2024-10-16 13:38:26 +02:00
|
|
|
#
|
|
|
|
# Licensed to the Apache Software Foundation (ASF) under one
|
|
|
|
# or more contributor license agreements. See the NOTICE file
|
|
|
|
# distributed with this work for additional information
|
|
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
|
|
# to you under the Apache License, Version 2.0 (the
|
|
|
|
# "License"); you may not use this file except in compliance
|
|
|
|
# with the License. You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing,
|
|
|
|
# software distributed under the License is distributed on an
|
|
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
|
|
# KIND, either express or implied. See the License for the
|
|
|
|
# specific language governing permissions and limitations
|
|
|
|
# under the License.
|
|
|
|
"""
|
|
|
|
This is an example DAG which uses SparkKubernetesOperator and SparkKubernetesSensor.
|
|
|
|
In this example, we create two tasks which execute sequentially.
|
|
|
|
The first task is to submit sparkApplication on Kubernetes cluster(the example uses spark-pi application).
|
|
|
|
and the second task is to check the final state of the sparkApplication that submitted in the first state.
|
|
|
|
|
|
|
|
Spark-on-k8s operator is required to be already installed on Kubernetes
|
|
|
|
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator
|
|
|
|
"""
|
|
|
|
|
|
|
|
from os import path
|
|
|
|
from datetime import timedelta, datetime
|
2024-10-16 14:08:00 +02:00
|
|
|
# from workflow.dnet.spark_configurator import SparkConfigurator
|
2024-10-16 13:38:26 +02:00
|
|
|
|
|
|
|
# [START import_module]
|
|
|
|
# The DAG object; we'll need this to instantiate a DAG
|
|
|
|
from airflow import DAG
|
|
|
|
# Operators; we need this to operate!
|
|
|
|
from airflow.providers.cncf.kubernetes.operators.spark_kubernetes import SparkKubernetesOperator
|
|
|
|
from airflow.providers.cncf.kubernetes.sensors.spark_kubernetes import SparkKubernetesSensor
|
|
|
|
from airflow.utils.dates import days_ago
|
|
|
|
|
|
|
|
|
|
|
|
# [END import_module]
|
|
|
|
|
2024-10-16 14:08:00 +02:00
|
|
|
|
|
|
|
class SparkConfigurator:
|
|
|
|
def __init__(self,
|
|
|
|
name,
|
|
|
|
mainClass,
|
|
|
|
jarLocation:str,
|
|
|
|
arguments,
|
|
|
|
apiVersion=None,
|
|
|
|
namespace="dnet-spark-jobs",
|
|
|
|
image= "dnet-spark:1.0.0",
|
|
|
|
driver_cores=1,
|
|
|
|
driver_memory='1G',
|
|
|
|
executor_cores=1,
|
|
|
|
executor_memory="1G",
|
|
|
|
executor_memoryOverhead= "1G",
|
|
|
|
executor_instances=1
|
|
|
|
) -> None:
|
|
|
|
if apiVersion:
|
|
|
|
self.apiVersion = apiVersion
|
|
|
|
else:
|
|
|
|
self.apiVersion = "sparkoperator.k8s.io/v1beta2"
|
|
|
|
self.namespace= namespace
|
|
|
|
self.name = name
|
|
|
|
self.image= image
|
|
|
|
self.mainClass = mainClass
|
|
|
|
self.jarLocation = jarLocation
|
|
|
|
self.arguments= arguments
|
|
|
|
self.s3Configuration = {
|
|
|
|
"spark.driver.extraJavaOptions": "-Divy.cache.dir=/tmp -Dcom.amazonaws.sdk.disableCertChecking=true -Dcom.cloudera.com.amazonaws.sdk.disableCertChecking=true",
|
|
|
|
"spark.executor.extraJavaOptions": "-Divy.cache.dir=/tmp -Dcom.amazonaws.sdk.disableCertChecking=true -Dcom.cloudera.com.amazonaws.sdk.disableCertChecking=true",
|
|
|
|
"spark.hadoop.fs.defaultFS": "s3a://spark",
|
|
|
|
"spark.hadoop.fs.s3a.access.key": "minio",
|
|
|
|
"spark.hadoop.fs.s3a.secret.key": "minio123",
|
|
|
|
"spark.hadoop.fs.s3a.endpoint": "https://minio.dnet-minio-tenant.svc.cluster.local",
|
|
|
|
"spark.hadoop.fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
|
|
|
|
"spark.hadoop.fs.s3a.path.style.access": "true",
|
|
|
|
"spark.hadoop.fs.s3a.attempts.maximum": "1",
|
|
|
|
"spark.hadoop.fs.s3a.connection.establish.timeout": "5000",
|
|
|
|
"spark.hadoop.fs.s3a.connection.timeout": "10001",
|
|
|
|
"spark.hadoop.fs.s3a.connection.ssl.enabled": "false",
|
|
|
|
"com.amazonaws.sdk.disableCertChecking": "true",
|
|
|
|
"com.cloudera.com.amazonaws.sdk.disableCertChecking": "true",
|
|
|
|
