implementation of the support for authors deduplication: cosinesimilarity comparator and double array json parser

This commit is contained in:
Michele De Bonis 2023-04-17 11:06:27 +02:00
parent b5584f084a
commit 7e2e7dcdcd
34 changed files with 4695 additions and 394 deletions

View File

@ -10,6 +10,7 @@
</parent> </parent>
<artifactId>dhp-build-properties-maven-plugin</artifactId> <artifactId>dhp-build-properties-maven-plugin</artifactId>
<version>4.1.13-SNAPSHOT</version>
<packaging>maven-plugin</packaging> <packaging>maven-plugin</packaging>
<description>This module is a maven plugin implementing custom properties substitutions in the build lifecycle</description> <description>This module is a maven plugin implementing custom properties substitutions in the build lifecycle</description>
@ -19,16 +20,19 @@
<groupId>org.apache.maven</groupId> <groupId>org.apache.maven</groupId>
<artifactId>maven-plugin-api</artifactId> <artifactId>maven-plugin-api</artifactId>
<version>3.6.3</version> <version>3.6.3</version>
<scope>provided</scope>
</dependency> </dependency>
<dependency> <dependency>
<groupId>org.apache.maven</groupId> <groupId>org.apache.maven</groupId>
<artifactId>maven-project</artifactId> <artifactId>maven-project</artifactId>
<version>2.2.1</version> <version>2.2.1</version>
<scope>provided</scope>
</dependency> </dependency>
<dependency> <dependency>
<groupId>org.apache.maven</groupId> <groupId>org.apache.maven</groupId>
<artifactId>maven-artifact</artifactId> <artifactId>maven-artifact</artifactId>
<version>2.2.1</version> <version>2.2.1</version>
<scope>provided</scope>
</dependency> </dependency>
<dependency> <dependency>
@ -100,6 +104,29 @@
</configuration> </configuration>
</plugin> </plugin>
</plugins> </plugins>
<pluginManagement>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-plugin-plugin</artifactId>
<version>3.2</version>
<configuration>
<skipErrorNoDescriptorsFound>true</skipErrorNoDescriptorsFound>
</configuration>
<executions>
<execution>
<id>mojo-descriptor</id>
<phase>process-classes</phase>
<goals>
<goal>descriptor</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</pluginManagement>
</build> </build>
</project> </project>

View File

@ -1 +1,2 @@
# Tue Apr 19 15:27:59 CEST 2022 # Sat Apr 15 10:38:57 CEST 2023
projectPropertyKey=projectPropertyValue

View File

@ -1,12 +1,6 @@
#entitiesPath = /tmp/publications_test_dump
#entitiesPath = /user/michele.debonis/raw_graph_for_testing/publication
#workingPath = /user/michele.debonis/new_dedup_test/workingdirtree
#dedupConfPath = /user/michele.debonis/new_dedup_test/pubs.tree.conf.json
#numPartitions = 8000
#useTree = false
useTree = true useTree = true
numPartitions = 1 entitiesPath = /user/michele.debonis/lda_experiments/authors_pubmed
dedupConfPath = /user/michele.debonis/authors_dedup_test/auth.tree.conf.json workingPath = /user/michele.debonis/authors_dedup/gt2_dedup
workingPath = /user/michele.debonis/authors_dedup_test/workingdir numPartitions = 1000
entitiesPath = /user/michele.debonis/authors_dedup_test/authors-scad-zbmath-1.json dedupConfPath = /user/michele.debonis/lda_experiments/authors.fdup.gt2.conf.json
groundTruthFieldJPath = $.orcid

View File

@ -57,14 +57,13 @@ public class Deduper implements Serializable {
.reduceByKey((b1, b2) -> Block.from(b1, b2, of, maxQueueSize)); .reduceByKey((b1, b2) -> Block.from(b1, b2, of, maxQueueSize));
} }
public static Iterator<Tuple2<String, String>> ccToMergeRel(ConnectedComponent cc, DedupConfig dedupConf) { public static Iterator<Tuple2<String, String>> ccToMergeRel(Tuple2<String, List<String>> cc, DedupConfig dedupConf) {
return cc return cc._2()
.getDocs()
.stream() .stream()
.flatMap( .flatMap(
id -> { id -> {
List<Tuple2<String, String>> tmp = new ArrayList<>(); List<Tuple2<String, String>> tmp = new ArrayList<>();
tmp.add(new Tuple2<>(cc.getCcId(), id)); tmp.add(new Tuple2<>(cc._1(), id));
return tmp.stream(); return tmp.stream();
}) })
.iterator(); .iterator();
@ -144,13 +143,12 @@ public class Deduper implements Serializable {
.javaRDD() .javaRDD()
.map(Relation::toEdgeRdd); .map(Relation::toEdgeRdd);
JavaRDD<ConnectedComponent> ccs = JavaGraphProcessor JavaPairRDD<String, List<String>> ccs = JavaGraphProcessor
.findCCs(vertexes, edgeRdd, maxIterations) .findCCs(vertexes, edgeRdd, dedupConf.getWf().getMaxIterations());
.toJavaRDD();
JavaRDD<Relation> mergeRel = ccs JavaRDD<Relation> mergeRel = ccs
.filter(k -> k.getDocs().size() > 1) .filter(cc -> cc._2().size() > 1)
.flatMap(cc -> ccToMergeRel(cc, dedupConf)) .flatMap(cc -> Deduper.ccToMergeRel(cc, dedupConf))
.map(it -> new Relation(it._1(), it._2(), "mergeRel")); .map(it -> new Relation(it._1(), it._2(), "mergeRel"));
final Dataset<Relation> mergeRels = spark final Dataset<Relation> mergeRels = spark
@ -161,7 +159,7 @@ public class Deduper implements Serializable {
mergeRels.write().mode(SaveMode.Overwrite).parquet(mergeRelsPath); mergeRels.write().mode(SaveMode.Overwrite).parquet(mergeRelsPath);
} }
public static void createDedupEntity(DedupConfig dedupConf, String mergeRelsPath, String entitiesPath, SparkSession spark, String dedupEntityPath){ public static void createDedupEntity(DedupConfig dedupConf, String simRelsPath, String mergeRelsPath, String entitiesPath, SparkSession spark, String dedupEntityPath){
JavaPairRDD<String, String> entities = spark JavaPairRDD<String, String> entities = spark
.read() .read()
@ -172,7 +170,15 @@ public class Deduper implements Serializable {
.toJavaRDD() .toJavaRDD()
.mapToPair(t -> t); .mapToPair(t -> t);
// <source, target>: source is the dedup_id, target is the id of the mergedIn // <source_raw_id, relation(source, target)>
JavaPairRDD<String, Relation> simRels = spark
.read()
.load(simRelsPath)
.as(Encoders.bean(Relation.class))
.toJavaRDD()
.mapToPair(r-> new Tuple2<>(r.getSource(), r));
// <raw_id, relation(dedup_id, raw_id)>
JavaPairRDD<String, Relation> mergeRels = spark JavaPairRDD<String, Relation> mergeRels = spark
.read() .read()
.load(mergeRelsPath) .load(mergeRelsPath)
@ -185,7 +191,22 @@ public class Deduper implements Serializable {
.groupByKey() .groupByKey()
.map(t-> entityMerger(t._1(), t._2().iterator())); .map(t-> entityMerger(t._1(), t._2().iterator()));
dedupEntities.saveAsTextFile(dedupEntityPath); JavaPairRDD<String, Iterable<Relation>> simRelsWithDedupId = simRels
.join(mergeRels)
.mapToPair(x -> new Tuple2<>(x._2()._2().getSource(), x._2()._1()))
.groupByKey();
JavaRDD<ConnectedComponent> groupEntity = mergeRels.join(entities)
.mapToPair(t -> new Tuple2<>(t._2()._1().getSource(), t._2()._2()))
.groupByKey()
.join(simRelsWithDedupId)
.map(x -> new ConnectedComponent(
x._1(),
x._2()._1(),
x._2()._2())
);
groupEntity.saveAsTextFile(dedupEntityPath);
} }
} }

