalized = nfd(s)
private static void enrichAuthor(AuthorAssoc authorAssoc) { .replaceAll("[^\\p{ASCII}]", "")
if (authorAssoc.getTo_be_enriched().size() == 1){ .toLowerCase()
enrichAuthor(authorAssoc.getTo_be_enriched().get(0), authorAssoc.getWith_enricheing_content()); // do not compact the regexes in a single expression, would cause StackOverflowError
}else{ // in case
long common = 0; // of large input strings
List<Author> selected = new ArrayList<>() ; .replaceAll("(\\W)+", " ")
for(Author a : authorAssoc.getTo_be_enriched()){ .replaceAll("(\\p{InCombiningDiacriticalMarks})+", " ")
long current_common = getCommonWords(normalize(a.getFullname()), .replaceAll("(\\p{Punct})+", " ")
normalize(authorAssoc.getWith_enricheing_content().getFullname())); .replaceAll("(\\d)+", " ")
if (current_common > common){ .replaceAll("(\\n)+", " ")
common = current_common; .trim()
selected = new ArrayList<>(); .split(" ");
selected.add(a);
}else if(current_common == common){
selected.add(a);
}
}
if (selected.size() == 1){
enrichAuthor(selected.get(0), authorAssoc.getWith_enricheing_content());
}
}
} Arrays.sort(normalized);
return Arrays.asList(normalized);
public static String pidToComparableString(StructuredProperty pid) { }
return (pid.getQualifier() != null
? pid.getQualifier().getClassid() != null ? pid.getQualifier().getClassid().toLowerCase() : ""
: "")
+ (pid.getValue() != null ? pid.getValue().toLowerCase() : "");
}
private static String nfd(final String s) {
return Normalizer.normalize(s, Normalizer.Form.NFD);
}
private static Double sim(Author a, Author b) {
return new Jaccard()
.score(normalizeString(a.getFullname()), normalizeString(b.getFullname()));
}
private static String normalizeString(String fullname) {
return String.join(" ", normalize(fullname));
}
private static List<String> normalize(final String s) {
String[] normalized = nfd(s)
.replaceAll("[^\\p{ASCII}]", "")
.toLowerCase()
// do not compact the regexes in a single expression, would cause StackOverflowError
// in case
// of large input strings
.replaceAll("(\\W)+", " ")
.replaceAll("(\\p{InCombiningDiacriticalMarks})+", " ")
.replaceAll("(\\p{Punct})+", " ")
.replaceAll("(\\d)+", " ")
.replaceAll("(\\n)+", " ")
.trim()
.split(" ");
Arrays.sort(normalized);
return Arrays.asList(normalized);
}
private static String nfd(final String s) {
return Normalizer.normalize(s, Normalizer.Form.NFD);
}
} }