diff --git a/images/ckan/2.9/Dockerfile b/images/ckan/2.9/Dockerfile index d7b4983..33ae654 100644 --- a/images/ckan/2.9/Dockerfile +++ b/images/ckan/2.9/Dockerfile @@ -154,6 +154,8 @@ RUN addgroup -g 92 -S ckan && \ adduser -u 92 -h /srv/app -H -D -S -G ckan ckan WORKDIR ${CKAN_DIR} +RUN ls -lah /usr/lib/python3.10/collections/ && cat /usr/lib/python3.10/collections/__init__.py +COPY __init__.py /usr/lib/python3.10/collections/__init__.py # Install CKAN RUN pip install -e /srv/app/src/ckan && \ diff --git a/images/ckan/2.9/__init__.py b/images/ckan/2.9/__init__.py new file mode 100644 index 0000000..c418f07 --- /dev/null +++ b/images/ckan/2.9/__init__.py @@ -0,0 +1,1560 @@ +'''This module implements specialized container datatypes providing +alternatives to Python's general purpose built-in containers, dict, +list, set, and tuple. + +* namedtuple factory function for creating tuple subclasses with named fields +* deque list-like container with fast appends and pops on either end +* ChainMap dict-like class for creating a single view of multiple mappings +* Counter dict subclass for counting hashable objects +* OrderedDict dict subclass that remembers the order entries were added +* defaultdict dict subclass that calls a factory function to supply missing values +* UserDict wrapper around dictionary objects for easier dict subclassing +* UserList wrapper around list objects for easier list subclassing +* UserString wrapper around string objects for easier string subclassing + +''' + +__all__ = [ + 'ChainMap', + 'Counter', + 'OrderedDict', + 'UserDict', + 'UserList', + 'UserString', + 'defaultdict', + 'deque', + 'namedtuple', +] + +from _collections_abc import Mapping +from _collections_abc import MutableMapping +from _collections_abc import Sequence + +import _collections_abc +import sys as _sys + +from itertools import chain as _chain +from itertools import repeat as _repeat +from itertools import starmap as _starmap +from keyword import iskeyword as _iskeyword +from operator import eq as _eq +from operator import itemgetter as _itemgetter +from reprlib import recursive_repr as _recursive_repr +from _weakref import proxy as _proxy + +try: + from _collections import deque +except ImportError: + pass +else: + _collections_abc.MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(_collections_abc.KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(_collections_abc.ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(_collections_abc.ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(self, other=(), /, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries. Keyword argument order is preserved. + ''' + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(other, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''Remove and return a (key, value) pair from the dictionary. + + Pairs are returned in LIFO order if last is true or FIFO order if false. + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last is false). + + Raise KeyError if the element does not exist. + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + soft_link = link_next.prev + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + root.prev = soft_link + last.next = link + else: + first = root.next + link.prev = root + link.next = first + first.prev = soft_link + root.next = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = _collections_abc.MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = _collections_abc.MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + '''Insert key with a value of default if key is not in the dictionary. + + Return the value for key if key is in the dictionary, else default. + ''' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''Create a new ordered dictionary with keys from iterable and values set to value. + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + def __ior__(self, other): + self.update(other) + return self + + def __or__(self, other): + if not isinstance(other, dict): + return NotImplemented + new = self.__class__(self) + new.update(other) + return new + + def __ror__(self, other): + if not isinstance(other, dict): + return NotImplemented + new = self.__class__(other) + new.update(self) + return new + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +try: + from _collections import _tuplegetter +except ImportError: + _tuplegetter = lambda index, doc: property(_itemgetter(index), doc=doc) + +def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = _sys.intern(str(typename)) + + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = f'_{index}' + seen.add(name) + + for name in [typename] + field_names: + if type(name) is not str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + f'identifiers: {name!r}') + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + f'keyword: {name!r}') + + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + f'{name!r}') + if name in seen: + raise ValueError(f'Encountered duplicate field name: {name!r}') + seen.add(name) + + field_defaults = {} + if defaults is not None: + defaults = tuple(defaults) + if len(defaults) > len(field_names): + raise TypeError('Got more default values than field names') + field_defaults = dict(reversed(list(zip(reversed(field_names), + reversed(defaults))))) + + # Variables used in the methods and docstrings + field_names = tuple(map(_sys.intern, field_names)) + num_fields = len(field_names) + arg_list = ', '.join(field_names) + if num_fields == 1: + arg_list += ',' + repr_fmt = '(' + ', '.join(f'{name}=%r' for name in field_names) + ')' + tuple_new = tuple.