View File

@ -1,6 +1,8 @@
package eu.dnetlib.graph; package eu.dnetlib.graph;
import com.clearspring.analytics.util.Lists;
import com.google.common.collect.Sets; import com.google.common.collect.Sets;
import eu.dnetlib.pace.utils.Utility;
import eu.dnetlib.support.ConnectedComponent; import eu.dnetlib.support.ConnectedComponent;
import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDD;
@ -11,9 +13,12 @@ import scala.Tuple2;
import scala.reflect.ClassTag; import scala.reflect.ClassTag;
import scala.reflect.ClassTag$; import scala.reflect.ClassTag$;
import java.util.List;
public class JavaGraphProcessor { public class JavaGraphProcessor {
public static RDD<ConnectedComponent> findCCs(JavaPairRDD<Object, String> vertexes, JavaRDD<Edge<String>> edges, int maxIterations) { //<ccId, list(json)>
public static JavaPairRDD<String, List<String>> findCCs(JavaPairRDD<Object, String> vertexes, JavaRDD<Edge<String>> edges, int maxIterations) {
ClassTag<String> stringTag = ClassTag$.MODULE$.apply(String.class); ClassTag<String> stringTag = ClassTag$.MODULE$.apply(String.class);
Graph<String, String> graph = Graph<String, String> graph =
@ -40,7 +45,11 @@ public class JavaGraphProcessor {
} }
}); });
return joinResult.groupByKey().map(x -> new ConnectedComponent(Sets.newHashSet(x._2()))).rdd(); return joinResult
.groupByKey()
.map(x -> Lists.newArrayList(x._2()))
.zipWithUniqueId()
.mapToPair(x -> new Tuple2<>("dedup______::" + x._2().toString(), x._1()));
} }

View File

@ -1,20 +1,36 @@
package eu.dnetlib.jobs; package eu.dnetlib.jobs;
import eu.dnetlib.Deduper;
import eu.dnetlib.pace.config.DedupConfig;
import eu.dnetlib.pace.config.Type;
import eu.dnetlib.pace.model.FieldValueImpl;
import eu.dnetlib.pace.model.MapDocument;
import eu.dnetlib.pace.util.MapDocumentUtil;
import eu.dnetlib.pace.utils.Utility;
import eu.dnetlib.support.ArgumentApplicationParser; import eu.dnetlib.support.ArgumentApplicationParser;
import eu.dnetlib.support.Block;
import eu.dnetlib.support.ConnectedComponent;
import eu.dnetlib.support.Relation; import eu.dnetlib.support.Relation;
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path; import org.apache.hadoop.fs.Path;
import org.apache.spark.SparkConf; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.SparkSession;
import org.codehaus.jackson.map.ObjectMapper;
import org.slf4j.Logger; import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import org.slf4j.LoggerFactory;
import scala.Tuple2;
import java.io.IOException; import java.io.IOException;
import java.util.List;
import java.util.Optional; import java.util.Optional;
import java.util.stream.Collectors;
public class SparkComputeStatistics extends AbstractSparkJob { public class SparkComputeStatistics extends AbstractSparkJob {
@ -42,10 +58,12 @@ public class SparkComputeStatistics extends AbstractSparkJob {
@Override @Override
public void run() throws IOException { public void run() throws IOException {
//https://towardsdatascience.com/7-evaluation-metrics-for-clustering-algorithms-bdc537ff54d2#:~:text=There%20are%20two%20types%20of,to%20all%20unsupervised%20learning%20results)
// read oozie parameters // read oozie parameters
final String entitiesPath = parser.get("entitiesPath"); final String entitiesPath = parser.get("entitiesPath");
final String workingPath = parser.get("workingPath"); final String workingPath = parser.get("workingPath");
final String dedupConfPath = parser.get("dedupConfPath");
final String groundTruthFieldJPath = parser.get("groundTruthFieldJPath");
final int numPartitions = Optional final int numPartitions = Optional
.ofNullable(parser.get("numPartitions")) .ofNullable(parser.get("numPartitions"))
.map(Integer::valueOf) .map(Integer::valueOf)
@ -54,6 +72,28 @@ public class SparkComputeStatistics extends AbstractSparkJob {
log.info("entitiesPath: '{}'", entitiesPath); log.info("entitiesPath: '{}'", entitiesPath);
log.info("workingPath: '{}'", workingPath); log.info("workingPath: '{}'", workingPath);
log.info("numPartitions: '{}'", numPartitions); log.info("numPartitions: '{}'", numPartitions);
log.info("dedupConfPath: '{}'", dedupConfPath);
log.info("groundTruthFieldJPath: '{}'", groundTruthFieldJPath);
JavaSparkContext sc = JavaSparkContext.fromSparkContext(spark.sparkContext());
DedupConfig dedupConfig = loadDedupConfig(dedupConfPath);
JavaPairRDD<String, MapDocument> mapDocuments = sc
.textFile(entitiesPath)
.repartition(numPartitions)
.mapToPair(
(PairFunction<String, String, MapDocument>) s -> {
MapDocument d = MapDocumentUtil.asMapDocumentWithJPath(dedupConfig, s);
//put in the map the groundTruthField used to compute statistics
d.getFieldMap().put("groundTruth", new FieldValueImpl(Type.String, "groundTruth", MapDocumentUtil.getJPathString(groundTruthFieldJPath, s)));
return new Tuple2<>(d.getIdentifier(), d);
});
JavaRDD<String> entities = mapDocuments.map(d -> d._2().getFieldMap().get("groundTruth").stringValue());
// create blocks
JavaRDD<List<String>> blocks = Deduper.createSortedBlocks(mapDocuments, dedupConfig)
.map(b -> b._2().getDocuments().stream().map(d -> d.getFieldMap().get("groundTruth").stringValue()).collect(Collectors.toList()));
// <source, target>: source is the dedup_id, target is the id of the mergedIn // <source, target>: source is the dedup_id, target is the id of the mergedIn
JavaRDD<Relation> mergerels = spark JavaRDD<Relation> mergerels = spark
@ -68,15 +108,38 @@ public class SparkComputeStatistics extends AbstractSparkJob {
.as(Encoders.bean(Relation.class)) .as(Encoders.bean(Relation.class))
.toJavaRDD(); .toJavaRDD();
JavaRDD<List<String>> groups = sc.textFile(workingPath + "/groupentities")
.map(e -> new ObjectMapper().readValue(e, ConnectedComponent.class))
.map(e -> e.getDocs().stream().map(d -> MapDocumentUtil.getJPathString(groundTruthFieldJPath, d)).collect(Collectors.toList()));
long entities_number = entities.count();
long blocks_number = blocks.count();
double blocks_randIndex = randIndex(blocks);
long simrels_number = simrels.count(); long simrels_number = simrels.count();
long mergerels_number = mergerels.count(); long mergerels_number = mergerels.count();
long connected_components = mergerels.groupBy(Relation::getSource).count(); double groups_randIndex = randIndex(groups);
long groups_number = groups.count();
long groundtruth_number = entities.filter(e -> !e.isEmpty()).count();
long correct_groups = groups.filter(x -> x.stream().distinct().count()==1).count();
long wrong_groups = groups_number - correct_groups;
writeStatsFileToHDFS(simrels_number, mergerels_number, connected_components, workingPath + "/stats_file"); String print =
"Entities : " + entities_number + "\n" +
"Ground Truth : " + groundtruth_number + "\n" +
"Blocks : " + blocks_number + "\n" +
"Blocks RI : " + blocks_randIndex + "\n" +
"SimRels : " + simrels_number + "\n" +
"MergeRels : " + mergerels_number + "\n" +
"Groups : " + groups_number + " (correct: " + correct_groups + ", wrong: " + wrong_groups + ")\n" +
"Groups RI : " + groups_randIndex;
System.out.println(print);
writeStatsFileToHDFS(groundtruth_number, entities_number, blocks_randIndex, groups_randIndex, blocks_number, simrels_number, mergerels_number, groups_number, workingPath + "/stats_file.txt");
} }
public static void writeStatsFileToHDFS(long simrels_number, long mergerels_number, long connected_components, String filePath) throws IOException { public static void writeStatsFileToHDFS(long groundtruth_number, long entities_number, double blocks_randIndex, double groups_randIndex, long blocks_number, long simrels_number, long mergerels_number, long groups_number, String filePath) throws IOException {
Configuration conf = new Configuration(); Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf); FileSystem fs = FileSystem.get(conf);
@ -93,9 +156,14 @@ public class SparkComputeStatistics extends AbstractSparkJob {
} }
String print = String print =
"Similarity Relations : " + simrels_number + "\n" + "Entities : " + entities_number + "\n" +
"Merge Relations : " + mergerels_number + "\n" + "Ground Truth : " + groundtruth_number + "\n" +
"Connected Components : " + connected_components; "Blocks : " + blocks_number + "\n" +
"Blocks RI : " + blocks_randIndex + "\n" +
"SimRels : " + simrels_number + "\n" +
"MergeRels : " + mergerels_number + "\n" +
"Groups : " + groups_number + "\n" +
"Groups RI : " + groups_randIndex;
// Create file to write // Create file to write
FSDataOutputStream out = fs.create(outFile); FSDataOutputStream out = fs.create(outFile);
@ -109,5 +177,31 @@ public class SparkComputeStatistics extends AbstractSparkJob {
e.printStackTrace(); e.printStackTrace();
} }
} }
//TODO find another maesure that takes into account all the elements outside of the group too
//RandIndex = number of pairwise correct predictions/total number of possible pairs (in the same cluster) -> bounded between 0 and 1
public double randIndex(JavaRDD<List<String>> clusters) {
Tuple2<Integer, Integer> reduce = clusters.map(c -> {
int num = 0;
for (String id : c.stream().distinct().filter(s -> !s.isEmpty()).collect(Collectors.toList())) {
int n = (int) c.stream().filter(i -> i.equals(id)).count();
num += binomialCoefficient(n);
}
int den = binomialCoefficient(c.size());
return new Tuple2<>(num, den);
})
.reduce((a, b) -> new Tuple2<>(a._1() + b._1(), a._2() + b._2()));
return (double)reduce._1()/ reduce._2();
}
private static int binomialCoefficient(int n)
{
return n*(n-1)/2;
}
//V-measure = harmonic mean of homogeneity and completeness, homogeneity = each cluster contains only members of a single class, completeness = all members of a given class are assigned to the same cluster
} }

