Merge pull request 'raid actionset wf' (#517) from raid_actionset into beta

Reviewed-on: #517
This commit is contained in:
Claudio Atzori 2024-12-06 10:04:20 +01:00
commit 60da306830
11 changed files with 618 additions and 7 deletions

View File

@ -10,6 +10,11 @@ public class Constants {
public static final Map<String, String> accessRightsCoarMap = Maps.newHashMap();
public static final Map<String, String> coarCodeLabelMap = Maps.newHashMap();
public static final String RAID_NS_PREFIX = "raid________";
public static final String END_DATE = "endDate";
public static final String START_DATE = "startDate";
public static final String ROR_NS_PREFIX = "ror_________";
public static final String ROR_OPENAIRE_ID = "10|openaire____::993a7ae7a863813cf95028b50708e222";

View File

@ -13,6 +13,8 @@ import com.fasterxml.jackson.databind.ObjectMapper;
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
import eu.dnetlib.dhp.common.HdfsSupport;
import eu.dnetlib.dhp.schema.common.ModelConstants;
import eu.dnetlib.dhp.schema.oaf.Instance;
import eu.dnetlib.dhp.schema.oaf.Qualifier;
import eu.dnetlib.dhp.schema.oaf.StructuredProperty;
import eu.dnetlib.dhp.schema.oaf.Subject;
import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils;

