Code for testing other grouping strategies

This commit is contained in:
Giambattista Bloisi 2023-07-10 15:52:35 +02:00
parent 745e70e0d7
commit 861c368e65
8 changed files with 193 additions and 40 deletions

View File

@ -49,7 +49,12 @@ public class RowDataOrderingComparator implements Comparator<Row> {
final String to1 = NGramUtils.cleanupForOrdering(o1);
final String to2 = NGramUtils.cleanupForOrdering(o2);
return to1.compareTo(to2);
int res = to1.compareTo(to2);
if (res == 0) {
return o1.compareTo(o2);
}
return res;
}
}

View File

@ -20,6 +20,7 @@ import scala.collection.JavaConverters._
import scala.collection.mutable
import org.apache.spark.sql.functions.{col, lit, udf}
import java.util.Collections
import java.util.stream.Collectors
case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Serializable {
@ -31,11 +32,15 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
private val urlFilter = (s: String) => URL_REGEX.matcher(s).matches
val modelExtractor: (Dataset[String] => Dataset[Row]) = df => {
df.withColumn("mapDocument", rowFromJsonUDF.apply(df.col(df.columns(0))))
.withColumn("identifier", new Column("mapDocument.identifier"))
.repartition(new Column("identifier"))
//.repartition(new Column("identifier"))
.dropDuplicates("identifier")
.select("mapDocument.*")
df.map(r => rowFromJson(r))(RowEncoder(rowDataType))
.dropDuplicates("identifier")
}
val generateClusters: (Dataset[Row] => Dataset[Row]) = df => {
@ -81,12 +86,15 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
// Using SQL because GROUPING SETS are not available through Scala/Java DSL
df_with_keys.sqlContext.sql(
("SELECT coalesce(" + keys + ") as key, collect_sort_slice(" + fields + ") as block FROM " + tempTable + " WHERE coalesce(" + keys + ") IS NOT NULL GROUP BY GROUPING SETS (" + keys + ") HAVING size(block) > 1")
("SELECT coalesce(" + keys + ") as key, sort_array(collect_sort_slice(" + fields + ")) as block FROM " + tempTable + " WHERE coalesce(" + keys + ") IS NOT NULL GROUP BY GROUPING SETS (" + keys + ") HAVING size(block) > 1")
)
}
val generateClustersWithDFAPI: (Dataset[Row] => Dataset[Row]) = df => {
System.out.println(conf.getWf.getEntityType + "::" +conf.getWf.getSubEntityType)
val df_with_filters = conf.getPace.getModel.asScala.foldLeft(df)((res, fdef) => {
if (conf.blacklists.containsKey(fdef.getName)) {
res.withColumn(
@ -112,15 +120,74 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
columns.add(new Column(fName))
}
val ds: Dataset[Row] = df_with_filters.withColumn("key", functions.explode(clusterValuesUDF(cd).apply(functions.array(columns.asScala: _*))))
.select((Seq(rowDataType.fieldNames: _*) ++ Seq("key")).map(col): _*)
val tmp: Dataset[Row] = df_with_filters.withColumn("key", functions.explode(clusterValuesUDF(cd).apply(functions.array(columns.asScala: _*))))
/*.select((Seq(rowDataType.fieldNames: _*) ++ Seq("key")).map(col): _*)
.groupByKey(r => r.getAs[String]("key"))(Encoders.STRING)
.agg(collectSortSliceAggregator.toColumn)
.toDF("key", "block")
.select(col("block.block").as("block"))
.select(col("block.block").as("block"))*/
/*.groupBy("key")
.agg(collectSortSliceUDAF(rowDataType.fieldNames.map(col): _*).as("block"))*/
System.out.println(cd.getName)
val ds = tmp.groupBy("key")
// .agg(functions.sort_array(collectSortSliceUDAF(rowDataType.fieldNames.map(col): _*)).as("block"))
.agg(functions.collect_set(functions.struct(rowDataType.fieldNames.map(col): _*)).as("block"))
//.filter(functions.size(new Column("block")).geq(new Literal(2, DataTypes.IntegerType)))
//df_with_filters.printSchema()
//ds.printSchema()
if (relBlocks == null) relBlocks = ds
else relBlocks = relBlocks.union(ds)
}
// System.out.println()
relBlocks
}
val generateClustersWithWindows: (Dataset[Row] => Dataset[Row]) = df => {
val df_with_filters = conf.getPace.getModel.asScala.foldLeft(df)((res, fdef) => {
if (conf.blacklists.containsKey(fdef.getName)) {
res.withColumn(
fdef.getName + "_filtered",
filterColumnUDF(fdef).apply(new Column(fdef.getName))
)
} else {
res
}
})
var relBlocks: Dataset[Row] = null
import scala.collection.JavaConversions._
for (cd <- conf.clusterings()) {
System.out.println(conf.getWf.getEntityType + "::" + conf.getWf.getSubEntityType+ ": " + cd.getName + " " + cd.toString)
val columns: util.List[Column] = new util.ArrayList[Column](cd.getFields().size)
for (fName <- cd.getFields()) {
if (conf.blacklists.containsKey(fName))
columns.add(new Column(fName + "_filtered"))
else
columns.add(new Column(fName))
}
// Add 'key' column with the value generated by the given clustering definition
val ds: Dataset[Row] = df_with_filters.withColumn("key", functions.explode(clusterValuesUDF(cd).apply(functions.array(columns.asScala: _*))))
// Add position column having the position of the row within the set of rows having the same key value ordered by the sorting value
.withColumn("position", functions.row_number().over(Window.partitionBy("key").orderBy(col(conf.getWf.getOrderField))))
// filter out rows with position exceeding the maxqueuesize parameter
.filter(col("position").leq(conf.getWf.getQueueMaxSize))
.groupBy("key")
.agg(functions.collect_set(functions.struct(rowDataType.fieldNames.map(col): _*)).as("block"))
.filter(functions.size(new Column("block")).geq(new Literal(2, DataTypes.IntegerType)))
if (relBlocks == null) relBlocks = ds
@ -224,6 +291,67 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
relBlocks
}
val printAnalytics: (Dataset[Row] => Dataset[Row]) = df => {
val df_with_filters = conf.getPace.getModel.asScala.foldLeft(df)((res, fdef) => {