View File

@ -7,6 +7,7 @@ import eu.dnetlib.pace.utils.Utility;
import eu.dnetlib.support.ArgumentApplicationParser; import eu.dnetlib.support.ArgumentApplicationParser;
import eu.dnetlib.support.ConnectedComponent; import eu.dnetlib.support.ConnectedComponent;
import eu.dnetlib.support.Relation; import eu.dnetlib.support.Relation;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.spark.SparkConf; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDD;
@ -16,29 +17,32 @@ import org.apache.spark.sql.SparkSession;
import org.slf4j.Logger; import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import org.slf4j.LoggerFactory;
import scala.Tuple2; import scala.Tuple2;
import scala.Tuple3;
import java.io.IOException; import java.io.IOException;
import java.util.Optional; import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.StreamSupport;
public class SparkCreateDedupEntity extends AbstractSparkJob { public class SparkCreateGroupEntity extends AbstractSparkJob {
private static final Logger log = LoggerFactory.getLogger(eu.dnetlib.jobs.SparkCreateDedupEntity.class); private static final Logger log = LoggerFactory.getLogger(SparkCreateGroupEntity.class);
public SparkCreateDedupEntity(ArgumentApplicationParser parser, SparkSession spark) { public SparkCreateGroupEntity(ArgumentApplicationParser parser, SparkSession spark) {
super(parser, spark); super(parser, spark);
} }
public static void main(String[] args) throws Exception { public static void main(String[] args) throws Exception {
ArgumentApplicationParser parser = new ArgumentApplicationParser( ArgumentApplicationParser parser = new ArgumentApplicationParser(
Utility.readResource("/jobs/parameters/createDedupEntity_parameters.json", SparkCreateDedupEntity.class) Utility.readResource("/jobs/parameters/createGroupEntity_parameters.json", SparkCreateGroupEntity.class)
); );
parser.parseArgument(args); parser.parseArgument(args);
SparkConf conf = new SparkConf(); SparkConf conf = new SparkConf();
new SparkCreateDedupEntity( new SparkCreateGroupEntity(
parser, parser,
getSparkSession(conf) getSparkSession(conf)
).run(); ).run();
@ -63,6 +67,7 @@ public class SparkCreateDedupEntity extends AbstractSparkJob {
DedupConfig dedupConf = DedupConfig.load(readFileFromHDFS(dedupConfPath)); DedupConfig dedupConf = DedupConfig.load(readFileFromHDFS(dedupConfPath));
// <raw_id, json>
JavaPairRDD<String, String> entities = spark JavaPairRDD<String, String> entities = spark
.read() .read()
.textFile(entitiesPath) .textFile(entitiesPath)
@ -72,7 +77,15 @@ public class SparkCreateDedupEntity extends AbstractSparkJob {
.toJavaRDD() .toJavaRDD()
.mapToPair(t -> t); .mapToPair(t -> t);
// <source, target>: source is the dedup_id, target is the id of the mergedIn // <source_raw_id, relation(source, target)>
JavaPairRDD<String, Relation> simRels = spark
.read()
.load(workingPath + "/simrels")
.as(Encoders.bean(Relation.class))
.toJavaRDD()
.mapToPair(r-> new Tuple2<>(r.getSource(), r));
// <raw_id, relation(dedup_id, raw_id)>
JavaPairRDD<String, Relation> mergeRels = spark JavaPairRDD<String, Relation> mergeRels = spark
.read() .read()
.load(workingPath + "/mergerels") .load(workingPath + "/mergerels")
@ -80,12 +93,23 @@ public class SparkCreateDedupEntity extends AbstractSparkJob {
.toJavaRDD() .toJavaRDD()
.mapToPair(r -> new Tuple2<>(r.getTarget(), r)); .mapToPair(r -> new Tuple2<>(r.getTarget(), r));
JavaRDD<ConnectedComponent> dedupEntities = mergeRels.join(entities) // <dedup_id, simrel>
JavaPairRDD<String, Iterable<Relation>> simRelsWithDedupId = simRels
.join(mergeRels)
.mapToPair(x -> new Tuple2<>(x._2()._2().getSource(), x._2()._1()))
.groupByKey();
JavaRDD<ConnectedComponent> groupEntity = mergeRels.join(entities)
.mapToPair(t -> new Tuple2<>(t._2()._1().getSource(), t._2()._2())) .mapToPair(t -> new Tuple2<>(t._2()._1().getSource(), t._2()._2()))
.groupByKey() .groupByKey()
.map(t-> Deduper.entityMerger(t._1(), t._2().iterator())); .join(simRelsWithDedupId)
.map(x -> new ConnectedComponent(
x._1(),
x._2()._1(),
x._2()._2())
);
dedupEntities.saveAsTextFile(workingPath + "dedupentity"); groupEntity.saveAsTextFile(workingPath + "/groupentities", GzipCodec.class);
} }

View File

@ -24,6 +24,7 @@ import org.slf4j.LoggerFactory;
import scala.Tuple2; import scala.Tuple2;
import java.io.IOException; import java.io.IOException;
import java.util.List;
import java.util.Optional; import java.util.Optional;
import static eu.dnetlib.Deduper.hash; import static eu.dnetlib.Deduper.hash;
@ -85,12 +86,11 @@ public class SparkCreateMergeRels extends AbstractSparkJob {
.javaRDD() .javaRDD()
.map(Relation::toEdgeRdd); .map(Relation::toEdgeRdd);
JavaRDD<ConnectedComponent> ccs = JavaGraphProcessor JavaPairRDD<String, List<String>> ccs = JavaGraphProcessor
.findCCs(vertexes, edgeRdd, dedupConf.getWf().getMaxIterations()) .findCCs(vertexes, edgeRdd, dedupConf.getWf().getMaxIterations());
.toJavaRDD();
JavaRDD<Relation> mergeRel = ccs JavaRDD<Relation> mergeRel = ccs
.filter(k -> k.getDocs().size() > 1) .filter(cc -> cc._2().size() > 1)
.flatMap(cc -> Deduper.ccToMergeRel(cc, dedupConf)) .flatMap(cc -> Deduper.ccToMergeRel(cc, dedupConf))
.map(it -> new Relation(it._1(), it._2(), "mergeRel")); .map(it -> new Relation(it._1(), it._2(), "mergeRel"));

View File

@ -14,6 +14,7 @@ import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders; import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SaveMode; import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.SparkSession;