View File

@ -0,0 +1,203 @@
package eu.dnetlib.dhp.actionmanager.raid;
import static eu.dnetlib.dhp.actionmanager.personentity.ExtractPerson.OPENAIRE_DATASOURCE_ID;
import static eu.dnetlib.dhp.actionmanager.personentity.ExtractPerson.OPENAIRE_DATASOURCE_NAME;
import static eu.dnetlib.dhp.common.Constants.*;
import static eu.dnetlib.dhp.common.SparkSessionSupport.runWithSparkSession;
import static eu.dnetlib.dhp.schema.common.ModelConstants.*;
import static eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils.*;
import java.util.*;
import java.util.stream.Collectors;
import org.apache.commons.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SparkSession;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.fasterxml.jackson.databind.ObjectMapper;
import eu.dnetlib.dhp.actionmanager.raid.model.RAiDEntity;
import eu.dnetlib.dhp.application.ArgumentApplicationParser;
import eu.dnetlib.dhp.common.HdfsSupport;
import eu.dnetlib.dhp.schema.action.AtomicAction;
import eu.dnetlib.dhp.schema.common.ModelConstants;
import eu.dnetlib.dhp.schema.oaf.*;
import eu.dnetlib.dhp.schema.oaf.utils.OafMapperUtils;
import eu.dnetlib.dhp.utils.DHPUtils;
import scala.Tuple2;
public class GenerateRAiDActionSetJob {
private static final Logger log = LoggerFactory
.getLogger(eu.dnetlib.dhp.actionmanager.raid.GenerateRAiDActionSetJob.class);
private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper();
private static final List<KeyValue> RAID_COLLECTED_FROM = listKeyValues(
OPENAIRE_DATASOURCE_ID, OPENAIRE_DATASOURCE_NAME);
private static final Qualifier RAID_QUALIFIER = qualifier(
"0049", "Research Activity Identifier", DNET_PUBLICATION_RESOURCE, DNET_PUBLICATION_RESOURCE);
private static final Qualifier RAID_INFERENCE_QUALIFIER = qualifier(
"raid:openaireinference", "Inferred by OpenAIRE", DNET_PROVENANCE_ACTIONS, DNET_PROVENANCE_ACTIONS);
private static final DataInfo RAID_DATA_INFO = dataInfo(
false, OPENAIRE_DATASOURCE_NAME, true, false, RAID_INFERENCE_QUALIFIER, "0.92");
public static void main(final String[] args) throws Exception {
final String jsonConfiguration = IOUtils
.toString(
eu.dnetlib.dhp.actionmanager.raid.GenerateRAiDActionSetJob.class
.getResourceAsStream("/eu/dnetlib/dhp/actionmanager/raid/action_set_parameters.json"));
final ArgumentApplicationParser parser = new ArgumentApplicationParser(jsonConfiguration);
parser.parseArgument(args);
final Boolean isSparkSessionManaged = Optional
.ofNullable(parser.get("isSparkSessionManaged"))
.map(Boolean::valueOf)
.orElse(Boolean.TRUE);
log.info("isSparkSessionManaged: {}", isSparkSessionManaged);
final String inputPath = parser.get("inputPath");
log.info("inputPath: {}", inputPath);
final String outputPath = parser.get("outputPath");
log.info("outputPath {}: ", outputPath);
final SparkConf conf = new SparkConf();
runWithSparkSession(conf, isSparkSessionManaged, spark -> {
removeOutputDir(spark, outputPath);
processRAiDEntities(spark, inputPath, outputPath);
});
}
private static void removeOutputDir(final SparkSession spark, final String path) {
HdfsSupport.remove(path, spark.sparkContext().hadoopConfiguration());
}
static void processRAiDEntities(final SparkSession spark,
final String inputPath,
final String outputPath) {
readInputPath(spark, inputPath)
.map(GenerateRAiDActionSetJob::prepareRAiD)
.flatMap(List::iterator)
.mapToPair(
aa -> new Tuple2<>(new Text(aa.getClazz().getCanonicalName()),
new Text(OBJECT_MAPPER.writeValueAsString(aa))))
.saveAsHadoopFile(outputPath, Text.class, Text.class, SequenceFileOutputFormat.class);
}
protected static List<AtomicAction<? extends Oaf>> prepareRAiD(final RAiDEntity r) {
final Date now = new Date();
final OtherResearchProduct orp = new OtherResearchProduct();
final List<AtomicAction<? extends Oaf>> res = new ArrayList<>();
String raidId = calculateOpenaireId(r.getRaid());
orp.setId(raidId);
orp.setCollectedfrom(RAID_COLLECTED_FROM);
orp.setDataInfo(RAID_DATA_INFO);
orp
.setTitle(
Collections
.singletonList(
structuredProperty(
r.getTitle(),
qualifier("main title", "main title", DNET_DATACITE_TITLE, DNET_DATACITE_TITLE),
RAID_DATA_INFO)));
orp.setDescription(listFields(RAID_DATA_INFO, r.getSummary()));
Instance instance = new Instance();
instance.setInstancetype(RAID_QUALIFIER);
orp.setInstance(Collections.singletonList(instance));
orp
.setSubject(
r
.getSubjects()
.stream()
.map(
s -> subject(
s,
qualifier(
DNET_SUBJECT_KEYWORD, DNET_SUBJECT_KEYWORD, DNET_SUBJECT_TYPOLOGIES,
DNET_SUBJECT_TYPOLOGIES),
RAID_DATA_INFO))
.collect(Collectors.toList()));
orp
.setRelevantdate(
Arrays
.asList(
structuredProperty(
r.getEndDate(), qualifier(END_DATE, END_DATE, DNET_DATACITE_DATE, DNET_DATACITE_DATE),
RAID_DATA_INFO),
structuredProperty(
r.getStartDate(),
qualifier(START_DATE, START_DATE, DNET_DATACITE_DATE, DNET_DATACITE_DATE),
RAID_DATA_INFO)));
orp.setLastupdatetimestamp(now.getTime());
orp.setDateofacceptance(field(r.getStartDate(), RAID_DATA_INFO));
res.add(new AtomicAction<>(OtherResearchProduct.class, orp));
for (String resultId : r.getIds()) {
Relation rel1 = OafMapperUtils
.getRelation(
raidId,
resultId,
ModelConstants.RESULT_RESULT,
PART,
HAS_PART,
orp);
Relation rel2 = OafMapperUtils
.getRelation(
resultId,
raidId,
ModelConstants.RESULT_RESULT,
PART,
IS_PART_OF,
orp);
res.add(new AtomicAction<>(Relation.class, rel1));
res.add(new AtomicAction<>(Relation.class, rel2));
}
return res;
}
public static String calculateOpenaireId(final String raid) {
return String.format("50|%s::%s", RAID_NS_PREFIX, DHPUtils.md5(raid));
}
public static List<Author> createAuthors(final List<String> author) {
return author.stream().map(s -> {
Author a = new Author();
a.setFullname(s);
return a;
}).collect(Collectors.toList());
}
private static JavaRDD<RAiDEntity> readInputPath(
final SparkSession spark,
final String path) {
return spark
.read()
.json(path)
.as(Encoders.bean(RAiDEntity.class))
.toJavaRDD();
}
}

View File

@ -0,0 +1,5 @@
package eu.dnetlib.dhp.actionmanager.raid.model;
public class GenerateRAiDActionSetJob {
}