__new__ + _dict, _tuple, _len, _map, _zip = dict, tuple, len, map, zip + + # Create all the named tuple methods to be added to the class namespace + + namespace = { + '_tuple_new': tuple_new, + '__builtins__': {}, + '__name__': f'namedtuple_{typename}', + } + code = f'lambda _cls, {arg_list}: _tuple_new(_cls, ({arg_list}))' + __new__ = eval(code, namespace) + __new__.__name__ = '__new__' + __new__.__doc__ = f'Create new instance of {typename}({arg_list})' + if defaults is not None: + __new__.__defaults__ = defaults + + @classmethod + def _make(cls, iterable): + result = tuple_new(cls, iterable) + if _len(result) != num_fields: + raise TypeError(f'Expected {num_fields} arguments, got {len(result)}') + return result + + _make.__func__.__doc__ = (f'Make a new {typename} object from a sequence ' + 'or iterable') + + def _replace(self, /, **kwds): + result = self._make(_map(kwds.pop, field_names, self)) + if kwds: + raise ValueError(f'Got unexpected field names: {list(kwds)!r}') + return result + + _replace.__doc__ = (f'Return a new {typename} object replacing specified ' + 'fields with new values') + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + repr_fmt % self + + def _asdict(self): + 'Return a new dict which maps field names to their values.' + return _dict(_zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return _tuple(self) + + # Modify function metadata to help with introspection and debugging + for method in ( + __new__, + _make.__func__, + _replace, + __repr__, + _asdict, + __getnewargs__, + ): + method.__qualname__ = f'{typename}.{method.__name__}' + + # Build-up the class namespace dictionary + # and use type() to build the result class + class_namespace = { + '__doc__': f'{typename}({arg_list})', + '__slots__': (), + '_fields': field_names, + '_field_defaults': field_defaults, + '__new__': __new__, + '_make': _make, + '_replace': _replace, + '__repr__': __repr__, + '_asdict': _asdict, + '__getnewargs__': __getnewargs__, + '__match_args__': field_names, + } + for index, name in enumerate(field_names): + doc = _sys.intern(f'Alias for field number {index}') + class_namespace[name] = _tuplegetter(index, doc) + + result = type(typename, (tuple,), class_namespace) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython), or where the user has + # specified a particular module. + if module is None: + try: + module = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + if module is not None: + result.__module__ = module + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(self, iterable=None, /, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + super().__init__() + self.update(iterable, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def total(self): + 'Sum of the counts' + return sum(self.values()) + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abracadabra').most_common(3) + [('a', 5), ('b', 2), ('r', 2)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + + # Lazy import to speedup Python startup time + import heapq + return heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because the semantics + # would be ambiguous in cases such as Counter.fromkeys('aaabbc', v=2). + # Initializing counters to zero values isn't necessary because zero + # is already the default value for counter lookups. Initializing + # to one is easily accomplished with Counter(set(iterable)). For + # more exotic cases, create a dictionary first using a dictionary + # comprehension or dict.fromkeys(). + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(self, iterable=None, /, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if iterable is not None: + if isinstance(iterable, _collections_abc.Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + # fast path when counter is empty + super().update(iterable) + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(self, iterable=None, /, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if iterable is not None: + self_get = self.get + if isinstance(iterable, _collections_abc.Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __eq__(self, other): + 'True if all counts agree. Missing counts are treated as zero.' + if not isinstance(other, Counter): + return NotImplemented + return all(self[e] == other[e] for c in (self, other) for e in c) + + def __ne__(self, other): + 'True if any counts disagree. Missing counts are treated as zero.' + if not isinstance(other, Counter): + return NotImplemented + return not self == other + + def __le__(self, other): + 'True if all counts in self are a subset of those in other.' + if not isinstance(other, Counter): + return NotImplemented + return all(self[e] <= other[e] for c in (self, other) for e in c) + + def __lt__(self, other): + 'True if all counts in self are a proper subset of those in other.' + if not isinstance(other, Counter): + return NotImplemented + return self <= other and self != other + + def __ge__(self, other): + 'True if all counts in self are a superset of those in other.' + if not isinstance(other, Counter): + return NotImplemented + return all(self[e] >= other[e] for c in (self, other) for e in c) + + def __gt__(self, other): + 'True if all counts in self are a proper superset of those in other.' + if not isinstance(other, Counter): + return NotImplemented + return self >= other and self != other + + def __repr__(self): + if not self: + return f'{self.