View File

@ -1,10 +1,7 @@
package eu.dnetlib.support; package eu.dnetlib.support;
import java.io.Serializable; import java.io.Serializable;
import java.util.ArrayList; import java.util.*;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.stream.Collectors; import java.util.stream.Collectors;
import java.util.stream.Stream; import java.util.stream.Stream;
import java.util.stream.StreamSupport; import java.util.stream.StreamSupport;
@ -12,6 +9,7 @@ import java.util.stream.StreamSupport;
import com.google.common.collect.Lists; import com.google.common.collect.Lists;
import eu.dnetlib.pace.model.MapDocument; import eu.dnetlib.pace.model.MapDocument;
import org.codehaus.jackson.annotate.JsonIgnore;
public class Block implements Serializable { public class Block implements Serializable {
@ -23,6 +21,11 @@ public class Block implements Serializable {
super(); super();
} }
public Block(String key, List<MapDocument> documents) {
this.key = key;
this.documents = documents;
}
public Block(String key, Iterable<MapDocument> documents) { public Block(String key, Iterable<MapDocument> documents) {
this.key = key; this.key = key;
this.documents = Lists.newArrayList(documents); this.documents = Lists.newArrayList(documents);

View File

@ -5,54 +5,35 @@ import java.io.Serializable;
import java.util.HashSet; import java.util.HashSet;
import java.util.Set; import java.util.Set;
import eu.dnetlib.pace.utils.Utility; import com.google.common.collect.Sets;
import org.apache.commons.lang.StringUtils;
import org.codehaus.jackson.annotate.JsonIgnore;
import com.fasterxml.jackson.databind.ObjectMapper;
import eu.dnetlib.pace.util.PaceException; import eu.dnetlib.pace.util.PaceException;
import org.codehaus.jackson.map.ObjectMapper;
public class ConnectedComponent implements Serializable { public class ConnectedComponent implements Serializable {
private HashSet<String> docs; private HashSet<String> docs;
private String ccId; private String ccId;
private HashSet<Relation> simrels;
public ConnectedComponent() { public ConnectedComponent() {
} }
public ConnectedComponent(String ccId, Set<String> docs, Set<Relation> simrels) {
this.docs = new HashSet<>(docs);
this.ccId = ccId;
this.simrels = new HashSet<>(simrels);
}
public ConnectedComponent(Set<String> docs) { public ConnectedComponent(Set<String> docs) {
this.docs = new HashSet<>(docs); this.docs = new HashSet<>(docs);
createID(); //initialization of id and relations missing
} }
public String createID() { public ConnectedComponent(String ccId, Iterable<String> docs, Iterable<Relation> simrels) {
if (docs.size() > 1) { this.ccId = ccId;
final String s = getMin(); this.docs = Sets.newHashSet(docs);
ccId = "dedup::" + Utility.md5(s); this.simrels = Sets.newHashSet(simrels);
return ccId;
} else {
return docs.iterator().next();
}
}
@JsonIgnore
public String getMin() {
final StringBuilder min = new StringBuilder();
docs
.forEach(
i -> {
if (StringUtils.isBlank(min.toString())) {
min.append(i);
} else {
if (min.toString().compareTo(i) > 0) {
min.setLength(0);
min.append(i);
}
}
});
return min.toString();
} }
@Override @Override
@ -80,4 +61,12 @@ public class ConnectedComponent implements Serializable {
public void setCcId(String ccId) { public void setCcId(String ccId) {
this.ccId = ccId; this.ccId = ccId;
} }
public void setSimrels(HashSet<Relation> simrels) {
this.simrels = simrels;
}
public HashSet<Relation> getSimrels() {
return simrels;
}
} }

View File

@ -16,6 +16,10 @@
<name>dedupConfPath</name> <name>dedupConfPath</name>
<description>path for the dedup configuration file</description> <description>path for the dedup configuration file</description>
</property> </property>
<property>
<name>groundTruthFieldJPath</name>
<description>jpath of the field to be used as ground truth</description>
</property>
<property> <property>
<name>sparkDriverMemory</name> <name>sparkDriverMemory</name>
<description>memory for driver process</description> <description>memory for driver process</description>
@ -138,6 +142,33 @@
<arg>--numPartitions</arg><arg>${numPartitions}</arg> <arg>--numPartitions</arg><arg>${numPartitions}</arg>
<arg>--dedupConfPath</arg><arg>${dedupConfPath}</arg> <arg>--dedupConfPath</arg><arg>${dedupConfPath}</arg>
</spark> </spark>
<ok to="CreateGroupEntities"/>
<error to="Kill"/>
</action>
<action name="CreateGroupEntities">
<spark xmlns="uri:oozie:spark-action:0.2">
<master>yarn</master>
<mode>cluster</mode>
<name>Create Group Entities</name>
<class>eu.dnetlib.jobs.SparkCreateGroupEntity</class>
<jar>dnet-dedup-test-${projectVersion}.jar</jar>
<spark-opts>
--executor-memory=${sparkExecutorMemory}
--executor-cores=${sparkExecutorCores}
--driver-memory=${sparkDriverMemory}
--conf spark.extraListeners=${spark2ExtraListeners}
--conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}
--conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}
--conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}
--conf spark.sql.shuffle.partitions=3840
</spark-opts>
<arg>--entitiesPath</arg><arg>${entitiesPath}</arg>
<arg>--workingPath</arg><arg>${workingPath}</arg>
<arg>--numPartitions</arg><arg>${numPartitions}</arg>
<arg>--dedupConfPath</arg><arg>${dedupConfPath}</arg>
</spark>
<ok to="ComputeStatistics"/> <ok to="ComputeStatistics"/>
<error to="Kill"/> <error to="Kill"/>
</action> </action>
@ -162,36 +193,12 @@
<arg>--entitiesPath</arg><arg>${entitiesPath}</arg> <arg>--entitiesPath</arg><arg>${entitiesPath}</arg>
<arg>--workingPath</arg><arg>${workingPath}</arg> <arg>--workingPath</arg><arg>${workingPath}</arg>
<arg>--numPartitions</arg><arg>${numPartitions}</arg> <arg>--numPartitions</arg><arg>${numPartitions}</arg>
<arg>--dedupConfPath</arg><arg>${dedupConfPath}</arg>
<arg>--groundTruthFieldJPath</arg><arg>${groundTruthFieldJPath}</arg>
</spark> </spark>
<ok to="End"/> <ok to="End"/>
<error to="Kill"/> <error to="Kill"/>
</action> </action>
<!--<action name="CreateDedupEntities">-->
<!--<spark xmlns="uri:oozie:spark-action:0.2">-->
<!--<master>yarn</master>-->
<!--<mode>cluster</mode>-->
<!--<name>Create Dedup Entities</name>-->
<!--<class>eu.dnetlib.jobs.SparkCreateDedupEntity</class>-->
<!--<jar>dnet-dedup-test-${projectVersion}.jar</jar>-->
<!--<spark-opts>-->
<!--&#45;&#45;executor-memory=${sparkExecutorMemory}-->
<!--&#45;&#45;executor-cores=${sparkExecutorCores}-->
<!--&#45;&#45;driver-memory=${sparkDriverMemory}-->
<!--&#45;&#45;conf spark.extraListeners=${spark2ExtraListeners}-->
<!--&#45;&#45;conf spark.sql.queryExecutionListeners=${spark2SqlQueryExecutionListeners}-->
<!--&#45;&#45;conf spark.yarn.historyServer.address=${spark2YarnHistoryServerAddress}-->
<!--&#45;&#45;conf spark.eventLog.dir=${nameNode}${spark2EventLogDir}-->
<!--&#45;&#45;conf spark.sql.shuffle.partitions=3840-->
<!--</spark-opts>-->
<!--<arg>&#45;&#45;entitiesPath</arg><arg>${entitiesPath}</arg>-->
<!--<arg>&#45;&#45;workingPath</arg><arg>${workingPath}</arg>-->
<!--<arg>&#45;&#45;numPartitions</arg><arg>${numPartitions}</arg>-->
<!--<arg>&#45;&#45;dedupConfPath</arg><arg>${dedupConfPath}</arg>-->
<!--</spark>-->
<!--<ok to="End"/>-->
<!--<error to="Kill"/>-->
<!--</action>-->
<end name="End"/> <end name="End"/>
</workflow-app> </workflow-app>

View File

@ -16,5 +16,17 @@
"paramLongName": "numPartitions", "paramLongName": "numPartitions",
"paramDescription": "number of partitions for the similarity relations intermediate phases", "paramDescription": "number of partitions for the similarity relations intermediate phases",
"paramRequired": false "paramRequired": false
},
{
"paramName": "dc",
"paramLongName": "dedupConfPath",
"paramDescription": "dedup configuration to be used",
"paramRequired": true
},
{
"paramName": "gt",
"paramLongName": "groundTruthFieldJPath",
"paramDescription": "field to be used as groundtruth",
"paramRequired": true
} }
] ]