View File

@ -0,0 +1,106 @@
package eu.dnetlib.dhp.actionmanager.raid.model;
import java.io.Serializable;
import java.util.List;
public class RAiDEntity implements Serializable {
String raid;
List<String> authors;
String startDate;
String endDate;
List<String> subjects;
List<String> titles;
List<String> ids;
String title;
String summary;
public RAiDEntity() {
}
public RAiDEntity(String raid, List<String> authors, String startDate, String endDate, List<String> subjects,
List<String> titles, List<String> ids, String title, String summary) {
this.raid = raid;
this.authors = authors;
this.startDate = startDate;
this.endDate = endDate;
this.subjects = subjects;
this.titles = titles;
this.ids = ids;
this.title = title;
this.summary = summary;
}
public String getRaid() {
return raid;
}
public void setRaid(String raid) {
this.raid = raid;
}
public List<String> getAuthors() {
return authors;
}
public void setAuthors(List<String> authors) {
this.authors = authors;
}
public String getStartDate() {
return startDate;
}
public void setStartDate(String startDate) {
this.startDate = startDate;
}
public String getEndDate() {
return endDate;
}
public void setEndDate(String endDate) {
this.endDate = endDate;
}
public List<String> getSubjects() {
return subjects;
}
public void setSubjects(List<String> subjects) {
this.subjects = subjects;
}
public List<String> getTitles() {
return titles;
}
public void setTitles(List<String> titles) {
this.titles = titles;
}
public List<String> getIds() {
return ids;
}
public void setIds(List<String> ids) {
this.ids = ids;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public String getSummary() {
return summary;
}
public void setSummary(String summary) {
this.summary = summary;
}
}

View File

@ -44,13 +44,7 @@ import eu.dnetlib.dhp.common.Constants;
import eu.dnetlib.dhp.common.HdfsSupport;
import eu.dnetlib.dhp.schema.action.AtomicAction;
import eu.dnetlib.dhp.schema.common.ModelConstants;
import eu.dnetlib.dhp.schema.oaf.DataInfo;
import eu.dnetlib.dhp.schema.oaf.Field;
import eu.dnetlib.dhp.schema.oaf.KeyValue;
import eu.dnetlib.dhp.schema.oaf.Oaf;
import eu.dnetlib.dhp.schema.oaf.Organization;
import eu.dnetlib.dhp.schema.oaf.Qualifier;
import eu.dnetlib.dhp.schema.oaf.StructuredProperty;
import eu.dnetlib.dhp.schema.oaf.*;
import eu.dnetlib.dhp.utils.DHPUtils;
import scala.Tuple2;

View File

@ -0,0 +1,14 @@
[
{
"paramName": "i",
"paramLongName": "inputPath",
"paramDescription": "the path of the input json",
"paramRequired": true
},
{
"paramName": "o",
"paramLongName": "outputPath",
"paramDescription": "the path of the new ActionSet",
"paramRequired": true
}
]

View File

@ -0,0 +1,58 @@
<configuration>
<property>
<name>jobTracker</name>
<value>yarnRM</value>
</property>
<property>
<name>nameNode</name>
<value>hdfs://nameservice1</value>
</property>
<property>
<name>oozie.use.system.libpath</name>
<value>true</value>
</property>
<property>
<name>oozie.action.sharelib.for.spark</name>
<value>spark2</value>
</property>
<property>
<name>hive_metastore_uris</name>
<value>thrift://iis-cdh5-test-m3.ocean.icm.edu.pl:9083</value>
</property>
<property>
<name>spark2YarnHistoryServerAddress</name>
<value>http://iis-cdh5-test-gw.ocean.icm.edu.pl:18089</value>
</property>
<property>
<name>spark2ExtraListeners</name>
<value>com.cloudera.spark.lineage.NavigatorAppListener</value>
</property>
<property>
<name>spark2SqlQueryExecutionListeners</name>
<value>com.cloudera.spark.lineage.NavigatorQueryListener</value>
</property>
<property>
<name>oozie.launcher.mapreduce.user.classpath.first</name>
<value>true</value>
</property>
<property>
<name>sparkExecutorNumber</name>
<value>4</value>
</property>
<property>
<name>spark2EventLogDir</name>
<value>/user/spark/spark2ApplicationHistory</value>
</property>
<property>
<name>sparkDriverMemory</name>
<value>15G</value>
</property>
<property>
<name>sparkExecutorMemory</name>
<value>6G</value>
</property>
<property>
<name>sparkExecutorCores</name>
<value>1</value>
</property>
</configuration>