if (conf.blacklists.containsKey(fdef.getName)) {
res.withColumn(
fdef.getName + "_filtered",
filterColumnUDF(fdef).apply(new Column(fdef.getName))
)
} else {
res
}
})
var relBlocks: Dataset[Row] = null
import scala.collection.JavaConversions._
for (cd <- conf.clusterings()) {
val columns: util.List[Column] = new util.ArrayList[Column](cd.getFields().size)
for (fName <- cd.getFields()) {
if (conf.blacklists.containsKey(fName))
columns.add(new Column(fName + "_filtered"))
else
columns.add(new Column(fName))
}
// Add 'key' column with the value generated by the given clustering definition
val ds: Dataset[Row] = df_with_filters.withColumn("key", functions.explode(clusterValuesUDF(cd).apply(functions.array(columns.asScala: _*))))
// Add position column having the position of the row within the set of rows having the same key value ordered by the sorting value
.withColumn("position", functions.row_number().over(Window.partitionBy("key").orderBy(conf.getWf.getOrderField)))
// filter out rows with position exceeding the maxqueuesize parameter
.filter(col("position").lt(conf.getWf.getQueueMaxSize))
// inner join to compute all combination of rows to compare
// note the condition on position to obtain 'windowing': given a row this is compared at most with the next
// SlidingWindowSize rows following the sort order
val dsWithMatch = ds.as("l").join(ds.as("r"),
col("l.key").equalTo(col("r.key")),
"inner"
)
.filter((col("l.position").lt(col("r.position")))
&& (col("r.position").lt(col("l.position").plus(lit(conf.getWf.getSlidingWindowSize)))))
// Add match column with the result of comparison
// dsWithMatch.show(false)
if (relBlocks == null)
relBlocks = dsWithMatch
else
relBlocks = relBlocks.union(dsWithMatch)
}
System.out.println(conf.getWf.getEntityType + "::" + conf.getWf.getSubEntityType)
System.out.println("Total number of comparations: " + relBlocks.count())
df
}
val generateAndProcessClustersWithJoins: (Dataset[Row] => Dataset[Row]) = df => {
val df_with_filters = conf.getPace.getModel.asScala.foldLeft(df)((res, fdef) => {
@ -287,7 +415,7 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
val res = relBlocks
//.select(col("l.identifier").as("from"), col("r.identifier").as("to"))
.repartition()
//.repartition()
.distinct()
// res.show(false)
@ -301,12 +429,36 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
df.filter(functions.size(new Column("block")).geq(new Literal(2, DataTypes.IntegerType)))
.withColumn("relations", processBlock(df.sqlContext.sparkContext).apply(new Column("block")))
.select(functions.explode(new Column("relations")).as("relation"))
.repartition(new Column("relation"))
//.repartition(new Column("relation"))
.dropDuplicates("relation")
}
val rowDataType: StructType = {
val unordered = conf.getPace.getModel.asScala.foldLeft(
// val unordered = conf.getPace.getModel.asScala.foldLeft(
// new StructType()
// )((resType, fdef) => {
// resType.add(fdef.getType match {
// case Type.List | Type.JSON =>
// StructField(fdef.getName, DataTypes.createArrayType(DataTypes.StringType), true, Metadata.empty)
// case Type.DoubleArray =>
// StructField(fdef.getName, DataTypes.createArrayType(DataTypes.DoubleType), true, Metadata.empty)
// case _ =>
// StructField(fdef.getName, DataTypes.StringType, true, Metadata.empty)
// })
// })
//
// conf.getPace.getModel.asScala.filterNot(_.getName.equals(conf.getWf.getOrderField)).foldLeft(
// new StructType()
// .add(unordered(conf.getWf.getOrderField))
// .add(StructField("identifier", DataTypes.StringType, false, Metadata.empty))
// )((resType, fdef) => resType.add(unordered(fdef.getName)))
val identifier = new FieldDef()
identifier.setName("identifier")
identifier.setType(Type.String)
(conf.getPace.getModel.asScala ++ Seq(identifier)).sortBy(_.getName)
.foldLeft(
new StructType()
)((resType, fdef) => {
resType.add(fdef.getType match {
@ -319,11 +471,6 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
})
})
conf.getPace.getModel.asScala.filterNot(_.getName.equals(conf.getWf.getOrderField)).foldLeft(
new StructType()
.add(unordered(conf.getWf.getOrderField))
.add(StructField("identifier", DataTypes.StringType, false, Metadata.empty))
)((resType, fdef) => resType.add(unordered(fdef.getName)))
}
@ -332,7 +479,7 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
val orderingFieldPosition: Int = rowDataType.fieldIndex(conf.getWf.getOrderField)
val rowFromJson = (json: String) => {
def rowFromJson(json: String) : Row = {
val documentContext =
JsonPath.using(Configuration.defaultConfiguration.addOptions(Option.SUPPRESS_EXCEPTIONS)).parse(json)
val values = new Array[Any](rowDataType.size)
@ -360,7 +507,7 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
MapDocumentUtil.truncateList(
MapDocumentUtil.getJPathList(fdef.getPath, documentContext, fdef.getType),
fdef.getSize
)
).toArray
case Type.StringConcat =>
val jpaths = CONCAT_REGEX.split(fdef.getPath)
@ -384,7 +531,7 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
new GenericRowWithSchema(values, rowDataType)
}
val rowFromJsonUDF = udf(rowFromJson, rowDataType)
val rowFromJsonUDF = udf(rowFromJson(_), rowDataType)
def filterColumnUDF(fdef: FieldDef): UserDefinedFunction = {
@ -428,7 +575,7 @@ case class SparkDedupConfig(conf: DedupConfig, numPartitions: Int) extends Seria
new BlockProcessor(conf, identityFieldPosition, orderingFieldPosition).processSortedRows(mapDocuments, reporter)
reporter.getRelations.asScala.toArray
})
}).asNondeterministic()
}
val collectSortSliceAggregator : Aggregator[Row,Seq[Row], Row] = new Aggregator[Row, Seq[Row], Row] () {