View File

@ -1,7 +1,8 @@
package eu.dnetlib.pace; package eu.dnetlib.pace;
import eu.dnetlib.Deduper; import eu.dnetlib.Deduper;
import eu.dnetlib.jobs.SparkCreateDedupEntity; import eu.dnetlib.jobs.SparkComputeStatistics;
import eu.dnetlib.jobs.SparkCreateGroupEntity;
import eu.dnetlib.jobs.SparkCreateMergeRels; import eu.dnetlib.jobs.SparkCreateMergeRels;
import eu.dnetlib.jobs.SparkCreateSimRels; import eu.dnetlib.jobs.SparkCreateSimRels;
import eu.dnetlib.pace.config.DedupConfig; import eu.dnetlib.pace.config.DedupConfig;
@ -50,7 +51,7 @@ public class DedupLocalTest extends DedupTestUtils {
static JavaSparkContext context; static JavaSparkContext context;
final String entitiesPath = Paths final String entitiesPath = Paths
.get(DedupLocalTest.class.getResource("/eu/dnetlib/pace/examples/publications.dump.1000.json").toURI()) .get(DedupLocalTest.class.getResource("/eu/dnetlib/pace/examples/authors.dump.json").toURI())
.toFile() .toFile()
.getAbsolutePath(); .getAbsolutePath();
@ -58,13 +59,14 @@ public class DedupLocalTest extends DedupTestUtils {
final static String numPartitions = "20"; final static String numPartitions = "20";
final String dedupConfPath = Paths final String dedupConfPath = Paths
.get(DedupLocalTest.class.getResource("/eu/dnetlib/pace/config/pubs.fdup.exp.json").toURI()) .get(DedupLocalTest.class.getResource("/eu/dnetlib/pace/config/authors.fdup.conf.json").toURI())
.toFile() .toFile()
.getAbsolutePath(); .getAbsolutePath();
final static String simRelsPath = workingPath + "/simrels"; final static String simRelsPath = workingPath + "/simrels";
final static String mergeRelsPath = workingPath + "/mergerels"; final static String mergeRelsPath = workingPath + "/mergerels";
final static String dedupEntityPath = workingPath + "/dedupentities"; final static String groupEntityPath = workingPath + "/groupentities";
final static String groundTruthFieldJPath = "$.orcid";
public DedupLocalTest() throws URISyntaxException { public DedupLocalTest() throws URISyntaxException {
} }
@ -73,7 +75,7 @@ public class DedupLocalTest extends DedupTestUtils {
//remove directories to clean workspace //remove directories to clean workspace
FileUtils.deleteDirectory(new File(simRelsPath)); FileUtils.deleteDirectory(new File(simRelsPath));
FileUtils.deleteDirectory(new File(mergeRelsPath)); FileUtils.deleteDirectory(new File(mergeRelsPath));
FileUtils.deleteDirectory(new File(dedupEntityPath)); FileUtils.deleteDirectory(new File(groupEntityPath));
} }
@BeforeAll @BeforeAll
@ -155,9 +157,9 @@ public class DedupLocalTest extends DedupTestUtils {
@Test @Test
@Order(3) @Order(3)
public void createDedupEntityTest() throws Exception { public void createGroupEntityTest() throws Exception {
ArgumentApplicationParser parser = new ArgumentApplicationParser(Utility.readResource("/eu/dnetlib/pace/parameters/createDedupEntity_parameters.json", SparkCreateDedupEntity.class)); ArgumentApplicationParser parser = new ArgumentApplicationParser(Utility.readResource("/eu/dnetlib/pace/parameters/createGroupEntity_parameters.json", SparkCreateGroupEntity.class));
parser.parseArgument( parser.parseArgument(
new String[] { new String[] {
@ -167,7 +169,27 @@ public class DedupLocalTest extends DedupTestUtils {
"-dc", dedupConfPath "-dc", dedupConfPath
}); });
new SparkCreateDedupEntity( new SparkCreateGroupEntity(
parser,
spark
).run();
}
@Test
@Order(4)
public void computeStatisticsTest() throws Exception {
ArgumentApplicationParser parser = new ArgumentApplicationParser(Utility.readResource("/eu/dnetlib/pace/parameters/computeStatistics_parameters.json", SparkComputeStatistics.class));
parser.parseArgument(
new String[] {
"-e", entitiesPath,
"-w", workingPath,
"-np", numPartitions,
"-dc", dedupConfPath,
"-gt", groundTruthFieldJPath
});
new SparkComputeStatistics(
parser, parser,
spark spark
).run(); ).run();
@ -216,6 +238,7 @@ public class DedupLocalTest extends DedupTestUtils {
long before_dedupentity = System.currentTimeMillis(); long before_dedupentity = System.currentTimeMillis();
Deduper.createDedupEntity( Deduper.createDedupEntity(
dedupConfig, dedupConfig,
simRelsPath,
mergeRelsPath, mergeRelsPath,
inputPath, inputPath,
spark, spark,

View File

@ -5,7 +5,7 @@
"entityType": "author", "entityType": "author",
"subEntityType": "author", "subEntityType": "author",
"subEntityValue": "author", "subEntityValue": "author",
"orderField": "name", "orderField": "fullname",
"queueMaxSize": "200", "queueMaxSize": "200",
"groupMaxSize": "100", "groupMaxSize": "100",
"maxChildren": "100", "maxChildren": "100",
@ -29,148 +29,103 @@
}, },
"pace": { "pace": {
"clustering" : [ "clustering" : [
{ "name" : "lnfi", "fields" : [ "name" ], "params" : {} } { "name" : "lnfi", "fields" : [ "fullname" ], "params" : {} }
], ],
"decisionTree": { "decisionTree": {
"start": { "start": {
"fields": [ "fields": [
{ {
"field": "pub_id", "field": "orcid",
"comparator": "exactMatch", "comparator": "exactMatch",
"weight": 1, "weight": 1.0,
"countIfUndefined": "false", "countIfUndefined": "true",
"params": {} "params": {}
} }
], ],
"threshold":1, "threshold": 1.0,
"aggregation": "AVG",
"positive": "NO_MATCH",
"negative": "yearCheck",
"undefined": "yearCheck"
},
"yearCheck": {
"fields": [
{
"field": "year",
"comparator": "numbersComparator",
"weight": 1,
"countIfUndefined": "false",
"params": {}
}
],
"threshold": 50,
"aggregation": "MAX", "aggregation": "MAX",
"positive": "NO_MATCH", "positive": "MATCH",
"negative": "surnames", "negative": "NO_MATCH",
"undefined": "surnames", "undefined": "orcids",
"ignoreUndefined": "true" "ignoreUndefined": "true"
}, },
"surnames": { "orcids": {
"fields": [
{
"field": "orcids",
"comparator": "stringListMatch",
"weight": 1.0,
"countIfUndefined": "true",
"params": {"type": "count"}
}
],
"threshold": 3.0,
"aggregation": "MAX",
"positive": "MATCH",
"negative": "coauthors",
"undefined": "coauthors",
"ignoreUndefined": "true"
},
"coauthors": {
"fields": [ "fields": [
{ {
"field": "coauthors", "field": "coauthors",
"comparator": "authorsMatch", "comparator": "authorsMatch",
"weight": 1.0, "weight": 1.0,
"countIfUndefined": "false", "countIfUndefined": "true",
"params": { "params": {"type": "count"}
"surname_th": 0.75,
"fullname_th": 0.75,
"size_th": 20,
"mode": "surname"
} }
],
"threshold": 1.0,
"aggregation": "MAX",
"positive": "topicsMatch",
"negative": "NO_MATCH",
"undefined": "topicsMatch",
"ignoreUndefined": "true"
},
"topicsMatch": {
"fields": [
{
"field": "topics",
"comparator": "cosineSimilarity",
"weight": 1.0,
"countIfUndefined": "true",
"params": {}
} }
], ],
"threshold": 0.5, "threshold": 0.5,
"aggregation": "MAX", "aggregation": "MAX",
"positive": "MATCH", "positive": "MATCH",
"negative": "cityCheck",
"undefined": "cityCheck",
"ignoreUndefined": "true"
},
"cityCheck": {
"fields": [
{
"field": "org",
"comparator": "cityMatch",
"weight": 1.0,
"countIfUndefined": "true",
"params": {
"windowSize": "4"
}
}
],
"threshold": 0.1,
"aggregation": "AVG",
"positive": "keywordCheck",
"negative": "NO_MATCH", "negative": "NO_MATCH",
"undefined": "keywordCheck", "undefined": "NO_MATCH",
"ignoreUndefined": "true" "ignoreUndefined": "false"
},
"keywordCheck": {
"fields": [
{
"field": "org",
"comparator": "keywordMatch",
"weight": 1.0,
"countIfUndefined": "true",
"params": {
"windowSize": "4"
}
}
],
"threshold": 0.5,
"aggregation": "AVG",
"positive": "orgCheck",
"negative": "NO_MATCH",
"undefined": "orgCheck",
"ignoreUndefined": "true"
},
"orgCheck": {
"fields": [
{
"field": "org",
"comparator": "jaroWinklerNormalizedName",
"weight": 1,
"countIfUndefined": "true",
"params": {
"windowSize": "4"
}
}
],
"threshold": 0.7,
"aggregation": "AVG",
"positive": "MATCH",
"negative": "NO_MATCH",
"undefined": "MATCH",
"ignoreUndefined": "true"
} }
}, },
"model": [ "model": [
{ {
"name": "name", "name": "topics",
"type": "DoubleArray",
"path": "$.topics"
},
{
"name": "fullname",
"type": "String", "type": "String",
"path": "$.name" "path": "$.fullname"
},
{
"name": "orcid",
"type": "String",
"path": "$.orcid"
}, },
{ {
"name": "coauthors", "name": "coauthors",
"type": "List", "type": "List",
"path": "$.coauthors[*].name", "path": "$.coAuthors[*].fullname"
"size": 200
}, },
{ {
"name": "year", "name": "orcids",
"type": "String", "type": "List",
"path": "$.year" "path": "$.coAuthors[*].orcid"
},
{
"name": "pub_id",
"type": "String",
"path": "$.pub_id"
},
{
"name": "org",
"type": "String",
"path": "$.org"
} }
], ],
"blacklists": {}, "blacklists": {},