View File

@ -0,0 +1,53 @@
<workflow-app name="Update_RAiD_action_set" xmlns="uri:oozie:workflow:0.5">
<parameters>
<property>
<name>raidJsonInputPath</name>
<description>the path of the json</description>
</property>
<property>
<name>raidActionSetPath</name>
<description>path where to store the action set</description>
</property>
</parameters>
<start to="deleteoutputpath"/>
<kill name="Kill">
<message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<action name="deleteoutputpath">
<fs>
<delete path='${raidActionSetPath}'/>
<mkdir path='${raidActionSetPath}'/>
</fs>
<ok to="processRAiDFile"/>
<error to="Kill"/>
</action>
<action name="processRAiDFile">
<spark xmlns="uri:oozie:spark-action:0.2">
<master>yarn</master>
<mode>cluster</mode>
<name>ProcessRAiDFile</name>
<class>eu.dnetlib.dhp.actionmanager.raid.GenerateRAiDActionSetJob</class>
<jar>dhp-aggregation-${projectVersion}.jar</jar>
<spark-opts>
--executor-cores=${sparkExecutorCores}
--executor-memory=${sparkExecutorMemory}
--driver-memory=${sparkDriverMemory}
--conf spark.extraListeners=${spark2ExtraListeners}
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
--conf spark.sql.shuffle.partitions=3840
</spark-opts>
<arg>--inputPath</arg><arg>${raidJsonInputPath}</arg>
<arg>--outputPath</arg><arg>${raidActionSetPath}</arg>
</spark>
<ok to="End"/>
<error to="Kill"/>
</action>
<end name="End"/>
</workflow-app>