View File

@ -5,14 +5,14 @@ import static java.util.Collections.reverseOrder;
import static java.util.Map.Entry.comparingByValue;
import static java.util.stream.Collectors.toMap;
import static org.apache.commons.lang.StringUtils.endsWith;
import static org.apache.commons.lang.StringUtils.substringBefore;
import static org.apache.commons.lang3.StringUtils.endsWith;
import static org.apache.commons.lang3.StringUtils.substringBefore;
import java.time.Year;
import java.util.*;
import java.util.stream.Collectors;
import org.apache.commons.lang.StringUtils;
import org.apache.commons.lang3.StringUtils;
import eu.dnetlib.dhp.schema.oaf.Field;

View File

@ -10,6 +10,7 @@ import java.util.stream.Collectors;
import org.apache.commons.io.IOUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.catalyst.expressions.Literal;
import org.apache.spark.sql.types.DataTypes;
@ -99,7 +100,7 @@ public class SparkBlockStats extends AbstractSparkAction {
.transform(sparkConfig.generateClusters())
.filter(functions.size(new Column("block")).geq(new Literal(1, DataTypes.IntegerType)));
simRels.map(b -> {
simRels.map((MapFunction<Row, BlockStats>) b -> {
Collection<Row> documents = b.getList(1);
List<Row> mapDocuments = documents

View File

@ -93,7 +93,7 @@ public class SparkCreateSimRels extends AbstractSparkAction {
.textFile(DedupUtility.createEntityPath(graphBasePath, subEntity))
.transform(sparkConfig.modelExtractor()) // Extract fields from input json column according to model
// definition
.transform(sparkConfig.generateClustersWithDFAPIMerged()) // generate <key,block> pairs according to
.transform(sparkConfig.generateClustersWithWindows()) // generate <key,block> pairs according to
// filters, clusters, and model
// definition
.transform(sparkConfig.processClusters()) // process blocks and emits <from,to> pairs of found

View File

@ -6,7 +6,7 @@ import java.io.Serializable;
import java.util.Set;
import java.util.stream.Collectors;
import org.apache.commons.lang.StringUtils;
import org.apache.commons.lang3.StringUtils;
import org.codehaus.jackson.annotate.JsonIgnore;
import com.fasterxml.jackson.databind.ObjectMapper;

View File

@ -22,7 +22,7 @@ class JsonPathTest {
final String org = IOUtils.toString(getClass().getResourceAsStream("organization.json"));
Row row = SparkDedupConfig.apply(conf, 1).rowFromJson().apply(org);
Row row = SparkDedupConfig.apply(conf, 1).rowFromJson(org);
Assertions.assertNotNull(row);
Assertions.assertTrue(StringUtils.isNotBlank(row.getAs("identifier")));

View File

@ -130,7 +130,7 @@ object SparkCreateInputGraph {
val ds: Dataset[T] = spark.read.load(sourcePath).as[T]
ds.groupByKey(_.getId)
.reduceGroups { (x, y) =>
.reduceGroups { (x: T, y: T) =>
x.mergeFrom(y)
x
}