View File

@ -5,7 +5,7 @@
"entityType": "author", "entityType": "author",
"subEntityType": "author", "subEntityType": "author",
"subEntityValue": "author", "subEntityValue": "author",
"orderField": "name", "orderField": "fullname",
"queueMaxSize": "200", "queueMaxSize": "200",
"groupMaxSize": "100", "groupMaxSize": "100",
"maxChildren": "100", "maxChildren": "100",
@ -29,74 +29,103 @@
}, },
"pace": { "pace": {
"clustering" : [ "clustering" : [
{ "name" : "lnfi", "fields" : [ "name" ], "params" : {} } { "name" : "lnfi", "fields" : [ "fullname" ], "params" : {} }
], ],
"decisionTree": { "decisionTree": {
"start": { "start": {
"fields": [ "fields": [
{ {
"field": "pub_id", "field": "orcid",
"comparator": "exactMatch", "comparator": "exactMatch",
"weight": 1, "weight": 1.0,
"countIfUndefined": "false", "countIfUndefined": "true",
"params": {} "params": {}
} }
], ],
"threshold":1, "threshold": 1.0,
"aggregation": "AVG", "aggregation": "MAX",
"positive": "NO_MATCH", "positive": "MATCH",
"negative": "yearCheck", "negative": "NO_MATCH",
"undefined": "yearCheck" "undefined": "orcids",
"ignoreUndefined": "true"
}, },
"surnames": { "orcids": {
"fields": [
{
"field": "orcids",
"comparator": "stringListMatch",
"weight": 1.0,
"countIfUndefined": "true",
"params": {"type": "count"}
}
],
"threshold": 3.0,
"aggregation": "MAX",
"positive": "MATCH",
"negative": "coauthors",
"undefined": "coauthors",
"ignoreUndefined": "true"
},
"coauthors": {
"fields": [ "fields": [
{ {
"field": "coauthors", "field": "coauthors",
"comparator": "authorsMatch", "comparator": "authorsMatch",
"weight": 1.0, "weight": 1.0,
"countIfUndefined": "false", "countIfUndefined": "true",
"params": { "params": {"type": "count"}
"surname_th": 0.75,
"fullname_th": 0.75,
"size_th": 20,
"mode": "surname"
}
} }
], ],
"threshold": 0.5, "threshold": 1.0,
"aggregation": "MAX",
"positive": "topicsMatch",
"negative": "NO_MATCH",
"undefined": "topicsMatch",
"ignoreUndefined": "true"
},
"topicsMatch": {
"fields": [
{
"field": "topics",
"comparator": "cosineSimilarity",
"weight": 1.0,
"countIfUndefined": "true",
"params": {}
}
],
"threshold": 1.0,
"aggregation": "MAX", "aggregation": "MAX",
"positive": "MATCH", "positive": "MATCH",
"negative": "NO_MATCH", "negative": "NO_MATCH",
"undefined": "MATCH", "undefined": "NO_MATCH",
"ignoreUndefined": "true" "ignoreUndefined": "false"
} }
}, },
"model": [ "model": [
{ {
"name": "name", "name": "topics",
"type": "DoubleArray",
"path": "$.topics"
},
{
"name": "fullname",
"type": "String", "type": "String",
"path": "$.name" "path": "$.fullname"
},
{
"name": "orcid",
"type": "String",
"path": "$.orcid"
}, },
{ {
"name": "coauthors", "name": "coauthors",
"type": "List", "type": "List",
"path": "$.coauthors[*].name", "path": "$.coAuthors[*].fullname"
"size": 200
}, },
{ {
"name": "year", "name": "orcids",
"type": "String", "type": "List",
"path": "$.year" "path": "$.coAuthors[*].orcid"
},
{
"name": "pub_id",
"type": "String",
"path": "$.pub_id"
},
{
"name": "org",
"type": "String",
"path": "$.org"
} }
], ],
"blacklists": {}, "blacklists": {},

View File

@ -51,37 +51,6 @@
], ],
"decisionTree": { "decisionTree": {
"start": { "start": {
"fields": [
{
"field": "pid",
"comparator": "jsonListMatch",
"weight": 1.0,
"countIfUndefined": "false",
"params": {
"jpath_value": "$.value",
"jpath_classid": "$.qualifier.classid"
}
},
{
"field": "pid",
"comparator": "jsonListMatch",
"weight": 1.0,
"countIfUndefined": "false",
"params": {
"jpath_value": "$.value",
"jpath_classid": "$.qualifier.classid",
"crossCompare": "alternateid"
}
}
],
"threshold": 0.5,
"aggregation": "MAX",
"positive": "layer1",
"negative": "layer2",
"undefined": "layer2",
"ignoreUndefined": "true"
},
"layer1": {
"fields": [ "fields": [
{ {
"field": "title", "field": "title",
@ -94,49 +63,8 @@
"threshold": 0.9, "threshold": 0.9,
"aggregation": "AVG", "aggregation": "AVG",
"positive": "MATCH", "positive": "MATCH",
"negative": "NO_MATCH", "negative": "MATCH",
"undefined": "NO_MATCH", "undefined": "MATCH",
"ignoreUndefined": "true"
},
"layer2": {
"fields": [
{
"field": "title",
"comparator": "titleVersionMatch",
"weight": 1.0,
"countIfUndefined": "false",
"params": {}
},
{
"field": "authors",
"comparator": "sizeMatch",
"weight": 1.0,
"countIfUndefined": "false",
"params": {}
}
],
"threshold": 1.0,
"aggregation": "AND",
"positive": "layer3",
"negative": "NO_MATCH",
"undefined": "layer3",
"ignoreUndefined": "false"
},
"layer3": {
"fields": [
{
"field": "title",
"comparator": "levensteinTitle",
"weight": 1.0,
"countIfUndefined": "true",
"params": {}
}
],
"threshold": 0.99,
"aggregation": "AVG",
"positive": "MATCH",
"negative": "NO_MATCH",
"undefined": "NO_MATCH",
"ignoreUndefined": "true" "ignoreUndefined": "true"
} }
}, },