"fs.s3a.connection.ssl.strictverify": "false",
|
|
|
|
"fs.s3a.connection.ssl.enabled": "false",
|
|
|
|
"fs.s3a.ssl.enabled": "false",
|
|
|
|
"spark.hadoop.fs.s3a.ssl.enabled": "false"
|
|
|
|
}
|
|
|
|
self.sparkResoruceConf= {
|
|
|
|
'driver_cores':driver_cores,
|
|
|
|
'driver_memory':driver_memory,
|
|
|
|
'executor_cores':executor_cores,
|
|
|
|
'executor_memory':executor_memory,
|
|
|
|
'executor_instances':executor_instances,
|
|
|
|
'memoryOverhead':executor_memoryOverhead
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
def get_configuration(self) -> dict:
|
|
|
|
return {
|
|
|
|
"apiVersion": self.apiVersion,
|
|
|
|
"kind": "SparkApplication",
|
|
|
|
"metadata": {
|
|
|
|
"name": self.name,
|
|
|
|
"namespace": self.namespace
|
|
|
|
},
|
|
|
|
"spec": {
|
|
|
|
"type": "Scala",
|
|
|
|
"mode": "cluster",
|
|
|
|
"image":self.image,
|
|
|
|
"imagePullPolicy": "IfNotPresent",
|
|
|
|
"mainClass": self.mainClass,
|
|
|
|
"mainApplicationFile": self.jarLocation,
|
|
|
|
"arguments": self.arguments,
|
|
|
|
"sparkVersion": "3.5.1",
|
|
|
|
"sparkConf": self.s3Configuration,
|
|
|
|
"restartPolicy": {
|
|
|
|
"type": "Never"
|
|
|
|
},
|
|
|
|
"volumes": [
|
|
|
|
{
|
|
|
|
"name": "test-volume",
|
|
|
|
"persistentVolumeClaim": {
|
|
|
|
"claimName": "my-spark-pvc-tmp"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"driver": {
|
|
|
|
"javaOptions": "-Dcom.amazonaws.sdk.disableCertChecking=true -Dcom.cloudera.com.amazonaws.sdk.disableCertChecking=true",
|
|
|
|
"cores": self.sparkResoruceConf['driver_cores'],
|
|
|
|
"coreLimit": "1200m",
|
|
|
|
"memory": self.sparkResoruceConf['driver_memory'],
|
|
|
|
"labels": {
|
|
|
|
"version": "3.5.1"
|
|
|
|
},
|
|
|
|
"serviceAccount": "spark",
|
|
|
|
"volumeMounts": [
|
|
|
|
{
|
|
|
|
"name": "test-volume",
|
|
|
|
"mountPath": "/tmp"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"executor": {
|
|
|
|
"javaOptions": "-Dcom.amazonaws.sdk.disableCertChecking=true -Dcom.cloudera.com.amazonaws.sdk.disableCertChecking=true",
|
|
|
|
"cores": self.sparkResoruceConf['executor_cores'],
|
|
|
|
"memoryOverhead": self.sparkResoruceConf['memoryOverhead'],
|
|
|
|
"memory": self.sparkResoruceConf['executor_memory'],
|
|
|
|
"instances": self.sparkResoruceConf['executor_instances'],
|
|
|
|
"labels": {
|
|
|
|
"version": "3.5.1"
|
|
|
|
},
|
|
|
|
"volumeMounts": [
|
|
|
|
{
|
|
|
|
"name": "test-volume",
|
|
|
|
"mountPath": "/tmp"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2024-10-16 13:38:26 +02:00
|
|
|
# [START default_args]
|
|
|
|
# These args will get passed on to each operator
|
|
|
|
# You can override them on a per-task basis during operator initialization
|
|
|
|
default_args = {
|
|
|
|
'owner': 'airflow',
|
|
|
|
'depends_on_past': False,
|
|
|
|
'start_date': days_ago(1),
|
|
|
|
'email': ['airflow@example.com'],
|
|
|
|
'email_on_failure': False,
|
|
|
|
'email_on_retry': False,
|
|
|
|
'max_active_runs': 1,
|
|
|
|
'retries': 3
|
|
|
|
}
|
|
|
|
|
|
|
|
spec =SparkConfigurator(
|
|
|
|
name="spark-scholix-{{ ds }}-{{ task_instance.try_number }}",
|
|
|
|
mainClass="eu.dnetlib.dhp.sx.graph.SparkCreateScholexplorerDump",
|
|
|
|
jarLocation = 's3a://deps/dhp-shade-package-1.2.5-SNAPSHOT.jar',
|
|
|
|
arguments =[ "--sourcePath", "s3a://raw-graph/01", "--targetPath", "s3a://scholix"],\
|
|
|
|
executor_cores=10,
|
|
|
|
executor_memory="4G",
|
|
|
|
executor_instances=1,
|
|
|
|
executor_memoryOverhead="3G").get_configuration()
|
|
|
|
|
|
|
|
dag = DAG(
|
|
|
|
'spark_scholix',
|
|
|
|
default_args=default_args,
|
|
|
|
schedule_interval=None,
|
|
|
|
tags=['example', 'spark']
|
|
|
|
)
|
|
|
|
|
|
|
|
submit = SparkKubernetesOperator(
|
|
|
|
task_id='spark-scholix',
|
|
|
|
namespace='dnet-spark-jobs',
|
|
|
|
template_spec=spec,
|
|
|
|
kubernetes_conn_id="kubernetes_default",
|
|
|
|
# do_xcom_push=True,
|
|
|
|
# delete_on_termination=True,
|
|
|
|
# base_container_name="spark-kubernetes-driver",
|
|
|
|
dag=dag
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
submit
|