__class__.__name__}()' + try: + # dict() preserves the ordering returned by most_common() + d = dict(self.most_common()) + except TypeError: + # handle case where values are not orderable + d = dict(self) + return f'{self.__class__.__name__}({d!r})' + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + # + # Results are ordered according to when an element is first + # encountered in the left operand and then by the order + # encountered in the right operand. + # + # When the multiplicities are all zero or one, multiset operations + # are guaranteed to be equivalent to the corresponding operations + # for regular sets. + # Given counter multisets such as: + # cp = Counter(a=1, b=0, c=1) + # cq = Counter(c=1, d=0, e=1) + # The corresponding regular sets would be: + # sp = {'a', 'c'} + # sq = {'c', 'e'} + # All of the following relations would hold: + # set(cp + cq) == sp | sq + # set(cp - cq) == sp - sq + # set(cp | cq) == sp | sq + # set(cp & cq) == sp & sq + # (cp == cq) == (sp == sq) + # (cp != cq) == (sp != sq) + # (cp <= cq) == (sp <= sq) + # (cp < cq) == (sp < sq) + # (cp >= cq) == (sp >= sq) + # (cp > cq) == (sp > sq) + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap +######################################################################## + +class ChainMap(_collections_abc.MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + be accessed or updated using the *maps* attribute. There is no other + state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + d = {} + for mapping in reversed(self.maps): + d.update(dict.fromkeys(mapping)) # reuses stored hash values if possible + return iter(d) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return f'{self.__class__.__name__}({", ".join(map(repr, self.maps))})' + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None, **kwargs): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + Keyword arguments update the map or new empty dict. + ''' + if m is None: + m = kwargs + elif kwargs: + m.update(kwargs) + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError(f'Key not found in the first mapping: {key!r}') + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError(f'Key not found in the first mapping: {key!r}') + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + def __ior__(self, other): + self.maps[0].update(other) + return self + + def __or__(self, other): + if not isinstance(other, _collections_abc.Mapping): + return NotImplemented + m = self.copy() + m.maps[0].update(other) + return m + + def __ror__(self, other): + if not isinstance(other, _collections_abc.Mapping): + return NotImplemented + m = dict(other) + for child in reversed(self.maps): + m.update(child) + return self.__class__(m) + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(_collections_abc.MutableMapping): + + # Start by filling-out the abstract methods + def __init__(self, dict=None, /, **kwargs): + self.data = {} + if dict is not None: + self.update(dict) + if kwargs: + self.update(kwargs) + + def __len__(self): + return len(self.data) + + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + + def __setitem__(self, key, item): + self.data[key] = item + + def __delitem__(self, key): + del self.data[key] + + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): + return repr(self.data) + + def __or__(self, other): + if isinstance(other, UserDict): + return self.__class__(self.data | other.data) + if isinstance(other, dict): + return self.__class__(self.data | other) + return NotImplemented + + def __ror__(self, other): + if isinstance(other, UserDict): + return self.__class__(other.data | self.data) + if isinstance(other, dict): + return self.__class__(other | self.data) + return NotImplemented + + def __ior__(self, other): + if isinstance(other, UserDict): + self.data |= other.data + else: + self.data |= other + return self + + def __copy__(self): + inst = self.__class__.__new__(self.__class__) + inst.__dict__.update(self.__dict__) + # Create a copy and avoid triggering descriptors + inst.__dict__["data"] = self.__dict__["data"].copy() + return inst + + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + +################################################################################ +### UserList +################################################################################ + +class UserList(_collections_abc.MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + + def __repr__(self): + return repr(self.data) + + def __lt__(self, other): + return self.data < self.__cast(other) + + def __le__(self, other): + return self.data <= self.__cast(other) + + def __eq__(self, other): + return self.data == self.__cast(other) + + def __gt__(self, other): + return self.data > self.__cast(other) + + def __ge__(self, other): + return self.data >= self.