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,32 @@
[
{
"paramName": "e",
"paramLongName": "entitiesPath",
"paramDescription": "the input entities",
"paramRequired": true
},
{
"paramName": "w",
"paramLongName": "workingPath",
"paramDescription": "path of the working directory",
"paramRequired": true
},
{
"paramName": "np",
"paramLongName": "numPartitions",
"paramDescription": "number of partitions for the similarity relations intermediate phases",
"paramRequired": false
},
{
"paramName": "dc",
"paramLongName": "dedupConfPath",
"paramDescription": "dedup configuration to be used",
"paramRequired": false
},
{
"paramName": "gt",
"paramLongName": "groundTruthFieldJPath",
"paramDescription": "field to be used as groundtruth",
"paramRequired": false
}
]

View File

@ -1,5 +1,5 @@
package eu.dnetlib.pace.config; package eu.dnetlib.pace.config;
public enum Type { public enum Type {
String, Int, List, JSON, URL, StringConcat String, Int, List, JSON, URL, StringConcat, DoubleArray
} }

View File

@ -20,4 +20,6 @@ public interface FieldValue extends Field {
*/ */
public void setValue(final Object value); public void setValue(final Object value);
public double[] doubleArrayValue();
} }

View File

@ -60,6 +60,8 @@ public class FieldValueImpl extends AbstractField implements FieldValue {
case URL: case URL:
String str = value.toString(); String str = value.toString();
return StringUtils.isBlank(str) || !isValidURL(str); return StringUtils.isBlank(str) || !isValidURL(str);
case DoubleArray:
return doubleArrayValue().length==0;
default: default:
return true; return true;
} }
@ -116,6 +118,10 @@ public class FieldValueImpl extends AbstractField implements FieldValue {
// } // }
} }
public double[] doubleArrayValue() {
return (double[])getValue();
}
/* /*
* (non-Javadoc) * (non-Javadoc)
* *

View File

@ -52,7 +52,7 @@ public class AuthorsMatch extends AbstractComparator {
if (a.isEmpty() || b.isEmpty()) if (a.isEmpty() || b.isEmpty())
return -1; return -1;
if (((FieldList) a).size() > SIZE_THRESHOLD || ((FieldList) a).size() > SIZE_THRESHOLD) if (((FieldList) a).size() > SIZE_THRESHOLD || ((FieldList) b).size() > SIZE_THRESHOLD)
return 1.0; return 1.0;
List<Person> aList = ((FieldList) a).stringList().stream().map(author -> new Person(author, false)).collect(Collectors.toList()); List<Person> aList = ((FieldList) a).stringList().stream().map(author -> new Person(author, false)).collect(Collectors.toList());

View File

@ -0,0 +1,53 @@
package eu.dnetlib.pace.tree;
import eu.dnetlib.pace.config.Config;
import eu.dnetlib.pace.model.Field;
import eu.dnetlib.pace.model.FieldList;
import eu.dnetlib.pace.model.FieldValueImpl;
import eu.dnetlib.pace.model.Person;
import eu.dnetlib.pace.tree.support.AbstractComparator;
import eu.dnetlib.pace.tree.support.ComparatorClass;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
@ComparatorClass("cosineSimilarity")
public class CosineSimilarity extends AbstractComparator {
Map<String, String> params;
public CosineSimilarity(Map<String,String> params) {
super(params);
}
@Override
public double compare(final Field a, final Field b, final Config conf) {
if (a.isEmpty() || b.isEmpty())
return -1;
double[] aVector = ((FieldValueImpl) a).doubleArrayValue();
double[] bVector = ((FieldValueImpl) b).doubleArrayValue();
return cosineSimilarity(aVector, bVector);
}
double cosineSimilarity(double[] a, double[] b) {
double dotProduct = 0;
double normASum = 0;
double normBSum = 0;
for(int i = 0; i < a.length; i ++) {
dotProduct += a[i] * b[i];
normASum += a[i] * a[i];
normBSum += b[i] * b[i];
}
double eucledianDist = Math.sqrt(normASum) * Math.sqrt(normBSum);
return dotProduct / eucledianDist;
}
}

View File

@ -19,9 +19,13 @@ public class StringListMatch extends AbstractComparator {
private static final Log log = LogFactory.getLog(StringListMatch.class); private static final Log log = LogFactory.getLog(StringListMatch.class);
private Map<String, String> params; private Map<String, String> params;
final private String TYPE; //percentage or count
public StringListMatch(final Map<String, String> params) { public StringListMatch(final Map<String, String> params) {
super(params); super(params);
this.params = params; this.params = params;
TYPE = params.getOrDefault("type", "percentage");
} }
@Override @Override
@ -31,7 +35,7 @@ public class StringListMatch extends AbstractComparator {
final Set<String> pb = new HashSet<>(((FieldList) b).stringList()); final Set<String> pb = new HashSet<>(((FieldList) b).stringList());
if (pa.isEmpty() || pb.isEmpty()) { if (pa.isEmpty() || pb.isEmpty()) {
return -1; //return undefined if one of the two lists of pids is empty return -1; //return undefined if one of the two lists is empty
} }
int incommon = Sets.intersection(pa, pb).size(); int incommon = Sets.intersection(pa, pb).size();
@ -41,7 +45,10 @@ public class StringListMatch extends AbstractComparator {
return 0.0; return 0.0;
} }
if(TYPE.equals("percentage"))
return (double)incommon / (incommon + simDiff); return (double)incommon / (incommon + simDiff);
else
return incommon;
} }
} }

View File

@ -244,6 +244,5 @@ public class BlockProcessorForTesting {
final String type = dedupConf.getWf().getEntityType(); final String type = dedupConf.getWf().getEntityType();
context.emit(type, from, to); context.emit(type, from, to);
context.emit(type, to, from);
} }
} }

View File

@ -7,12 +7,10 @@ import com.jayway.jsonpath.JsonPath;
import com.jayway.jsonpath.Option; import com.jayway.jsonpath.Option;
import eu.dnetlib.pace.config.DedupConfig; import eu.dnetlib.pace.config.DedupConfig;
import eu.dnetlib.pace.config.Type; import eu.dnetlib.pace.config.Type;
import eu.dnetlib.pace.model.Field; import eu.dnetlib.pace.model.*;
import eu.dnetlib.pace.model.FieldListImpl;
import eu.dnetlib.pace.model.FieldValueImpl;
import eu.dnetlib.pace.model.MapDocument;
import net.minidev.json.JSONArray; import net.minidev.json.JSONArray;
import java.math.BigDecimal;
import java.util.*; import java.util.*;
import java.util.function.Predicate; import java.util.function.Predicate;
import java.util.stream.Collectors; import java.util.stream.Collectors;
@ -46,6 +44,14 @@ public class MapDocumentUtil {
.forEach(fi::add); .forEach(fi::add);
stringField.put(fdef.getName(), fi); stringField.put(fdef.getName(), fi);
break; break;
case DoubleArray:
stringField.put(
fdef.getName(),
new FieldValueImpl(Type.DoubleArray,
fdef.getName(),
getJPathArray(fdef.getPath(), json))
);
break;
case StringConcat: case StringConcat:
String[] jpaths = fdef.getPath().split("\\|\\|\\|"); String[] jpaths = fdef.getPath().split("\\|\\|\\|");
stringField.put( stringField.put(
@ -115,6 +121,30 @@ public class MapDocumentUtil {
} }
} }
public static double[] getJPathArray(final String jsonPath, final String json) {
try {
Object o = JsonPath.read(json, jsonPath);
if (o instanceof double[])
return (double[]) o;
if (o instanceof JSONArray) {
Object[] objects = ((JSONArray) o).toArray();
double[] array = new double[objects.length];
for (int i = 0; i < objects.length; i++) {
if (objects[i] instanceof BigDecimal)
array[i] = ((BigDecimal)objects[i]).doubleValue();
else
array[i] = (double) objects[i];
}
return array;
}
return new double[0];
}
catch (Exception e) {
e.printStackTrace();
return new double[0];
}
}
public static String truncateValue(String value, int length) { public static String truncateValue(String value, int length) {
if (value == null) if (value == null)

View File

@ -36,6 +36,10 @@ public abstract class AbstractPaceTest extends AbstractPaceFunctions {
return new FieldValueImpl(Type.URL, "url", s); return new FieldValueImpl(Type.URL, "url", s);
} }
protected Field array(final double[] a) {
return new FieldValueImpl(Type.DoubleArray, "array", a);
}
protected Field createFieldList(List<String> strings, String fieldName){ protected Field createFieldList(List<String> strings, String fieldName){
List<FieldValueImpl> fieldValueStream = strings.stream().map(s -> new FieldValueImpl(Type.String, fieldName, s)).collect(Collectors.toList()); List<FieldValueImpl> fieldValueStream = strings.stream().map(s -> new FieldValueImpl(Type.String, fieldName, s)).collect(Collectors.toList());