View File

@ -0,0 +1,165 @@
package eu.dnetlib.dhp.actionmanager.raid;
import static java.nio.file.Files.createTempDirectory;
import static eu.dnetlib.dhp.actionmanager.Constants.OBJECT_MAPPER;
import static org.junit.jupiter.api.Assertions.assertEquals;
import java.io.File;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.List;
import org.apache.commons.io.FileUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.junit.jupiter.api.AfterAll;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import eu.dnetlib.dhp.actionmanager.opencitations.CreateOpenCitationsASTest;
import eu.dnetlib.dhp.actionmanager.raid.model.RAiDEntity;
import eu.dnetlib.dhp.schema.action.AtomicAction;
import eu.dnetlib.dhp.schema.oaf.Oaf;
import eu.dnetlib.dhp.schema.oaf.OtherResearchProduct;
import eu.dnetlib.dhp.schema.oaf.Relation;
import scala.Tuple2;
public class GenerateRAiDActionSetJobTest {
private static String input_path;
private static String output_path;
static SparkSession spark;
@BeforeEach
void setUp() throws Exception {
input_path = Paths
.get(
GenerateRAiDActionSetJobTest.class
.getResource("/eu/dnetlib/dhp/actionmanager/raid/raid_example.json")
.toURI())
.toFile()
.getAbsolutePath();
output_path = createTempDirectory(GenerateRAiDActionSetJobTest.class.getSimpleName() + "-")
.toAbsolutePath()
.toString();
SparkConf conf = new SparkConf();
conf.setAppName(GenerateRAiDActionSetJobTest.class.getSimpleName());
conf.setMaster("local[*]");
conf.set("spark.driver.host", "localhost");
conf.set("hive.metastore.local", "true");
conf.set("spark.ui.enabled", "false");
conf.set("spark.sql.warehouse.dir", output_path);
conf.set("hive.metastore.warehouse.dir", output_path);
spark = SparkSession
.builder()
.appName(GenerateRAiDActionSetJobTest.class.getSimpleName())
.config(conf)
.getOrCreate();
}
@AfterAll
static void cleanUp() throws Exception {
FileUtils.deleteDirectory(new File(output_path));
}
@Test
@Disabled
void testProcessRAiDEntities() {
GenerateRAiDActionSetJob.processRAiDEntities(spark, input_path, output_path + "/test_raid_action_set");
JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
JavaRDD<? extends Oaf> result = sc
.sequenceFile(output_path + "/test_raid_action_set", Text.class, Text.class)
.map(value -> OBJECT_MAPPER.readValue(value._2().toString(), AtomicAction.class))
.map(AtomicAction::getPayload);
assertEquals(80, result.count());
}
@Test
void testPrepareRAiD() {
List<AtomicAction<? extends Oaf>> atomicActions = GenerateRAiDActionSetJob
.prepareRAiD(
new RAiDEntity(
"-92190526",
Arrays
.asList(
"Berli, Justin", "Le Mao, Bérénice", "Guillaume Touya", "Wenclik, Laura",
"Courtial, Azelle", "Muehlenhaus, Ian", "Justin Berli", "Touya, Guillaume",
"Gruget, Maïeul", "Azelle Courtial", "Ian Muhlenhaus", "Maïeul Gruget", "Marion Dumont",
"Maïeul GRUGET", "Cécile Duchêne"),
"2021-09-10",
"2024-02-16",
Arrays
.asList(
"cartography, zoom, pan, desert fog", "Road network", "zooming", "Pan-scalar maps",
"pan-scalar map", "Python library", "QGIS", "map design", "landmarks",
"Cartes transscalaires", "anchor", "disorientation", "[INFO]Computer Science [cs]",
"[SHS.GEO]Humanities and Social Sciences/Geography", "cognitive cartography",
"eye-tracking", "Computers in Earth Sciences", "Topographic map", "National Mapping Agency",
"General Medicine", "Geography, Planning and Development", "multi-scales",
"pan-scalar maps", "Selection", "cartography", "General Earth and Planetary Sciences",
"progressiveness", "map generalisation", "Eye-tracker", "zoom", "algorithms", "Map Design",
"cartography, map generalisation, zoom, multi-scale map", "Interactive maps",
"Map generalisation", "Earth and Planetary Sciences (miscellaneous)",
"Cartographic generalization", "rivers", "Benchmark", "General Environmental Science",
"open source", "drawing", "Constraint", "Multi-scale maps"),
Arrays
.asList(
"Where do people look at during multi-scale map tasks?", "FogDetector survey raw data",
"Collection of cartographic disorientation stories", "Anchorwhat dataset",
"BasqueRoads: A Benchmark for Road Network Selection",
"Progressive river network selection for pan-scalar maps",
"BasqueRoads, a dataset to benchmark road selection algorithms",
"Missing the city for buildings? A critical review of pan-scalar map generalization and design in contemporary zoomable maps",
"Empirical approach to advance the generalisation of multi-scale maps",
"L'Alpe d'Huez: a dataset to benchmark topographic map generalisation",
"eye-tracking data from a survey on zooming in a pan-scalar map",
"Material of the experiment 'More is Less' from the MapMuxing project",
"Cartagen4py, an open source Python library for map generalisation",
"LAlpe dHuez: A Benchmark for Topographic Map Generalisation"),
Arrays
.asList(
"50|doi_dedup___::6915135e0aa39f913394513f809ae58a",
"50|doi_dedup___::754e3c283639bc6e104c925ff3e34007",
"50|doi_dedup___::13517477f3c1261d57a3364363ce6ce0",
"50|doi_dedup___::675b16c73accc4e7242bbb4ed9b3724a",
"50|doi_dedup___::94ce09906b2d7d37eb2206cea8a50153",
"50|dedup_wf_002::cc575d5ca5651ff8c3029a3a76e7e70a",
"50|doi_dedup___::c5e52baddda17c755d1bae012a97dc13",
"50|doi_dedup___::4f5f38c9e08fe995f7278963183f8ad4",
"50|doi_dedup___::a9bc4453273b2d02648a5cb453195042",
"50|doi_dedup___::5e893dc0cb7624a33f41c9b428bd59f7",
"50|doi_dedup___::c1ecdef48fd9be811a291deed950e1c5",
"50|doi_dedup___::9e93c8f2d97c35de8a6a57a5b53ef283",
"50|dedup_wf_002::d08be0ed27b13d8a880e891e08d093ea",
"50|doi_dedup___::f8d8b3b9eddeca2fc0e3bc9e63996555"),
"Exploring Multi-Scale Map Generalization and Design",
"This project aims to advance the generalization of multi-scale maps by investigating the impact of different design elements on user experience. The research involves collecting and analyzing data from various sources, including surveys, eye-tracking studies, and user experiments. The goal is to identify best practices for map generalization and design, with a focus on reducing disorientation and improving information retrieval during exploration. The project has led to the development of several datasets, including BasqueRoads, AnchorWhat, and L'Alpe d'Huez, which can be used to benchmark road selection algorithms and topographic map generalization techniques. The research has also resulted in the creation of a Python library, Cartagen4py, for map generalization. The findings of this project have the potential to improve the design and usability of multi-scale maps, making them more effective tools for navigation and information retrieval."));
OtherResearchProduct orp = (OtherResearchProduct) atomicActions.get(0).getPayload();
Relation rel = (Relation) atomicActions.get(1).getPayload();
assertEquals("Exploring Multi-Scale Map Generalization and Design", orp.getTitle().get(0).getValue());
assertEquals("50|raid________::759a564ce5cc7360cab030c517c7366b", rel.getSource());
assertEquals("50|doi_dedup___::6915135e0aa39f913394513f809ae58a", rel.getTarget());
}
}