__cast(other) + + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + + def __contains__(self, item): + return item in self.data + + def __len__(self): + return len(self.data) + + def __getitem__(self, i): + if isinstance(i, slice): + return self.__class__(self.data[i]) + else: + return self.data[i] + + def __setitem__(self, i, item): + self.data[i] = item + + def __delitem__(self, i): + del self.data[i] + + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + + def __mul__(self, n): + return self.__class__(self.data * n) + + __rmul__ = __mul__ + + def __imul__(self, n): + self.data *= n + return self + + def __copy__(self): + inst = self.__class__.__new__(self.__class__) + inst.__dict__.update(self.__dict__) + # Create a copy and avoid triggering descriptors + inst.__dict__["data"] = self.__dict__["data"][:] + return inst + + def append(self, item): + self.data.append(item) + + def insert(self, i, item): + self.data.insert(i, item) + + def pop(self, i=-1): + return self.data.pop(i) + + def remove(self, item): + self.data.remove(item) + + def clear(self): + self.data.clear() + + def copy(self): + return self.__class__(self) + + def count(self, item): + return self.data.count(item) + + def index(self, item, *args): + return self.data.index(item, *args) + + def reverse(self): + self.data.reverse() + + def sort(self, /, *args, **kwds): + self.data.sort(*args, **kwds) + + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + +################################################################################ +### UserString +################################################################################ + +class UserString(_collections_abc.Sequence): + + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + + def __str__(self): + return str(self.data) + + def __repr__(self): + return repr(self.data) + + def __int__(self): + return int(self.data) + + def __float__(self): + return float(self.data) + + def __complex__(self): + return complex(self.data) + + def __hash__(self): + return hash(self.data) + + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): + return len(self.data) + + def __getitem__(self, index): + return self.__class__(self.data[index]) + + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + + def __mul__(self, n): + return self.__class__(self.data * n) + + __rmul__ = __mul__ + + def __mod__(self, args): + return self.__class__(self.data % args) + + def __rmod__(self, template): + return self.__class__(str(template) % self) + + # the following methods are defined in alphabetical order: + def capitalize(self): + return self.__class__(self.data.capitalize()) + + def casefold(self): + return self.__class__(self.data.casefold()) + + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + + def removeprefix(self, prefix, /): + if isinstance(prefix, UserString): + prefix = prefix.data + return self.__class__(self.data.removeprefix(prefix)) + + def removesuffix(self, suffix, /): + if isinstance(suffix, UserString): + suffix = suffix.data + return self.__class__(self.data.removesuffix(suffix)) + + def encode(self, encoding='utf-8', errors='strict'): + encoding = 'utf-8' if encoding is None else encoding + errors = 'strict' if errors is None else errors + return self.data.encode(encoding, errors) + + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + + def format(self, /, *args, **kwds): + return self.data.format(*args, **kwds) + + def format_map(self, mapping): + return self.data.format_map(mapping) + + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + + def isalpha(self): + return self.data.isalpha() + + def isalnum(self): + return self.data.isalnum() + + def isascii(self): + return self.data.isascii() + + def isdecimal(self): + return self.data.isdecimal() + + def isdigit(self): + return self.data.isdigit() + + def isidentifier(self): + return self.data.isidentifier() + + def islower(self): + return self.data.islower() + + def isnumeric(self): + return self.data.isnumeric() + + def isprintable(self): + return self.data.isprintable() + + def isspace(self): + return self.data.isspace() + + def istitle(self): + return self.data.istitle() + + def isupper(self): + return self.data.isupper() + + def join(self, seq): + return self.data.join(seq) + + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + + def lower(self): + return self.__class__(self.data.lower()) + + def lstrip(self, chars=None): + return self.__class__(self.data.lstrip(chars)) + + maketrans = str.maketrans + + def partition(self, sep): + return self.data.partition(sep) + + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + + def rpartition(self, sep): + return self.data.rpartition(sep) + + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + + def splitlines(self, keepends=False): + return self.data.splitlines(keepends) + + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + + def strip(self, chars=None): + return self.__class__(self.data.strip(chars)) + + def swapcase(self): + return self.__class__(self.data.swapcase()) + + def title(self): + return self.__class__(self.data.title()) + + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + + def upper(self): + return self.__class__(self.data.upper()) + + def zfill(self, width): + return self.__class__(self.data.zfill(width)) \ No newline at end of file