View File

@ -2,7 +2,9 @@ package eu.dnetlib.pace.comparators;
import eu.dnetlib.pace.AbstractPaceTest; import eu.dnetlib.pace.AbstractPaceTest;
import eu.dnetlib.pace.clustering.NGramUtils; import eu.dnetlib.pace.clustering.NGramUtils;
import eu.dnetlib.pace.config.Type;
import eu.dnetlib.pace.model.Field; import eu.dnetlib.pace.model.Field;
import eu.dnetlib.pace.model.FieldValueImpl;
import eu.dnetlib.pace.tree.*; import eu.dnetlib.pace.tree.*;
import eu.dnetlib.pace.config.DedupConfig; import eu.dnetlib.pace.config.DedupConfig;
@ -284,5 +286,18 @@ public class ComparatorTest extends AbstractPaceTest {
} }
@Test
public void cosineSimilarity() {
CosineSimilarity cosineSimilarity = new CosineSimilarity(params);
Field a = new FieldValueImpl(Type.DoubleArray, "array", new double[]{1,2,3});
Field b = new FieldValueImpl(Type.DoubleArray, "array", new double[]{1,2,3});
double compare = cosineSimilarity.compare(a, b, conf);
System.out.println("compare = " + compare);
}
} }

View File

@ -7,6 +7,7 @@ import eu.dnetlib.pace.clustering.ClusteringClass;
import eu.dnetlib.pace.clustering.ClusteringCombiner; import eu.dnetlib.pace.clustering.ClusteringCombiner;
import eu.dnetlib.pace.model.Field; import eu.dnetlib.pace.model.Field;
import eu.dnetlib.pace.model.FieldList; import eu.dnetlib.pace.model.FieldList;
import eu.dnetlib.pace.model.FieldValue;
import eu.dnetlib.pace.model.MapDocument; import eu.dnetlib.pace.model.MapDocument;
import eu.dnetlib.pace.tree.JsonListMatch; import eu.dnetlib.pace.tree.JsonListMatch;
import eu.dnetlib.pace.tree.support.AggType; import eu.dnetlib.pace.tree.support.AggType;
@ -20,10 +21,7 @@ import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull; import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue; import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.Collection; import java.util.*;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors; import java.util.stream.Collectors;
@ -104,15 +102,15 @@ public class ConfigTest extends AbstractPaceTest {
} }
@Test @Test
public void asMapDocumentTest2() { public void authorAsMapDocument() {
DedupConfig dedupConf = DedupConfig.load(readFromClasspath("author.test.conf.json")); DedupConfig dedupConf = DedupConfig.load(readFromClasspath("author.fdup.conf.json"));
final String json = readFromClasspath("author.json"); final String json = readFromClasspath("author.json");
final MapDocument mapDocument = MapDocumentUtil.asMapDocumentWithJPath(dedupConf, json); final MapDocument mapDocument = MapDocumentUtil.asMapDocumentWithJPath(dedupConf, json);
System.out.println("mapDocument = " + mapDocument.getFieldMap().get("coauthors").stringValue()); System.out.println("mapDocument = " + Arrays.toString(((FieldValue) mapDocument.getFieldMap().get("topics")).doubleArrayValue()));
} }

View File

@ -29,71 +29,103 @@
}, },
"pace": { "pace": {
"clustering" : [ "clustering" : [
{ "name" : "personClustering", "fields" : [ "fullname" ], "params" : {} }, { "name" : "lnfi", "fields" : [ "fullname" ], "params" : {} }
{ "name" : "personHash", "fields" : [ "fullname" ], "params" : {} }
], ],
"decisionTree": { "decisionTree": {
"start": { "start": {
"fields": [ "fields": [
{ {
"field": "year", "field": "orcid",
"comparator": "numbersComparator", "comparator": "exactMatch",
"weight": 1, "weight": 1.0,
"countIfUndefined": "false", "countIfUndefined": "true",
"params": {} "params": {}
} }
], ],
"threshold": 50, "threshold": 1.0,
"aggregation": "MAX", "aggregation": "MAX",
"positive": "NO_MATCH", "positive": "MATCH",
"negative": "surnames", "negative": "NO_MATCH",
"undefined": "surnames", "undefined": "orcids",
"ignoreUndefined": "true" "ignoreUndefined": "true"
}, },
"surnames": { "orcids": {
"fields": [
{
"field": "orcids",
"comparator": "stringListMatch",
"weight": 1.0,
"countIfUndefined": "true",
"params": {"type": "count"}
}
],
"threshold": 3.0,
"aggregation": "MAX",
"positive": "MATCH",
"negative": "coauthors",
"undefined": "coauthors",
"ignoreUndefined": "true"
},
"coauthors": {
"fields": [ "fields": [
{ {
"field": "coauthors", "field": "coauthors",
"comparator": "authorsMatch", "comparator": "authorsMatch",
"weight": 1.0, "weight": 1.0,
"countIfUndefined": "false", "countIfUndefined": "true",
"params": { "params": {"type": "count"}
"surname_th": 0.75,
"fullname_th": 0.75,
"size_th": 20,
"mode": "surname"
}
} }
], ],
"threshold": 0.6, "threshold": 1.0,
"aggregation": "MAX",
"positive": "topicsMatch",
"negative": "NO_MATCH",
"undefined": "topicsMatch",
"ignoreUndefined": "true"
},
"topicsMatch": {
"fields": [
{
"field": "topics",
"comparator": "cosineSimilarity",
"weight": 1.0,
"countIfUndefined": "true",
"params": {}
}
],
"threshold": 1.0,
"aggregation": "MAX", "aggregation": "MAX",
"positive": "MATCH", "positive": "MATCH",
"negative": "NO_MATCH", "negative": "NO_MATCH",
"undefined": "MATCH", "undefined": "NO_MATCH",
"ignoreUndefined": "true" "ignoreUndefined": "false"
} }
}, },
"model": [ "model": [
{
"name": "topics",
"type": "DoubleArray",
"path": "$.topics"
},
{ {
"name": "fullname", "name": "fullname",
"type": "String", "type": "String",
"path": "$.name" "path": "$.fullname"
},
{
"name": "orcid",
"type": "String",
"path": "$.orcid"
}, },
{ {
"name": "coauthors", "name": "coauthors",
"type": "List", "type": "List",
"path": "$.coauthors[*].name", "path": "$.coAuthors[*].fullname"
"size": 200
}, },
{ {
"name": "year", "name": "orcids",
"type": "String", "type": "List",
"path": "$.publication.year" "path": "$.coAuthors[*].orcid"
},
{
"name": "title",
"type": "String",
"path": "$.publication.title"
} }
], ],
"blacklists": {}, "blacklists": {},

View File

@ -1 +1 @@
{"id": "f3389e7c8af1d806c06e2ab51f28a4b4", "name": "Aczél, János", "shortname": "Aczél, J.", "pid": "aczel.janos", "coauthors": [], "publication": {"year": "1955", "title": "L\\\"osung der Vektor-Funktionalgleichung der homogenen und inhomogenen $n$-dimensionalen einparametrigen ``Translation'' der erzeugenden Funktion von Kettenreaktionen und des station\\\"aren und nichtstation\\\"aren Bewegungsintegrals", "venue": "Acta Math. Acad. Sci. Hung. 6, 131-140 (1955)."}} {"fullname":"Zaragoza, Maria Cleofé","firstname":"Maria Cleofé","lastname":"Zaragoza","coAuthors":[{"fullname":"Cambras, Trinitat","lastname":"Cambras","firstname":"Trinitat","orcid":"0000-0002-9009-4690"},{"fullname":"Castro-Marrero, Jesús","lastname":"Castro-Marrero","firstname":"Jesús","orcid":""},{"fullname":"Díez-Noguera, Antoni","lastname":"Díez-Noguera","firstname":"Antoni","orcid":""},{"fullname":"Alegre, José","lastname":"Alegre","firstname":"José","orcid":"0000-0002-7582-7585"}],"topics":[0.9522090839562252,0.04779091604377485],"orcid":"0000-0002-9797-0219","id":"author::1a10826c83c7f9f0dcebe7df05e37a2a","pubId":"50|pmid________::db7fd19db5a620eafad40cfb97f9690d"}