View File

@ -0,0 +1,6 @@
{"raid": "-9222092103004099540", "authors": ["Department of Archaeology & Museums", "Department of Archaeology and Museums", "Department Of Archaeology & Museums"], "subjects": ["Begamganj", "Raisen", "Bhopal", "Budhni", "Malwa site survey", "सीहोर", "Gauharganj", "बुधनी", "Budni", "Berasia"], "titles": ["Malwa site survey : Raisen District, Begamganj Tahsīl, photographic documentation", "Malwa site survey : Bhopal District, photographic documentation (version 1, TIFF files)", "Malwa site survey : Raisen District, Gauharganj Tahsīl, village finds", "Malwa site survey : Sehore सीहोर District, Budni Tahsīl, photographic documentation (part 1)", "Malwa site survey: Bhopal District, Berasia Tahsīl, photographic documentation (with villages named)", "Malwa site survey : Sehore सीहोर District, Budni Tahsīl, photographic documentation (part 2)", "Malwa site survey : Bhopal District, photographic documentation (version 2, JPEG files)"], "ids": ["50|doi_dedup___::7523d165970830dd857e6cbea4302adf", "50|doi_dedup___::02309ae8a9fae291df321e317f5c5330", "50|doi_dedup___::95347ba2c4264414fab39712ee7fe481", "50|doi_dedup___::970aa708fe667596754fd02a708780f5", "50|doi_dedup___::b7cd9128cc53b1257a4f000347f339b0", "50|doi_dedup___::c7d65da0ecedef4d2c702b9db197d90c", "50|doi_dedup___::addbb67cf5046e340f342ba091bcebfa"], "title": "Documentation of Malwa Region", "summary": "This project involves the documentation of the Malwa region through photographic surveys. The surveys were conducted by the Department of Archaeology and Museums, Madhya Pradesh, and cover various districts and tahsils. The documentation includes photographic records of sites, villages, and other relevant features. The project aims to provide a comprehensive understanding of the region's cultural and historical significance.", "startDate": "2019-03-06", "endDate": "2019-03-08"}
{"raid": "-9221424331076109424", "authors": ["Hutchings, Judy", "Ward, Catherine", "Baban, Adriana", "D<><44>nil<69><6C>, Ingrid", "Frantz, Inga", "Gardner, Frances", "Lachman, Jamie", "Lachman, Jamie M.", "Foran, Heather", "Heinrichs, Nina", "Murphy, Hugh", "B<><42>ban, Adriana", "Raleva, Marija", "Fang, Xiangming", "Jansen, Elena", "Taut, Diana", "Foran, Heather M.", "T<><54>ut, Diana", "Ward, Catherine L.", "Williams, Margiad", "Lesco, Galina", "Brühl, Antonia"], "subjects": ["3. Good health", "5. Gender equality", "Criminology not elsewhere classified", "1. No poverty", "2. Zero hunger"], "titles": ["sj-docx-1-vaw-10.1177_10778012231188090 - Supplemental material for Co-Occurrence of Intimate Partner Violence Against Mothers and Maltreatment of Their Children With Behavioral Problems in Eastern Europe", "Hunger in vulnerable families in Southeastern Europe: Associations with health and violence", "Prevention of child mental health problems through parenting interventions in Southeastern Europe (RISE): study protocol for a multi-site randomised controlled trial"], "ids": ["50|doi_dedup___::a70015063e5400dae2e097ee10b4a589", "50|doi_dedup___::6e1d12026fcde9087724622ccdeed430", "50|doi_dedup___::5b7bd5d46c5d95e2ef5b36663504a67e"], "title": "Exploring the Impact of Hunger and Violence on Child Health in Southeastern Europe", "summary": "This study aims to investigate the relationship between hunger, violence, and child health in vulnerable families in Southeastern Europe. The research will explore the experiences of families in FYR Macedonia, Republic of Moldova, and Romania, and examine the associations between hunger, maltreatment, and other health indicators. The study will also test the efficacy of a parenting intervention targeting child behavioral problems in alleviating these issues. The findings of this research will contribute to the development of effective interventions to address the complex needs of vulnerable families in the region.", "startDate": "2019-06-04", "endDate": "2023-01-01"}
{"raid": "-9219052635741785098", "authors": ["Berli, Justin", "Le Mao, Bérénice", "Guillaume Touya", "Wenclik, Laura", "Courtial, Azelle", "Muehlenhaus, Ian", "Justin Berli", "Touya, Guillaume", "Gruget, Maïeul", "Azelle Courtial", "Ian Muhlenhaus", "Maïeul Gruget", "Marion Dumont", "Maïeul GRUGET", "Cécile Duchêne"], "subjects": ["cartography, zoom, pan, desert fog", "Road network", "zooming", "Pan-scalar maps", "pan-scalar map", "Python library", "QGIS", "map design", "landmarks", "Cartes transscalaires", "anchor", "disorientation", "[INFO]Computer Science [cs]", "[SHS.GEO]Humanities and Social Sciences/Geography", "cognitive cartography", "eye-tracking", "Computers in Earth Sciences", "Topographic map", "National Mapping Agency", "General Medicine", "Geography, Planning and Development", "multi-scales", "pan-scalar maps", "Selection", "cartography", "General Earth and Planetary Sciences", "progressiveness", "map generalisation", "Eye-tracker", "zoom", "algorithms", "Map Design", "cartography, map generalisation, zoom, multi-scale map", "Interactive maps", "Map generalisation", "Earth and Planetary Sciences (miscellaneous)", "Cartographic generalization", "rivers", "Benchmark", "General Environmental Science", "open source", "drawing", "Constraint", "Multi-scale maps"], "titles": ["Where do people look at during multi-scale map tasks?", "FogDetector survey raw data", "Collection of cartographic disorientation stories", "Anchorwhat dataset", "BasqueRoads: A Benchmark for Road Network Selection", "Progressive river network selection for pan-scalar maps", "BasqueRoads, a dataset to benchmark road selection algorithms", "Missing the city for buildings? A critical review of pan-scalar map generalization and design in contemporary zoomable maps", "Empirical approach to advance the generalisation of multi-scale maps", "L'Alpe d'Huez: a dataset to benchmark topographic map generalisation", "eye-tracking data from a survey on zooming in a pan-scalar map", "Material of the experiment \"More is Less\" from the MapMuxing project", "Cartagen4py, an open source Python library for map generalisation", "LAlpe dHuez: A Benchmark for Topographic Map Generalisation"], "ids": ["50|doi_dedup___::6915135e0aa39f913394513f809ae58a", "50|doi_dedup___::754e3c283639bc6e104c925ff3e34007", "50|doi_dedup___::13517477f3c1261d57a3364363ce6ce0", "50|doi_dedup___::675b16c73accc4e7242bbb4ed9b3724a", "50|doi_dedup___::94ce09906b2d7d37eb2206cea8a50153", "50|dedup_wf_002::cc575d5ca5651ff8c3029a3a76e7e70a", "50|doi_dedup___::c5e52baddda17c755d1bae012a97dc13", "50|doi_dedup___::4f5f38c9e08fe995f7278963183f8ad4", "50|doi_dedup___::a9bc4453273b2d02648a5cb453195042", "50|doi_dedup___::5e893dc0cb7624a33f41c9b428bd59f7", "50|doi_dedup___::c1ecdef48fd9be811a291deed950e1c5", "50|doi_dedup___::9e93c8f2d97c35de8a6a57a5b53ef283", "50|dedup_wf_002::d08be0ed27b13d8a880e891e08d093ea", "50|doi_dedup___::f8d8b3b9eddeca2fc0e3bc9e63996555"], "title": "Exploring Multi-Scale Map Generalization and Design", "summary": "This project aims to advance the generalization of multi-scale maps by investigating the impact of different design elements on user experience. The research involves collecting and analyzing data from various sources, including surveys, eye-tracking studies, and user experiments. The goal is to identify best practices for map generalization and design, with a focus on reducing disorientation and improving information retrieval during exploration. The project has led to the development of several datasets, including BasqueRoads, AnchorWhat, and L'Alpe d'Huez, which can be used to benchmark road selection algorithms and topographic map generalization techniques. The research has also resulted in the creation of a Python library, Cartagen4py, for map generalization. The findings of this project have the potential to improve the design and usability of multi-scale maps, making them more effective tools for navigation and information retrieval.", "startDate": "2021-09-10", "endDate": "2024-02-16"}
{"raid": "-9216828847055450272", "authors": ["Grey, Alan", "Gorelov, Sergey", "Pall, Szilard", "Merz, Pascal", "Justin A., Lemkul", "Szilárd Páll", "Pasquadibisceglie, Andrea", "Kutzner, Carsten", "Schulz, Roland", "Nabet, Julien", "Abraham, Mark", "Jalalypour, Farzaneh", "Lundborg, Magnus", "Gray, Alan", "Villa, Alessandra", "Berk Hess", "Santuz, Hubert", "Irrgang, M. Eric", "Wingbermuehle, Sebastian", "Lemkul, Justin A.", "Jordan, Joe", "Pellegrino, Michele", "Doijade, Mahesh", "Shvetsov, Alexey", "Hess, Berk", "Behera, Sudarshan", "Andrey Alekseenko", "Shugaeva, Tatiana", "Fleischmann, Stefan", "Bergh, Cathrine", "Morozov, Dmitry", "Adam Hospital", "Briand, Eliane", "Lindahl, Erik", "Brown, Ania", "Marta Lloret Llinares", "Miletic, Vedran", "Alekseenko, Andrey", "Gouaillardet, Gilles", "Fiorin, Giacomo", "Basov, Vladimir"], "subjects": ["webinar"], "titles": ["Introduction to HPC: molecular dynamics simulations with GROMACS: log files", "BioExcel webinar #73: Competency frameworks to support training design and professional development", "Introduction to HPC: molecular dynamics simulations with GROMACS: output files - Devana", "GROMACS 2024.0 Manual", "BioExcel Webinar #71: GROMACS-PMX for accurate estimation of free energy differences", "Introduction to HPC: molecular dynamics simulations with GROMACS: input files", "BioExcel Webinar #68: What's new in GROMACS 2023", "BioExcel Webinar #69: BioBB-Wfs and BioBB-API, integrated web-based platform and programmatic interface for biomolecular simulations workflows using the BioExcel Building Blocks library", "GROMACS 2024-beta Source code"], "ids": ["50|doi_dedup___::8318fbc815ee1943c3269be7567f220b", "50|doi_dedup___::9530e03fb2aac63e82b18a40dc09e32c", "50|doi_dedup___::30174ab31075e76a428ca5b4f4d236b8", "50|doi_________::70b7c6dce09ae6f1361d22913fdf95eb", "50|doi_dedup___::337dd48600618f3c06257edd750d6201", "50|doi_dedup___::d622992ba9077617f37ebd268b3e806d", "50|doi_dedup___::0b0bcc6825d6c052c37882fd5cfc1e8c", "50|doi_dedup___::4b1541a7cee32527c65ace5d1ed57335", "50|doi_dedup___::1379861df59bd755e4fb39b9f95ffbd3"], "title": "Exploring High-Performance Computing and Biomolecular Simulations", "summary": "This project involves exploring high-performance computing (HPC) and biomolecular simulations using GROMACS. The objectives include understanding molecular dynamics simulations, log files, input files, and output files. Additionally, the project aims to explore competency frameworks for professional development, specifically in the field of computational biomolecular research. The tools and techniques used will include GROMACS, BioExcel Building Blocks, and competency frameworks. The expected outcomes include a deeper understanding of HPC and biomolecular simulations, as well as the development of skills in using GROMACS and BioExcel Building Blocks. The project will also contribute to the development of competency frameworks for professional development in the field of computational biomolecular research.", "startDate": "2023-04-25", "endDate": "2024-01-30"}
{"raid": "-9210544816395499758", "authors": ["Bateson, Melissa", "Andrews, Clare", "Verhulst, Simon", "Nettle, Daniel", "Zuidersma, Erica"], "subjects": ["2. Zero hunger"], "titles": ["Exposure to food insecurity increases energy storage and reduces somatic maintenance in European starlings", "Data and code archive for Andrews et al. 'Exposure to food insecurity increases energy storage and reduces somatic maintenance in European starlings'"], "ids": ["50|doi_dedup___::176117239be06189523c253e0ca9c5ec", "50|doi_dedup___::343e0b0ddf0d54763a89a62af1f7a379"], "title": "Investigating the Effects of Food Insecurity on Energy Storage and Somatic Maintenance in European Starlings", "summary": "This study examines the impact of food insecurity on energy storage and somatic maintenance in European starlings. The research involved exposing juvenile starlings to either uninterrupted food availability or a regime of unpredictable food unavailability. The results show that birds exposed to food insecurity stored more energy, but at the expense of somatic maintenance and repair. The study provides insights into the adaptive responses of birds to food scarcity and the trade-offs involved in energy storage and maintenance.", "startDate": "2021-06-28", "endDate": "2021-06-28"}
{"raid": "-9208499171224730388", "authors": ["Maniati, Eleni", "Bakker, Bjorn", "McClelland, Sarah E.", "Shaikh, Nadeem", "De Angelis, Simone", "Johnson, Sarah C.", "Wang, Jun", "Foijer, Floris", "Spierings, Diana C. J.", "Boemo, Michael A.", "Wardenaar, René", "Mazzagatti, Alice"], "subjects": [], "titles": ["Additional file 2 of Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses", "Additional file 5 of Replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses"], "ids": ["50|doi_dedup___::a1bfeb173971f74a274fab8bdd78a4bc", "50|doi_dedup___::3d6e151aaeb2f7c40a320207fdd80ade"], "title": "Analysis of DNA Copy Number Alterations and Chromosome Scale Losses", "summary": "This study analyzed the effects of replication stress on DNA copy number alterations and chromosome scale losses. The results show distinctive landscapes of these alterations and losses, which were further investigated in additional files. The study provides valuable insights into the mechanisms of replication stress and its impact on genomic stability.", "startDate": "2022-01-01", "endDate": "2022-01-01"}